Order this document

Freescale Semiconductor, Inc. o8 ANIBAD

AN464

Software Driver routines for the
Motorola MC68HC05 CAN Module

Kenneth Terry,
Motorola Ltd.,
East Kilbride, Scotland

introduction

The Controller Area Network (CAN) protocol was developed by Robert Bosch GmbH. It describes a serial
communications protocol which has been designed to support interrupt-driven, real-time control
applications, primarily in the automotive sector. There are currently four MC68HCO05 MCUs which support
the CAN protocol. These are the MC68HC05X4 and the MC68HCO05X16 (and their EPROM derivatives), the
MC68HC705X4 and the MC68HC705X16.

The software described in this application note comprises a number of driver routines which provide an
interface between application software residing in the MCU ROM (or EPROM) and the CAN module. The
routines allow for the initialisation of the CAN module, the transmission of messages, previously stored in
RAM, and the automatic handling of received messages. If required, they allow for automatic response to
requests for data from other CAN nodes without intervention from the application software. They also allow
for optional vectoring into the application software when specific CAN interrupts occur. Messages to be
transmitted can be queued and automatically transferred to the CAN module when its transmit buffers
become available. Once a message is entered into the transmit queue, no further action is required from
the application software. This allows the application software to cycle through a number of tasks at a fixed
rate. If during those tasks it becomes necessary to transmit more than one message on the CAN bus, the
driver routines allow this to be done without the application software being tied up waiting for the CAN
transmit buffers to become available.

The CAN driver routines have been written to run on the MC68HCO05X4 but can be easily adapted to run
on any HCO5 CAN MCU.

CAN Protocol Overview

The Motorola CAN module supports the CAN protocol defined in the Bosch CAN Specification Revision 1.2
(and Revision 2.0 Part A). The following is a brief overview of the major components of the protocol. Refer
to the above documents for a full description of CAN.

The Bosch specification divides a CAN implementation into three layers. These are:
* Object Layer
e Transfer Layer

® Physical Layer

freescale"

. . semiconductor
© Freescale Semiconductor, Inc., 2004. All rights reserved.

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

rxzb30
Rectangle

4\ Freescale Semiconductor, Inc.

The Physical layer defines the actual media used for the transmission of the signals between CAN nodes,
and the electrical specifications of the media. Most commonly the physical layer will consist of a two-wire
differential bus, but this is not defined within the CAN specification.

The CAN protocol defines the main functions of the Transfer Layer. These consist primarily of framing
control, message arbitration, error checking, error signalling and fault confinement. The bit timing is also
defined within the transfer layer.

The Object Layer provides all required message filtering as well as status and message handling. The object
layer will only pass on to the next layer, in this case the user’s application software, messages which are
relevant to the local CAN node.

Information is sent on the CAN bus in fixed format messages which are routed onto the bus by means of
an identifier. The identifier does not indicate a destination for the data, but defines the data contained within
a message such that it can be acted upon by a number of nodes within the network. The identifier is also
used in the arbitration process, used to resolve bus access conflict when two or more nodes start to
transmit 38 message at the same time. Data is sent on the bus in standard NRZ format. The bus has two
allowable logical states; dominant and recessive. In the case where a dominant bit and a recessive bit are
transmitted at the same time by two separate nodes, the dominant level will prevail. This is necessary to
allow the arbitration process to work. A transmitting node monitors the bus when it is sending the message
identifier. If it detects a dominant bit on the bus as it is transmitting a recessive bit, it assumes a higher
priority identifier is being transmitted at the same time by another node, whereupon it stops transmitting
and switches to receive mode.

The message transfer is controlled by the use of four different frame types. These are:

* Data Frame - carrying data from a transmitter to the receivers

¢ Remote Frame - transmitted as a request for data

¢ Error Frame - transmitted by any node (on detecting a bus error) to all other nodes on the bus

¢ Overload Frame - used by a node to request a delay between successive data or remote frames

The Motorola CAN module supports all the above frame types with the exception of the overload frame. It
will recognise and respond to an overload frame, but will not generate one.

Figure 1 shows the format of the Data Frame.
The Data Frame is divided into a number of different fields.

The arbitration field is 12 bits long and contains the identifier for the frame. This is 11 bits long (for CAN
Revision 1.2). The last bit of the arbitration field is the RTR bit and this is used to indicate whether a data
frame or a remote frame is being transmitted. It is transmitted dominant to indicate a data frame, and
recessive to indicate a remote frame. As the RTR bit is also used as part of the arbitration process, a data
frame has higher priority in the case where a data and a remote frame, with the same identifier, are
transmitted simultaneously.

The control field is 6 bits long. In CAN Rev. 1.2, the first two bits of the control field are transmitted
recessive and the last four bits are used to provide the data length code. This determines the number of
data bytes which will be transmitted in the Data Field and this can range from zero to a maximum of eight.

2 Go to: www.freescale.com

Interframe eee—iin! |l

Freescale Semiconductor, Inc.

Arbitration Field
(12 bits)

Control Field
(8 bits)

Data Field
(0 to 8 bytes)
s

CRC Field
(18 bits)

_TI

End of Freme

ACK Delimiter (1 bit)

Figure 1 CAN Data Frame

The Data Field contains the data to be transmitted within the Data Frame. The bytes are transmitted MSB

first.

The CRC Field contains a CRC sequence followed by a CRC field delimiter. The CRC sequence is derived
from a cyclic redundancy code calculated from the bit stream making up the arbitration field, control field
and data field. The CRC delimiter is a single recessive bit.

The Ack field is two bits long. The transmitting node will send two recessive bits during the Ack field. All
nodes correctly receiving the message portion preceding the Ack field will indicate that they have done so
by transmitting @ dominant bit during the 1st bit time of the Ack field. This indicates to the transmitter that
at least one node has correctly received the transmitted message. The second bit of the Ack field is the
Ack delimiter, which is recessive.

Each data frame (and remote frame) is delimited by an end of frame sequence of 7 recessive bits.

A Remote Frame takes exactly the same form as a data frame with two exceptions:

* The RTR bit is sent recessive in a Remote Frame

* A Remote Frame has no data field

The Remote Frame does contain a control field but its value has no relevance due to the lack of a data field.
The Remote Frame is used as a request for data. Figure 2 shows the format of the Remote Frame.

There are several errors that can be detected and signalled by the nodes on the CAN network. These
include the following:

Bit Error — A transmitting unit monitors the bus as it is transmitting. If it detects a bit on the bus that does
not correspond to the bit it is transmitting it perceives this as an error. The exceptions to this are during the
transmission of the arbitration field and during the 1st bit time of the Ack field.

Stuff Error — A transmitting node automatically inserts a bit of opposite polarity into the transmitted bit
stream after 5 consecutive identical bits have been sent. Any receiving node detecting 6 consecutive
identical bits will perceive this as a stuff error.

AN464/D I !I "I!I! " I ’ MOTOROLA

Go to: www.freescale.com

3

4\ Freescale Semiconductor, Inc.

Control Field CRC Field

Arbitration Fiekd
{12 bits) (6 bits) (16 bits) End of Frame
1l -1l

Interf: >

ACK Delimiter (1 bit)

22 VAV///////AIL_ -

Figure 2 Remote Frame

CRC Error — Each receiving node recalculates the CRC for a received message and compares it with the
received CRC. A CRC error occurs when the two values do not match.

Form Error — Any variation from the fixed frame format in a transmitted message will result in a form error.

Acknowledgement Error — This is detected by the transmitter if it does not see a dominant bit during the
first bit time of the Ack field.

A node detecting an error can signal this by sending an error frame (See figure 3). The error frame consists
of two different fields. The first field consists of the superposition of error flags sent by the various nodes
on the network. The second field is the error delimiter. There are two types of error flags that can be sent;
passive and active. The active error flag consists of 6 dominant bits. This flag will either violate the fixed
form of the Ack field or end of frame, or will violate the bit stuffing rules applied to all fields before the CRC
delimiter. This will indicate to the other nodes on the network that an error has occumred. The other nodes
will in turn also transmit an error flag and the result will be the superposition of error flags on the bus. The
length of this part of the frame can range from 6 to 12 bits. Each node will start sending recessive bits after
it has completed transmitting its error flag and monitor the bus until it detects a recessive bit. it will then
send a further 8 recessive bits to generate. the error frame delimiter. A passive error flag consists of 6

recessive bits.
Data _ Interframe space or
Frame o ERROR FRAME —=t—— Overload Frame

lel@— Error Flag —>|

el SUPEIPOSItION e
of error flags

Error Delimiter

Figure 3 CAN Error Frame

4 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

The type of error flag sent by a node is determined by the state of the node. The node can be in one of
three states. These are:

e Error Active

An error active node sends an active error flag in response to a detected error

* Error Passive

An error passive node sends a passive error flag in a response to a detected error.

e Bus Off

An node which is ‘bus off' does not participate in bus activities

The state of each node is defined by a number of fault confinement rules which exist to allow temporary
bus errors to be distinguished from permanent failures. A permanent failure is deemed to have occurred
when an average of one in eight messages are corrupted. If a node continues to see a failure over a period
of time then the node removes itself from the bus.

To allow permanent failures to be recognised, there are two error counts (transmit and receive)
implemented in CAN. in general the error counts are incremented by a fixed amount when a transmitted
or received message is corrupted, and decremented by a fixed amount if a message is transmitted or
received without error. If both error counts are below 127 then the node is error active. When either of the
error counts becomes greater than 127 the node becomes error passive. If either of the error counts
becomes greater than 255 then the node becomes 'bus off' and it takes no further partin CAN bus activity
until 128 occurrences of 11 consecutive bits have been monitored on the bus. Refer to the Bosch CAN
specification for full details of the fault confinement rules.

Bit Timing

Figure 4 shows the bit time divided into a number of segments. These segments are derived from a
number of fixed time units, time quanta, derived from the clock input to the CAN module. In the Motorola
CAN module the time quanta length is derived from the i/p clock using a dedicated programmable
prescaler.

Bit Timing
- . Nominal Bit Time s
SYNC-SEG PROP-SEG PHASE-SEG1 PHASE-SEG2

A

Sample Point
Figure 4 CAN Bit Timing

AN464/D ' I MOTOROLA

Go to: www.freescale.com p

4\ Freescale Semiconductor, Inc.

The SYNC_SEG is one time quantum long and is used to allow synchronisation between the various nodes
on the bus.

The PROP_SEG, which can be from 1 to 8 time quanta in length, is used to compensate for physical delays
on the CAN bus and within the output driver and receiver circuits of the nodes. The PROP_SEG must be at
least twice the maximum signal propagation delay time between any two nodes on the network.

The PHASE_SEG1 and PHASE_SEG2, which can be from 1 to 8 time quanta long, can be respectively
lengthened or shortened to allow synchronisation or resynchronisation with other nodes on the bus. The
amount by which the bit length is altered is dependant on the edge positions of the incoming bits with
respect to the SYNC_SEG position, as perceived by the host CAN node logic.

Synchronisation occurs whenever a recessive to dominant edge is detected on the bus during a bus idle
period. Here the CAN module logic will set its bit timing so that the incoming edge lies within the
SYNC_SEG portion of the bit time. This process is referred to as “Hard Synchronisation” in the Bosch CAN
Specification.

Resynchronisation occurs on every recessive to dominant edge of an incoming message. There is also an
option available for resynchronisation to occur on dominant to recessive edges. During resynchronisation,
if the incoming edge lies outside the SYNC_SEG, then PHASE_SEG1 can be lengthened or PHASE_SEG2
can be shortened depending on whether the edge lies before the sample point or after the sample point.
The maximum amount by which either PHASE_SEG1 or PHASE_SEG2 can be altered is known as the
RESYNCHRONISATION JUMP WIDTH. This is programmable up to a maximum of 4 time quanta.

Motorola CAN Module
Refer to the MC68HC(7)05X4 Advance Information for full details of the Motorola CAN module.

The CAN module includes all the hardware necessary to implement the CAN Transfer layer and meets all
the requirements of the Bosch specification. Figure 5 shows how the CAN module buffers are arranged in
the MCU memory map (MC68HC05X4 and MC68HC05X16).

The module contains one full transmit buffer with registers to hold the identifier, the RTR bit, the data
length code and up to eight data bytes. The eight most significant bits of the identifier are held in the
Transmit Buffer Identifier (TBI) register located at $2A. The remaining bits of the identifier, the RTR bit and
the data length code are located in the Remote Transmission Request and Data Length Code (RTRDL)
register, located at $2B.

The Transmit Data Segment (TDS) registers are located from $2C to $33 and are used to hold the data bytes
to be transmitted.

There are two full receive buffers. They are arranged in a double buffered configuration so that both buffers
are accessed in the same area of the memory map. When the first buffer is filled it can be read by the CPU
as a second incoming message is being transferred by the CAN receiver logic into the second receive
buffer. Setting the Release Receive Buffer (RRB) bit in the CAN Command Register will cause the Receive
Buffer currently being accessed by the CPU to be released and the second buffer to be moved into the
memory map.

The buffering arrangement of the CAN module requires CPU intervention for each single message either
received or transmitted.

MOTOROLA g , ANASSID .

6 Go to: www.freescale.com

A Freescale Semiconductor, Inc.
_ - CONTROL Register
address _ - - COMMAND Register
0 F] STATUS Register
- — N
~ CONTROL REGISTERS] INTERRUPT Register
o - ACCEPTANCE CODE Reg.
29 |] ACCEPTANCE MASK Reg.
N BUS TIMING Reg. 0
2A - aq » N BUS TIMING Reg. 1
[- N O/P CONTROL Register
— TRANSMIT BUFFER -] N\
[_ N\ Reserved
33 | -
s F - = —
~ RECEIVE BUFFERO . — RECEIVE BUFFER 1 -
—] —]
3D | —]

Figure 5 CAN Module Buffer and Register Map

The Control register provides local mask bits for the CAN module interrupts. In addition it contains the
Reset Request bit which is set to disable the CAN module operation and allow access to the message
filtering, bus timing and output control registers.

The Command register is a write only register which contains the Release Receive Buffer (RRB) and
Transmit Request (TR) bits.

The Status register provides information on a number of conditions which can occur in the CAN module.
These include information on whether or not the last requested message has completed transmission, new
data has been received or the transmit buffer can be accessed to store new data. It also indicates if the
CAN module has become 'off bus’, as well as giving limited information on the state of the error counters.

The Interrupt register can be read to determine the source of a CAN interrupt. There are five CAN interrupts
that can occur. These include: Wake Up; Data Overrun (a third message being received before either of the
Receive Buffers have been released); Error; Transmit Complete and Receive.

Go to: www.freescale.com 7

4\ Freescale Semiconductor, Inc.

The Acceptance Code and Acceptance Mask registers are used to provide limited message filtering on the
eight most significant bits of the identifier. If a message is received with an identifier outside of the
acceptance range of the CAN node then the node will respond by transmitting a dominant bit in the correct
position in the Ack field, but it will not transfer the message to the receive buffers or indicate to the CPU
that a new message has been received.

The Bus Timing registers are used to select a suitable baud rate prescaler value to provide an appropriate
tSCL value which is then used to derive the bit time and position of the sample point within the bit. The
Bus Timing registers allow two values, TSEG1 and TSEG2, to be defined. TSEG1 is the sum of
PHASE_SEG1 and the PROP_SEG. TSEG2 is equal to PHASE_SEG2. The Bus Timing Registers also define
the size of the RESYNCHRONISATION JUMP WIDTH.

The Output Control Registers are used to determine the configuration of the output drivers on the CAN
transmit pins. The output drivers can be selected for pullup, pull-down, or push-pull operation by selectively
enabling or disabling the P type and N type transistors in the output driver circuits. They also provide a
number of options for the way in which the data is transmitted. The most usual configuration is for
complementary levels to be transmitted on the Tx0 and Tx1 pins (for two-wire differential operation).

CAN Driver Interface

The driver routines have, as far as possible, been optimised for maximum speed of operation. In some
cases this has resulted in using more ROM than would otherwise be required. An attempt has been made
to minimise the CPU overhead required to service the CAN module. The routines provide an interface
between the user's application software and the CAN module hardware. The combination of the driver
routines and the module hardware provide all functions associated with all layers up to and including the
object layer and allow messages to be handled in a structured manner.

There are seven main routines in the driver software. The routines INIT and CANINIT must be calied by the
user application software to initialise the CAN module and a number of RAM registers used by the driver
software. SENDDAT and SENDREM are called by the user’s application software to initiate either a data
frame or a remote frame transmission respectively. None of the other routines are called by the user’'s
application software. CANIRQ is executed in response to a CAN module interrupt and will direct the
program flow into the appropriate driver routine depending on the source of the interrupt. TRANSMIT is
called by either SENDDAT, SENDREM or CANIRQ and, handles the transfer of message transmit data into
the CAN module and all subsequent actions required for message transmission. RECEIVE is called by
CANIRQ and is responsible for the filtering of incoming messages and the transfer of received message
data from the CAN module to MCU memory. These routines are described in detail later.

There are essentially six main component memory areas used in the interface between the User
Application software and the CAN Driver software. They exist in the general MCU memory, either
RAM,ROM or EPROM. These component areas are:

1 - The Message Buffers (RAM)

2 - The Message Definition Table (RAM, ROM or E(E)PROM))

3 - The User Interrupt Jump Table (RAM, ROM or E(E)PROM))

4 — The User Interrupt Enable Register (RAM)

5 - The Control/Status Register Area (RAM)

6 — The Transmit Queue (RAM)

8 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

The Message Buffers

The Message Buffers hold data which has been received, or data which is to be transmitted, by the CAN
module. Each Message Buffer has a specific identifier assigned to it. This is the identifier which is
transmitted in the arbitration field of the CAN message frame. This will correspond to either a node, a group
of nodes, or to a specific function which can be acted upon by the nodes within the CAN network. For the
purposes of this application note the host node is defined as the MCU in which the CAN driver routines and
the application software are resident. All Message Buffers must be located in Page 0 memory.

Only messages with an identifier, for which there is a corresponding Message Buffer assigned, can be
transmitted by the host node. If the host node receives a message with an identifier for which there is no
corresponding Message Buffer, then the driver software will not store the message contents. There is no
limit, other than RAM size, to the number of Message Buffers that can be defined by the user.

Each Message Buffer is subdivided into a Message Transmit Buffer and a Message Receive Buffer. When
the user application software is required to send a message with a particular identifier, it needs to place
the data to be transmitted in the appropriate Message Transmit Buffer before calling the SENDDAT routine.
All messages sent or received by the host node will have a specific identifier assigned to them. A message
received by the CAN module will be checked by the driver software to see if its identifier matches any of
the identifiers assigned to the Message Buffers. If a match is found then the data contents are transferred
by the driver software to the appropriate Message Receive Buffer. If no match is found then the message
is discarded.

Message Definition Table

The Message Definition Table must be generated by the user for the specific application. The table can
reside in ROM, EPROM or RAM. In the case of the HCO5X4, with its limited RAM, the Message Definition
Table would most likely be located in ROM. The Message Definition Table assigns an identifier to each
Message Buffer and allocates RAM for the Receive and Transmit buffers in each Message Buffer. The
structure of the table is shown in Figure 6.

The table consists of a total number of i entries, the number i being defined by the user application. Each
entry corresponds to a specific Message Buffer. All entries comprise 8 bytes and contain 5 separate
components. These components are:

The Identifier (4 bytes) — This assigns an identifier value to the corresponding Message Buffer. Messages
transmitted from, or received into, the Message Buffer will contain the identifier value assigned in the
Message Definition Table. Four bytes of each entry have been assigned to the identifier. This exceeds the
requirements of the identifier used in the current CAN Rev. 1.2 specification. However, the extra bytes will,
if required, allow for easy modification of the driver routines to accommodate the Rev. 2.0 CAN protocol
with its 29-bit identifier. They also simplify the software required to increment through the table when
searching for an appropriate Message Buffer for a newly received message. The MSB of the 11-bit
identifier (bit 10) is placed in bit 7 of byte 2 in the table entry (MBDF + 2 for Message Buffer 0) and the LSB
of the identifier is placed in bit 5 of byte 3 (MBDF + 3 for Message Buffer 0). All other bits in the table
identifier bytes are cleared to 0.

Receive Buffer Pointer (1 byte) — This byte points to the start of the Message Receive Buffer.

Transmit Buffer Pointer (1 byte) — This byte points to the start of the Message Transmit Buffer.

AN464/D ’ MOTOROLA

Go to: www.freescale.com 9

4\ Freescale Semiconductor, Inc.

Message

Buffer

No. Address

0 MBDF \dentifier 0 gtxneuf.o a(rém.o gz Buf 0 2; Buf 0

1 MBDF+8 - Rx Buf.1| Tx Buf.1| Tx Buf 1| Rx Buf 1

Identifier 1 Ptr. Ptr. Siz Siz

2 MBDF+16
]]
I I
| |
| |

i MBDF+8i identifier i g;.Buf-i ;:;,Bu“ gz Bufi 2; Bufi

Figure 6 Message Definition Table

Transmit Buffer size (1 byte) — The lower nybble of this byte is used to determine the number of bytes
assigned to the Message Transmit Buffer. This can be from zero to eight. The upper nybble is not used.

Receive Buffer Size (1 byte) — The lower nybble of this byte is used to determine the number of bytes
assigned to the Message Receive Buffer. This can be from zero to eight. The upper nybble is not used.

Each Message Buffer is assigned a number (n), which is dependant on its_position within the Message
Definition Table. The first entry is assigned the number 0 and the last entry is assigned the number (i-1).

One possible disadvantage of placing the Message Definition table in ROM is that the size of the
transmitted messages, and possibly of the received messages, cannot be modified once the application
software is operating. However, in most applications the message sizes would be predefined and fixed.
Another disadvantage is the inability to add further identifiers. If this is a problem then the easiest solution
is to place the table in RAM or, if using the HC05X16, in EEPROM.

The ability to place the Message Transmit and Receive Buffers anywhere in the first 256 bytes of the
memory map means that they do not necessarily have to be placed in RAM. For example, on the HCO5X16,
the SCI control, status and data registers could be assigned as Receive and Transmit Buffers for a particular
identifier, allowing the SCI to be controlled remotely by another node on the CAN bus.

%OTOROLA Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

The User interrupt Jump Table (UIJT)

Figure 7 shows the structure of the User Interrupt Jump Table. The first entry is a single byte indicating the
number of Message Buffers assigned in the Message Definition Table. This is followed by a series of
extended jump instructions. The jump addresses are defined by the user and allow the driver software to
vector into the application software when specific CAN interrupts occur. Routines pointed to by the jump
addresses must be terminated with an RTS instruction to allow a proper return to the driver software. The
facility to vector into the application software is selectively enabled for each CAN interrupt through the User
Interrupt Enable register. The normal driver functions carried out in response to a particular CAN interrupt
will be executed prior to the jump to the application software.

MCST Number of Messager Buffers (i)

MCST+$01 $CC (Ext JMP inst) + 2 byte User Transmit Routine Address

MCST+$04 $CC + 2 byte User Receive Routine Address

MCST+%07 $CC + 2 byte User Error Routine Address

MCST+$0A $CC + 2 byte User Overflow Routine Address

MCST+$0D $CC + 2 byte User Wakeup Routine Address

Figure 7 User Interrupt Jump Table

The Message Definition Table and the User Interrupt Jump table must be generated by the user to suit
their particular application. Additionally, the user must allocate space in suitable areas of memory for the
Message Buffers, the Control/Status register area, the User Interrupt Enable register and the Transmit
Queue.

User interrupt Enable Register (USINTE)

This register contains the following:

Bit 0 — Receive Interrupt Enable (RIEN)

Bit 1 - Transmit Interrupt Enable (TIEN)
Bit 2 — Error Interrupt Enable (ERIEN)

Bit 3 - Overflow Interrupt Enable (OFIEN)
Bit 4 - Wake-Up Interrupt Enable (WUIEN)

Any of these bits will, if set, cause the driver software to vector to the appropriate JMP instruction in the
User Interrupt Jump Table when an interrupt occurs. When the bits are cleared only the normal driver
functions will be carried out in response to an interrupt.

AN464/D I ’

Go to: www.freescale.com MOTORO%’:‘

Freescale Semiconductor, Inc.

The Control/Status Registers
Each Message Buffer has two control/status registers assigned to it.

These are M(n)CS1 and M(n)CS2 (where n is the Message Buffer number). The control/status registers are
.arranged sequentially in memory, starting from the user defined address MCSOFF (See Figure 8). Figure 9
shows contents of the control/status registers.

MCSOFF M1CS1 M1CS2
MCSOFF+2 M2CS1 M2CS2
MCSOFF+4 M3Cs1 M3CS2

| | |

| i |

1] 1

| | |

| | |
MCSOFF+(2Xn) | MnCS1 MnCS2

Figure 8 Message Control/Status Register Location
M(n)CS1

7 6 5 4 3 2 1 0
l TPND | REMF] RBFU I RBOF |AUTOTX| RREC I ATPND DERF

M(n)CS2

7 6 5 4 3 2 1 0
| — | —] — | —] pbsz | psizz [psizi | Dsizo |

Figure 9 M(n)CS1/2 Registers

These registers are modified by both the application software and the driver routines. They can be read by
the application software to provide Message Buffer status information. They also allow the application
software to control the operation of the Message Buffers.

12 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

M(n)CS1
The bit functions of M(n)CS1 are as follows:

7 - Transmit Pending (TPND) - This indicates that a message is in the transmit queue awaiting
transmission. The Message Transmit Buffer contents should not be altered or updated while this bit is set.
This bit is cleared by the driver software after the Message Transmit Buffer (n) contents have been
transferred to the CAN module transmit buffer. It should not be modified by the application software.

6 - Remote Frame Received (REMR) - This bit is set by the driver software to indicate that a remote frame,
with an identifier corresponding to Message Buffer (n), has been received. It is cleared when the Transmit
Buffer (n) contents are transferred to the CAN module transmit buffer to be transmitted as a data frame. It
does not require to be modified by the application software.

5 — Receive Buffer Full (RBFU) — This bit is set to indicate that a new message has been received, with an
identifier corresponding to Message Buffer (n), and stored in the Message Receive Buffer (n). When the
application software has retrieved the received message data contents, it should clear this bit so that
subsequent messages, with the same identifier, can be stored.

4 - Receive Buffer Overflow (RBOF) - This bit is set by the driver routines to indicate that a new message
has been received but has not been stored in the Message Receive Buffer because RBFU is set.

3 - Auto Transmit (AUTOTX) — When this bit is set by the application software, the driver software will
respond automatically to a received remote frame by entering the Message Buffer number into the
transmit queue. This bit is not modified by the driver software.

2 - Remote Request (RREQ) - This bit is used by the driver software to cause a remote frame, with an
identifier corresponding to Message Buffer (n) to be transmitted. It should not be modified by the
application software.

1 - Automatic Response Pending (ATPND) — This bit is set by the driver software to indicate that a remote
frame has been received and that a message has been automatically entered into the transmit queue in
response. It is cleared when the Transmit Buffer (n) contents are transferred to the CAN module to be
transmitted as a data frame.

M(n)CS2

Bits 0 to 3 of M(n)CS2 are used to indicate the number of data bytes that were contained in the last received
message. If this number is greater than the size of the allocated Message Receive Buffer then the
remaining portion of the received data will be dropped and only the bytes for which there is space will be
stored.

The Transmit Queue

The transmit queue is a simple FIFO buffer located in RAM and used by the driver software to determine
the next message to be transmitted. Each entry in the queue takes the form of a Message Buffer number
which is loaded into the end of the queue whenever the SENDDAT, SENDREM and, under certain
conditions, RECEIVE routines are executed. When the TRANSMIT routine is executed it unloads the first
entry from the start of the queue. The location and size of the queue are determined by the byte equate

Go to: www.freescale.com 13

4\ Freescale Semiconductor, Inc.

constants QSTA and QEND. QPTO0 and QPT1 are RAM locations which point to respectively, the first entry
into the queue and the next free location in the queue. As the pointers are incremented past the last
location within the queue buffer, they are reset so that they wrap around to the start of the queue buffer.

Figure 10 illustrates how the Transmit Queue would operate. in this example up to 10 entries can be
entered into the queue. There are 5 messages awaiting transmission. The RAM register QPT1 points to
the next entry to be unloaded by the TRANSMIT routine. QPT2 points to the free location where the next
message number should be loaded into the queue.

QSTA 3rd Message Number
4th Message Number QPT1| QSTA+8
QPT2 QSTA+3
5th Message Number
(QPT2)
(QPT1) 1st Message Number
QEND 2nd Message Number

Figure 10 Transmit Queue Example

There is no requirement for the user application software to access the Transmit queue. All queue entries
are loaded and unloaded by the driver routines.

CAN Driver Routines
Flowcharts for the main routines are included at the end of this application note.

The SENDDAT routine is called by the application software to request a data frame transmission. It should
be entered with the required Message Buffer number n held in the accumulator. It loads the message
number into the transmit queue and, if the CAN module transmitter is inactive, calls the TRANSMIT routine
to initiate the transmission. If the CAN module is currently transmitting, the routine returns and allows the
CANIRQ routine to initiate the transmission.

14 Go to: www.freescale.com

A Freescale Semiconductor, Inc.

The SENDREM routine is almost identical to the SENDDAT routine except that it sets the RREQ bit in the
appropriate M(n)CS1 register. This indicates to the TRANSMIT routine that a remote frame should be
transmitted.

The TRANSMIT routine is called by SENDREM, SENDDAT or CANIRQ. This routine, after checking that the
CAN module transmit buffer is free, takes the next pending Message Buffer number from the transmit
queue and fetches the correct identifier from the Message Definition Table. This is then loaded into the
CAN module transmit buffer. The state of the RREQ bit in M(n)CS1 is checked and the RTR bit in the CAN
module transmit buffer is set accordingly, to select either a remote frame or data frame transmission. The
TPND, REMR and ATPEND bits in M(n)CS1 are cleared. If a data frame is to be sent, the Message Transmit
Buffer contents are transferred to the CAN transmit buffer. The TR bit in the CAN Command register is
then set to initiate the message frame transmission.

The RECEIVE routine is called by CANIRQ when a CAN Module Receive interrupt occurs. The routine will
search through the Message Definition Table to find an identifier which matches the identifier of the
incoming message. If the end of the table is reached and no match is found the message is dropped and
the CAN module receive buffer is released. No indication is made to the application software that the
message was received.

If the incoming message is a remote frame, and AUTOTX in M(n)CS1 is set, then Message Buffer (n) is
loaded into the transmit queue and ATPND, REMR, and TPND are set. If AUTOTX is clear then only REMR
is set. The CAN receive buffer is then released and the routine returns.

If the incoming message is a data frame then RBFU is checked to determine if the Message Receive Buffer
is available. If RBFU is clear then the routine will store the incoming message size in the appropriate
M(n)CS2 register. The message data contents are then transferred to the Message Receive Buffer and the
RBFU bit in M(n)CS1 is set. The CAN module receive buffer is then released and the routine returns.

If RBFU is set then the routine sets RBOF and continues to search through the Message Definition Table
for another Message Buffer entry with the correct identifier. It is possible for more than one Message
Buffer to be assigned to a particular identifier. This might be done if it is likely that the application software
will not be able to process the data from a received message in sufficient time to be able to release the
Message Receive Buffer before a second message arrives with the same identifier

it should be noted that a large part of the execution time of this routine is spent searching the Message
Definition Table for an entry with the correct identifier for the received message. In order to minimise the
CPU resource used by the routine, the most commonly received identifiers should have entries at the start
of the Message Definition Table.

The CANIRQ routine is executed in response to a CAN module interrupt. The source of the interrupt is
determined from the CAN Interrupt register. If a receive or transmit interrupt occurs then the appropriate
routine is called. The CANIRQ routine can also vector into the application software, depending on the state
of the User Interrupt Register. No routines are provided for handling overrun or error interrupts as the way
these are dealt with will be very much dependant on the application.

The INIT routine is used to initialise the M(n)CS1/2 and the USINTE registers.

The CANINIT routine is used to set up the CAN module registers. This routine is provided as an example
only and is designed to operate with the interface circuit shown in Figure 11. The CAN register set up
requirements will be dependant on the application.

Go to: www.freescale.com 15

4\ Freescale Semiconductor, Inc.

The Acceptance Code and Acceptance Mask registers are configured to accept identifiers in the range $700
to $77F. The identifiers used in the sample Message Definition Table, in the software listing, all lie within
this range.

The bit time set up in this routine is 10 uS (4 MHz clock i/p to the CAN module). The tgcy period is defined
by the Baud Rate Prescaler bits BRPO to BRP4 in Bus Timing Register 0. The CANINIT routine sets this
register to $01 giving a Tgc value of 1 uS for a clock input frequency of 4 MHz. The TSEG1 and TSEG2
segments of the bit time are defined by Bus Timing Register 1. The CANINIT routine sets this register to
$34. TSEG1 = 5 x tgc|. givinga PROP_SEG value of 1 tgc and a PHASE_SEG 1 value of 4 x tgcL . The
PROP_SEG value is not explicitly defined but must be accounted for when defining the length of TSEG1.
TSEG2 (which defines PHASE_SEG2) = 4 x tgcL. The SAMP bit in BusTiming Reg. 1 is 0, selecting the
single sample per bit option. The selected resynchronisation jump width is defined by SUW1 and SIWO in
Bus Timing Register 0 and is 4 x tgc . This bit timing meets the requirements for the maximum oscillator
tolerance, which is achieved when the length of the phase buffer segments is the same as the
resynchronisation jump width, and the propagation delay time is equal to 1 x tgcy (i.e., the maximum
possible proportion of the bit time is allocated for resynchronisation). The trade off in this case is the
reduced time that can be allowed for propagation delays. This conforms to the bit timing, recommended in
the CAN specification, for slave CAN devices without programmable bit timing.

The output drivers are configured from the Output Control Register. The CANINIT routine initialises this
register to $AA. The o/p driver for Tx0 is configured for pulldown operation by clearing OCTPO and setting
OCTN1. This allows Tx0 to drive the CANH bus line low (0.3 V approx.) for a dominant bit. For a recessive
bit, the bus line is pulled high (3.25 V) by the termination network. The o/p driver for Tx1 is configured for
pullup operation by setting OCTP1 and clearing OCTN1. This allows the CANL bus line to be driven high
(4.7 V approx.) for a dominant bit. For a recessive bit the CANL line is held low (1.25 V) by the termination
network. The OCMODE?1 bit is set and OCMODEQO bit cleared to select ‘Normal mode 1’ transmission,
where the bit stream is output on both Tx0 and Tx1. The OCPOL1 bit is set and the OCPOLO bit cleared.
This causes the bit stream output on Tx0 to be transmitted normally and the bit stream on Tx1 to be
transmitted inverted, providing the required differential signal.

The receiver network shown in Figure 11 uses a resistor voltage divider network, referenced to VDD/2, to
increase the common mode range specified for the comparator input pins to be increased by a factor of 6
on the actual bus.

16 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Termination Network
1.7sv 3.7%Vv
2x2K >0 # r[l Q TXPO
_ Tx1 i I_.L O ™xp1
EEEES;

—D ™XN1
2x 150K Rx0 o] mgm
 — J N Data

N
Rx1 —‘/' |2~ Rx1£|>>a i
[r—— R ? O SSIVe
L 4/.\}
[| o> COMPSEL
2x30K | ol
: ::1 :> l [Wakeup
VCAN_L VCAN_H

VDDH

N l- VDD/2
CAN BUS LINES _:& Das

Figure 11 Physical interface Example

Processor Overhead

The driver routines were written, as far as possible, to minimise the processing time required by the CPU.
The original aim in developing this software was to have routines which would allow the CAN module to
operate on a 100% loaded bus (i.e.. receiving and storing messages transmitted in a constant stream with
the minimum inter frame space) operating at a minimum rate of 100 Kbits per second. In practice it is
unlikely that any bus would be anywhere near 100% loaded. However, this is a worst case situation which
must be allowed for.

A remote frame is 44 bits in length. To this can be added the inter frame space of 3 bits. Therefore, using
a 10 puS bit time, the shortest possible time for a remote frame transmission is 470 uS. This is assuming
that the frame requires no stuff bits to be inserted. Each data frame transmitted takes a minimum time of
470 uS plus an additional 80 uS for each data byte transmitted. Therefore an 8 byte data frame takes
1.11 mS to be transmitted.

The TRANSMIT routine execution time was both calculated and measured at 118 uS with a CPU internal
operating frequency of 2 MHz. This does not change for varying numbers of data bytes, except in the case
where a data frame is sent with 0 bytes, where the routine takes 84 uS. Because of the single transmit
buffer the host node is unable to send a continuous stream of frames. There is a 118 uS delay between

Go to: www.freescale.com 17

4\ Freescale Semiconductor, Inc.

each frame. However, when the host node is transmitting single byte data frames at its maximum rate,
approximately 17.6% of the CPU’s time is spent servicing the TRANSMIT driver routine. For 8 byte data
frames the amount of CPU time required for the TRANSMIT driver routine is approximately 9.6%.

There are two factors which affect the execution time of the RECEIVE routine; (1) the size of the Message
Receive Buffers and (2) the position of the Message Buffer, required for the incoming message identifier,
within the Message Definition Table. The RECEIVE routine execution time was calculated and measured
for a variety of Message Buffer positions (1 to 5) and a range of sizes (0 to 8 bytes) for the Message Receive
Buffer. Figure 12 summarises these results.

Receive Routine Execution time (1S) versus No. of Received Bytes
Position 1 Identifier .
Position 3 Identifier 214 222
Position 5 Identifier : 198

)
3

N

N

N

N

N

N

N

§

182 N
N

N
N
N
N
N
N
N
N

Execution

(UL dddldda

N
AN
N
N
N
N
Y
N
AN
N
NS
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
AN
N
N
N
N
NS
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
AY
N
N
N
N
N
N
N

’///////////////////////////)/////////////////////////////A

LIS LSS SIS LSS LSS LSS S LSS LSS A o

’/////////'//////// (s

Figure 12 CPU Overhead for RECEIVE Routine

It can be seen from Figure 12 that, for a continuous stream of single byte data frames being transmitted
on the bus, the CPU time required to service the RECEIVE routine is approximately 16.7%, for frames
corresponding to a pasition 1 Message Buffer, and 33.1% for frames corresponding to a position 5
Message Buffer. For a stream of 8 byte frames, the CPU time required would be 12.8% , for position 1
Message Buffer frames, and 21.1 % for position 5 Message Buffer frames. These figures are somewhat
artificial as it is unlikely that the situations described would ever occur, but they are intended only to give
an indication of the required CPU overhead. In a real application it is unlikely that the bus would be loaded
by more than 30 % to 40 %.

?’;OTOROLA Go to: www.freescale.com

4\ , Freescale Semiconductor, Inc.

Figure 13 illustrates a possible worst case situation for required CPU overhead. The timings shown are for
a transmission rate of 100 Kbits/s.

Transmit Frame 1 Frame 2
Processing Receive Receive
time Processing time Processing time
>I
118uS tpr 132 S

!

Transmit Frame 1

Routine CAN .

called Receive
Buffer
released

Frame 1 Frame 2 Frame 3
470 uS |

Vacant CAN Receive
Buffer required

Figure 13 Worst Case Timing Requirements for Received Frames at 100 Kbits/s Transmission Rate

The host node starts to process a data frame transmission just prior to the CAN module completing
reception of an 8 byte, position 5 Message Buffer data frame (Frame 1). The received data frame is
immediately followed by a remote frame (Frame 2), which is in turn immediately followed by a further
frame (Frame 3). In order for Frame 3 to be correctly received, the CPU must release the CAN receive buffer
occupied by Frame 1 before Frame 3 transmission starts. In order for this to happen, the TRANSMIT routine
execution time and the RECEIVE Routine execution time, for handling Frame 1, must be less than the
transmit time for Frame 2 which is 470 uS. This means that the receive routine processing time tpr must
be less than 352 uS. The receive routine execution time when receiving an 8 byte data frame with a position
1 identifier is 144 uS. This execution time increases by 22.5 uS for each increment in the table position.
This means that, under worst case conditions, the driver software can support up to 10 table entries and
bus transmission rate of 100 Kbits/s without losing any incoming messages.

Go to: www.freescale.com 19

4\ Freescale Semiconductor, Inc.
C START D) TRANSMIT ROUTINE
N
C Return)
TBA in N
CAN status Reg.
Set? {
(Return)
Fetch MB Identifier
and store in CAN Tx Buffer
Fetch MB Data size
and store in CAN Tx Reg.
{ Clear RTR bit |
Y
RREQ in M(n)CS1
Set?
Set RTR
Clear TPND, ATPND and
REMR in M(n)CS1 '
i Clear RREQ in M(n)CS1
Transfer MB Tx Data to '
CAN Tx Reg.
Set TR in CAN Command Reg.
(Return)
Transmit Routine

20 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

(starT)

Enter MB(n) into
transmit queue

v

Set TPND (and RREQ
for SENDREM) in
M(n)CS1

TBA in CAN

Status Reg.
clear?

L

Set | in Condition
Code Reg.

!

Call TRANSMIT
Routine

!

Clear | in Condition

Code Reg.
e
Y
(Return)
SENDDAT (SENDREM) Routine

Go to: www.freescale.com 21

Freescale Semiconductor, Inc.

START
CANIRQ
ROUTINE
- v
“-'Lm L
| carecevERasn |
N
RENIn N
USINTE
Se?
Y
[JUMP 1 User Receve Routne

TIENIn N

CANIRQ Routine

MOTOROLA
22

Go to: www.freescale.com

Freescale Semiconductor, Inc.

RECEIVE ROUTINE
| n=-t |

N AUTOTX in
M(nCS1
Ser?

| Store rectd data size in MiniCS2 | , N

Set TPND, REMR and
ATPND in M(n)CS1

I Store Rec’d Data in MB(n) I
Receive Area

[wusmmmmw]

| 1 Yy

\
[snmsmcmcommm]

Receive Routine

Go to: www.freescale.com ’ MOTOROLZQ

4\ Freescale Semiconductor, Inc.
Driver Routines
0001 E2 22212222 212222222222 2222222l 2 2222222 222222222222 2221222222222222222]1
0002 . CAN Module Driver Routines for the MC68HCOSX4
0003 * Revision 1.0 - 16/3/92
0004 *
0005 * This program contains CAN module driver routines which
0006 * provide an interface between application s/w running on
0007 . the HCO5X4 and the on board CAN module. They allow messages
0008 * to be queued for transmission and automatically handle all
0009 . received messages. If required, the routines will provide
0010 - a response to remote requests fram other CAN nodes, without
0011 - intervention from the application s/w.
0012 -
0013 2222222122 2222 2 2222222222222 dl2 2222222222223 2222222222222221222222221
0014 * Register Equates
0015 0000 PORTA BQU $00
0016 0001 PORTB BQU $01
0017 0004 DDRA EQU $04
0018 0005 DDRB BQU $05
0019 0003 PCR EQU $03 Port Configuration Register
0020 0012 TCR BEQU $12 Timer Control Register
0021 0013 TSR BQU $13
0022 0019 TIMLO BEQU $19
0023 .
0024 * Bit Equates
0025 *
0026 0005 TOF BQU 5 Timer Overflow Flag
0027 0005 TOIE EQU 5 Timer Overflow Interrupt Enable
0028 0004 TIMEN EQU 4 Timer Enable
0029 -
0030 . CAN Registers
0031 *
0032 0020 CANCTRL EQU $20 CAN Control Register
0033 0021 CANCOM EQU $21 CAN Command Register
0034 0022 CANSTAT EQU $22 CAN Status Register
0035 0023 CANINT BQU $23 CAN Interrupt Register
0036 0024 CANACC EQU $24 CAN Acceptance Code Register
0037 0025 CANACM EQU $25 CAN Acceptance Mask Register
0038 0026 CANBTO EQU $26 CAN Bus Timing Register 1
0039 0027 CANBT1 BQU $27 CAN Bus Timing Register 2
0040 0028 CANOPC BEQU $28 CAN O/P Control Register
0041 002c CANTX EQU $2¢ Start of CAN Tx Buffer
0042 0036 CANRX EQU $36 Start of CAN Rx Buffer
0043 002a IDENT EQU $2A CAN Transmit Buffer Identifier Reg.
0044 0034 IDENTR EQU $34 CAN Receive Buffer Identifier Reg.
0045 *
0046 b CAN DRIVER S/W REGISTERS and EQUATES
0047 *
0048 0050 ORG $50
0049 0050 BUFNO1 RMB 1 General Purpose RAM Reg. used by Receive Routine
0050 0051 BUFSIZ RMB 1 General Purpose RAM Reg. Used by Tranamit Routine
0051 0052 QCOUNT RMB 1 Queue Buffer Counter
0052 0053 QPT1 RMB 1 First Item Into Queue Pointer
0053 0054 QPTO RMB 1 Next Item into Queue Pointer
0054 0055 QSTA BQU * Start of Transmit Queue area
0055 0055 QBUF RMB S Reserved area for Transmit Queue Buffer
0056 005a QEND BEQU * End of Transmit Queue Area
0057 005a CURTX RMB 1 Temporary storage aea for TRANSMIT routine
0058 005b IDOFF BEQU . Storage byte for rec‘'d identifier position
0059 005b TXPNT RMB 1
0060 005c USINTE RMB 1 User Interrupt Enable Register
0061 0054 GENSTAT RMB 1 MUX Communications General Status Register
0062 -
0063 005e MCSOFF RMB 10 Message Control/Status Registers
0064 *
0065 * M(n)CS1 and M(n)CS2 (n = 1,5)
0066 *
0067 0068 MB RMB 40 Reserved Area for Message Buffers
0068 .
0069 -
0070 hd Bit Equates
0071 *
0072 *M(n)CS1
0073 0007 TPND EQU 7 Set to indicate Tx Buffer locked
0074 0006 REMR EQU 6 Set to indicate Remote frame rec‘'d
0075 0005 RBFU BQU 5 Set to indicate Rx Buffer contains new data
0076 0004 RBOF EQU 4 Set to indicate Rx Buffer overflow
0077 0003 AUTOTX BEQU 3 Set to indicate Auto Tx facility enabled
0078 0002 RREQ EQU 2 Set to indicate Remote Request in Queue

MOTOROLA I AN484/D

24 Go to: www.freescale.com

0079 0001
0080
0081
0082
0083
0084 0£00
0085
0086
0087
0088
0089
0090
0091 0£00 00
01 01
0092
0093
0094
0095 0£08 00
01 01
0096
0097
0098
0099 0£10 00
01 01
0100
0101
0102
0103 0f18 00
01 01
0104
0105
0106
0107 0£20 00
08 08
0108
0109
0110
0111 0f28 00
08 08
0112
0113
0114
0115
0116
0117
0118 0£30 05
0119 0f31 cc
0120 0£f34 cc
0121 0£37 cc
0122 0f3a cc
0123 0f3Q cc
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137 0f40
0138
0139 0£40 b6
0140 0f42 27
0141 0f44 be
- 0142 0f£46 f£6
0143 0f47 Sc
0144 0£48 a3
0145 0fda 26
0146 Ofdc ae
0147 Ofde bf
0148 0f50 3a
0149
0150 0£52 0S
0151
0152 0£55 b7
0153 0£f57 97

00

0o

00

00

00

00

52
70
S3
Sa
55
53
52
22

Sa

el

e3

es5

e7

e9

e9

e0 68 69

e0 6a 6b

el 6c 6d

el 6e 6f

e0 70 78

e0 80 88

TRANS2

Freescale Semiconductor, Inc.

ATPND EQU 1 Set to indicate auto resp. to remote frame
- is pending
*
*M(n)CS2
*
ORG $OF00

L2222 2222222 222222222 2222222222220 222222222222242R222222%]
P22 2222222 2222222222222 2 222222222222 2R R2dddsdd

* Message Definition Table (Example)

P2 212 2 2 22222222222 d 222 2 222222222222 2222222222

M Message #0 - Identifier = $70F

hd Receive Area size = Tranamit Area Size = 1 byte

MBDF FCB $00,$00,$E1, $EO, MB, MB+1,$01,$01

*

* Message #1 - Identifier = $71F

* Receive Area size = Transmit Area Size = 1 byte
FCB $00,$00, SE3,SEO, MB+2,MB+3,$01,$01

*

* Message #2 - Identifier = $72F

* Receive Area size = Transmit Area Size = 1 byte
FCB $00,$00, $ES, $EO, MB+4,MB+5, $01,$01

-

* Message #3 - Identifier = $73F

* Receive Area size = Transmit Area Size = 1 byte

FCB $00,$00, $E7,$E0, MB+6,MB+7, $01,$01

. *

Message #4(A) - Identifier = $74F
Receive Area size = Transmit Area Size = 8 bytes
FCB $00, $00, SE9, SEO, MB+8,MB+$10, $08, $08

+

Message #4(B) - Identifier = $74F
* Receive Area size = Transmit Area Size = 8 bytes
FCB $00,$00, $E9, SEO, MB+$18, MB+$20,5$08, $08

-
R S N T RN NN T N N I N AR P PN AT TP AR R E TN ECE RN RNV T E RS

* MUX Communications Set Up Table

AR 222 A A A A A A2 A A d i A il il il it ididliiildl]

MCST FCB $05 Number of Messages
FCB $CC,$15,$00 Jump to User Receive routine at $1500
FCB $CC,$15,$10 Jump to User Transmit Routine at $1510
FCB $CC,$15,$20 Jump to User Error Routine at $1520
FCB $cc, $15,8$30 Jump to User Overflow Routine at $1530
FCB $CC,$15,$40 Jump to User Wake Up Routine at $1540

-
-
LS 222 a2 2222 A R R il sdt st st iz sistssisisslissss

Subroutine TRANSMIT

This routine takes the next Message Buffer number in the
transmit queue and, if the CAN Tx buffer is free, loads

* % & % % % %

AR A AR AR ARt ittt il i sttt issldldd
*

TRANSMIT EQU *

-

LDA QCOUNT
BEQ TRANSS Return if Queue empty
LDX QPT1 Get offset for next Message in Q
LDA X Load next pending Message Number
INCX
CPX #QEND Check for QPT1 at end of Q Buffer
BNE TRANS2
LDX #QSTA Set QPT1 to start of Q Buffer
STX QPT1 Update QPT1 to next pending Message Number
DEC QCOUNT Decrement Q Counter Reg.
*
TRANS1 BRCLR 2,CANSTAT, TRANSS Check that TBA bit is set
*
STA CURTX Store Message Number
TAX Transfer Message Number to X reg.

Go to: www.freescale.com

Message Buffer Transmit Area contents into the CAN Tx Buffer
along with the corresponding identifier. The TR bit in the
in the CAN Command reg.is set to start frame transmission.

25

4\ Freescale Semiconductor, Inc.
0154 0f£58 58 LSLX Multiply by 8 to get offset for MB Definition
0155 0f59 S8 LSLX Table entry
0156 0fSa S8 LSLX
0157 *
0158 0fSb 46 0f 02 LDA MBDF+2, X Get Hi order bits of identifier

0159 0fSe b7 2a STA IDENT
0160 0f60 A6 Of 06 LDA MBDF+6,X Get Tx Buffer size

0161 0£63 b7 S1 STA BUFSIZ

0162 0f65 A6 0f 03 LDA MBDF+3,X Get low order bits of identifier

0163 0£68 a4 e0 AND #SE0 Clear all other bits including RTR bit

0164 0féa bb 51 ADD BUFS12

0165 0f6c b7 2b STA IDENT+1 Store Low Ident, RTR and Data size

0166 0f6e d6 Of 0S5 LDA MBDF+5, X Get Message (n) Transmit Buffer Pointer
0167 0£71 b7 Sb STA TXPNT

0168 .

0169 0£73 54 LSRX Divide X reg. by 4 to get offset for M(n)CSx
0170 0£74 5S4 LSRX

0171 0£75 e6 Se LDA MCSOFF, X Get M(n)Csl

0172 0£77 a4 04 AND #3504 Check for RREQ Set

0173 0£79 27 0Oa BEQ TRANS3 Load data into CAN Tx Regs. if REMR
0174 0f7b 18 2b BSET 4,IDENT+l1 Set RTR bit

0175 0£74 e6 Se LDA MCSOFF, X

0176 0f7f a4 fb AND #$FB Clear RREQ in M(n)CS1

0177 0£81 e7 Se STA MCSOFF, X

0178 0f83 20 2b BRA TRANS4

0179 i

0180

0181 0£85 e6 Se TRANS3 LDA MCSOFF, X Get M(n)Csi

0182 0f87 a4 3a AND #$3D Clear TPND, REMR and ATPEND in M(n)CS1

0183 0f89 e7 Se STA MCSOFF, X

0184 *

0185 0£8b b6 51 LDA BUFSIZ Get Tx Buffer size

0186 0fsd 27 21 BEQ TRANS4 Check if Buf. size is zero

0187 0f8f be 5b LDX TXPNT Load Tx Buffer pointer into X reg.

0188 0f91 f6 LDA X Get 1st byte of Tx Buffer

0189 0£92 b7 2c STA CANTX

0190 0fS4 e6 01 LDA 1.X

0191 0£f96 b7 2d STA CANTX+1

0192 0£98 e6 02 LDA 2,X

0193 0f9a b7 2e STA CANTX+2

0194 0f9c e6 03 LDA 3.X

0195 0f%e b7 2f STA €ANTX+3

0196 0fa0 e6 04 LDA 4,X

0197 0fa2 b7 30 STA CANTX+4

0198 0fad e6 0S LDA 5,X

0199 0faé b7 31 STA CANTX+5

0200 0fa8 e6 06 LDA 6,X

0201 Ofaa b7 32 STA CANTX+6

0202 Ofac e6 07 LDA 7.X

0203 Ofae b7 33 STA CANTX+7

0204 *

0205 0fb0 a6 01 TRANS4 LDA #3011

0206 0fb2 b7 21 STA CANCOM Set Transmission Request

0207 0fb4 81 TRANSS RTS

0208 *

0209 .

0210 AR 222222222222 2222 2222222222222 2222222222222 2222222

0211 * Subroutine RECEIVE

0212 -

0213 * This routine is called when a CAN Receive Interrupt occurs.
0214 * It compares the identifier of the received message with the
0215 * the identifiers in the Message Definition Table and, if a
0216 . match is found, stores the received message in the appropriate
0217 * Message Buffer Receive Area. If a remote frame is received and
0218 . the AUTOTX bit in M(n)CS1 is set then the appropriate Message
0219 A Buffer number is entered into the Transmit gueue to so that
0220 . a data frame is sent in response

0221 *

0222 EE 2222222222222 2222222222222 22 2212212322222 22222222°2°2 22 2

0223 *

0224 0fbS cc 10 86 RECV?7 JMP RECV2

0225 0fbs RECEIVE EQU *

0226 hd

0227 0fb8 Sf CLRX

0228 0fb9 bf SO STX BUFNO1 Initialise Rx BUFNO Reg.

0229 *

0230 0fbb b6 SO RECV1 LDA BUFNO1

0231 0fbd c1 Of 30 CMP MCST Check for last Identifier comparison

0232 0fcO 24 £3 BHS RECV?

0233 0fc2 3c 50 RECVS INC BUFNO1

0234 *

26 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

0235 0fcéd 9f TXA Increment X reg. by 8

0236 0fcS ab 08 ADD #$08

0237 0fc? 97 TAX

0238 .

0239 0fc8 46 Oe fa LDA MBDF-6, X Get High order byte of 1st Mes. Buf. Ident.
0240 Ofcb bl 34 CMP IDENTR Compare with High order byte of Rx'ed Ident.
0241 0fcd 26 ec BNE RECV1

0242 Ofcf b6 35 LDA IDENTR+1 Get Low order byte of Rx‘'ed Ident.

0243 0fd1 a4 e0 AND #SEO Remove RTR and data size code bits

0244 0fa3 41 Oe fb CMP MBDF-5, X

0245 0fd6 26 e3 BNE RECV1

0246 0fas b6 35 LDA IDENTR+1

0247 0fda a4 10 AND #$10 Check RTR bit

0248 0fdc 27 37 BEQ RECVS If RTR clear then transfer CAN Rx Buffer
0249 * contents to Message (n) Receive Buffer.
0250 *

0251 Ofde be 50 LDX BUFNO1 Get Message number n

0252 0Ofe0 Sa DECX

0253 Ofel S9 ROLX Multiply by 2 for M(n)CS offset

0254 0fe2 e6 Se LDA MCSOFF, X Get M(n)Cs1

0255 Ofed a4 08 AND $#$08 Check for AUTOTX bit set

0256 Ofeé 27 25 BEQ RECV6

0257 Ofe8 b6 52 LDA QCOUNT Check for Q overflow

0258 Ofea al 05 CMP #QEND-#QSTA

0259 Ofec 24 c7 BHS RECV? No action if Queue is full

0260 Ofee e6 Se LDA MCSOFF, X Get M(n)CS1

0261 Off0 aa c8 ORA #scs Set TPND, REMR and ATPND in M(n)CSsl1

0262 0ff2 e7 Se STA MCSOFF, X

0263 .

0264 0ff4 b6 SO LDA BUFNO1 .

0265 0ff6 4a DECA Generate Message number

0266 *

0267 - Enter message number into Transmit Queue

0268 .

0269 0ff7 be S4 LDX QPTO Get position of next gueue location

0270 0ff9 £7 STA X Load message number into queue

0271 Offa Sc INCX

0272 0ffb a3 Sa CPX #QEND Check for QPT1 at end of Q Buffer

0273 0ffd 26 02 BNE RECV9

0274 Offf ae 55 LDX #QSTA Set QPTO to start of Q Buffer

0275 1001 bf 54 RECVY STX QPTO Update QPTO0 to next free Q location
0276 1003 3¢ 52 INC QCOUNT

0277 *

0278 * TAX

0279 hd LSLX Generate offset for M(n)CS1

0280 * LDA MCSOFF, X Get M(n)CS1

0281 * ORA 380 Set TPND

0282 . STA MCSOFF, X

0283 *

0284 1005 05 22 7e BRCLR 2,CANSTAT,RECV2 Check for TBA bit clear

0285 . TBA clear indicates tx in process
0286 * therefore TRANSMIT will be called by
0287 b CAN Interrupt service routine.
0288 1008 cd 0Of 40 JSR TRANSMIT Initiate CAN Transmit Process

0289 *

0290 100b 20 79 BRA RECV2

0291 *

0292 1004 e6 Se RECV6 Lba MCSOFF, X Get M(n)Cs1

0293 100f aa 40 ORA #5840 Set REMR bit

0294 1011 e7 Se STA MCSOFF, X

0295 1013 20 71 BRA RECV2 Set RRB and return

0296 .

0297 1015 bf Sb RECVS STX IDOFF

0298 *

0299 1017 be S50 LDX BUFNO1 Get Message number n

0300 1019 S5a DECX

0301 101a 59 ROLX Multiply by 2 for M(n)CS offset

0302 101b e6 Se LDA MCSOFF, X Get M(n)CsSi

0303 1014 a4 20 AND #3520 Check for RBFU set

0304 101f 27 Oa BEQ RECV4

0305 1021 e6 Se LDA MCSOFF, X

0306 1023 aa 10 ORA #3810 Set RBOF to indicate overflow

0307 1025 e7 Se STA MCSOFF, X

0308 1027 be Sb IDOFF

0309 1029 20 97 BRA RECV8 Continue to search for vacant Receive Buffer
0310

0311 102b e6 Se RECV4 LDA MCSOFF, X Get M(n)Cs1

0312 1024 aa 20 ORA #3820 Set RBFU in M(n)Csl

0313 102f e7 Se STA MCSOFF, X

0314 1031 e6 Sf LDA MCSOFF+1,X Get M(n)CS2

0315 1033 a4 fO AND #SFO Set prev. data size to zero

Go to: www.freescale.com 27

4\ Freescale Semiconductor, Inc.
0316 1035 b7 S1 STA BUFSIZ Temporary store
0317 1037 bé 35 LDA IDENTR+1 Get no. of rec'd data bytes
0318 1039 a4 Of AND #SOF Mask out Identifier and RTR
0319 103b bb 51 ADD BUFSIZ
0320 1034 e7 Sf STA MCSOFF+1,X
0321 103f be S5b LDX IDOFF
0322 1041 46 Oe ff LDA MBDF-1, X Get Message Receive Buffer size
0323 1044 27 40 BEQ RECV2 If Buf. size 0 then return
0324 1046 b7 51 STA BUFSIZ .
0325 1048 de Oe fc LDX MBDF-4,X Get Message Receive Buffer Pointer
0326 104b b6 36 LDA CANRX Get 1st data byte
0327 1044 £7 STA X
0328 104e 3a S1 DEC BUFS1Z Check for end of Message Receive Buffer
0329 1050 27 34 BEQ RECV2
0330 1052 b6 37 LDA CANRX+1 Get 2nd byte
0331 1054 e7 01 STA 1,X
0332 1056 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0333 1058 27 2¢ BEQ RECV2
0334 1052 b6 38 LDA CANRX+2 Get 3rd byte
0335 105c e7 02 STA 2,X
0336 105e 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0337 1060 27 24 BEQ RECV2
0338 1062 b6 39 LDA CANRX+3 Get 4th byte
0339 1064 e7 03 STA 3,X
0340 1066 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0341 1068 27 1c BEQ RECV2
0342 106a b6 3a LDA CANRX+4 Get Sth byte
0343 106c e7 04 STA 4,X
0344 106e 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0345 1070 27 14 BEQ RECV2
0346 1072 b6 3b LDA CANRX+5 Get 6th byte
0347 1074 €7 05 STA 5,X
0348 1076 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0349 1078 27 Oc BEQ RECV2
0350 107a bé 3c LDA CANRX+6 Get 7th byte
0351 107c e7 06 STA 6,X
0352 107e 3a 51 DEC BUFSIZ Check for end of Message Receive Buffer
0353 1080 27 04 BEQ RECV2
0354 1082 b6 34 LDA CANRX+7 Get 8th byte
0355 1084 e7 07 STA 7,X
0356 .
0357 1086 a6 04 RECV2 LDA #3504
0358 1088 b7 21 STA CANCOM Set RRB (Release Receive Buffer) in CANCOM
0359 108a 81 RTS
0360 *
0361 222222222 22222222222 2222222212222 2222222222222 22 222222
0362 o Subroutine SENDDAT
0363 . This routine is called by the user to initiate a data frame
0364 . transmission on the CAN bus. It should be called with the
0365 . required Message Buffer number in the accumulator. It enters
0366 . the number into the Transmit Queue. The TS bit in the
0367 * CAN status register is checked and if set the routine returns.
0368 * If TS is clear then TRANSMIT is called to initiate the CAN
0369 * transmit process.
0370 L2 2222222 22222222 2222222222 X2 22222222222 22222222222222
0371 .
0372 108b 9 SENDDAT SEIX Stop interrupts
0373 108c be 54 LDX QPTO Get position of next queue location
0374 108e f£7 STA X Load message number into queue
0375 108f Sc INCX
0376 1090 a3 5a CPX #QEND Check for QPT1 at end of Q Buffer
0377 1092 26 02 ENE SDAT1
0378 1094 ae 55 LDX #QSTA Set QPTO to start of Q Buffer
0379 1096 bf 54 SDAT1 STX QPTO Update QPTO0 to next free Q location
0380 1098 3c 52 INC QCOUNT
0381 -
0382 10%9a 97 TAX
0383 109b 58 LSLX Generate offset for M(n)CS1i
0384 109c e6 Se LDA MCSOFF, X Get M(n)CS1
0385 109e aa 80 ORA #$80 Set TPND
0386 10a0 e7 5e STA MCSOFF, X
0387 *
0388 10a2 05 22 03 BRCLR 2,CANSTAT,SDAT2 Check for TBA bit clear
0389 * TBA clear indicates tx in process
0390 . therefore TRANSMIT will be called by
0391 hd CAN Interrupt service routine.
0392 10aS cd Of 40 JSR TRANSMIT Initiate CAN Transmit Process
0393 10a8 9a SDAT2 CLI
0394 10a9 81 RTS
0395 b
0396 *

28 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
0397 22221 R 2 2 22 222 2 22222222 R 2222222222222 2R 2212222212
0398 * Subroutine SENDREM
0399 . This routine is called by the user to initiate a remote frame
0400 hd transmission on the CAN bus. It should be called with the
0401 * required Message Buffer number in the accumulator. It enters
0402 * the number into the Transmit Queue. The TS bit in the
0403 * CAN status register is checked and if set the routine returms.
0404 * If TS is clear then TRANSMIT is called to initiate the CAN
0405 o transmit process.
0406 EZ 22222222222 2222228212222 222222222 222222222222322222222321]
°‘°7 A2 2221222222 22222222 2222222222222 2202222222222 22222222%
0408 *
0409 10aa 9b SENDREM SEI Stop interrupts
0410 10ab be 54 LDX QPTO Get position of nmext gqueue location
0411 10ad £7 STA X Load message number into queue
0412 10ae Sc INCX
0413 10af a3 Sa CPX #QEND Check for QPT1 at end of Q Buffer
0414 10b1 26 02 BNE SREM1
0415 10b3 ae S5 LDX #QOSTA Set QPTO to start of Q Buffer
0416 10bS bf 54 SREM1 STX QPTO Update QPTO to next free Q location
0417 10b7 3c 52 INC QCOUNT
0418 >
0419 10b9 97 TAX
0420 10ba 58 LSLX Generate offset for M(n)CS1
0421 10bb e6 Se LDA MCSOFF, X Get M(n)Cs1
0422 10bd aa 04 ORA #$04 Set RREQ
0423 10bf e7 Se STA MCSOFF, X
0424 *
0425 10c1 05 22 03 BRCLR 2,CANSTAT,SREM2 Check for TBA bit clear
0426 * TBA clear indicates tx in process
0427 hd therefore TRANSMIT will be called by
0428 b CAN Interrupt service routine.
0429 10c4 cd 0Of 40 JSR TRANSMIT Initiate CAN Transmit Process
0430 10c7 9a SREM2 CLI
0431 10c8 81 RTS
0432 *
0433 A2 22222 2222222222222 222 2222222222222 2 222222 2222222222]
0434 * Subroutine INIT - Initialises the M(n)CS1/2 and USINTE
0435 * Registers.
0436 A2 22222 222 222 222222222222 2222222 222222 222222222222212222]
0437 *
0438 10c9 c6 Of 30 INIT LDA MCST Fetch no. of Message Buffers
0439 10cc 49 ROLA Multiply by 2
0440 10cd b7 SO STA BUFNO1
0441 10cf 5f CLRX Clear index for first M(n)CS Reg.
0442 1040 4f CLRA
0443 1041 e7 Se INIT1 STA MCSOFF, X Clear M(n)CS(1/2)
0444 1043 Sc INCX
0445 1044 b3 50 R”¢ CPX BUFNO1 Check for last M(n)CS Reg.
0446 10d6 25 f9 BLO INIT1
0447 1048 b7 Sc STA USINTE Clear USINTE to disable user interrupts
0448 10da b7 54 STA GENSTAT Indicates nomal 2 wire differential mode
0449 10dc a6 SS LDA #OSTA
0450 10de b7 54 STA QPTO Initialise Transmit Queue
0451 10e0 b7 53 ‘STA QPT1
0452 10e2 3f 52 CLR QCOUNT
0453 10ed 81 RTS R
0454 .
0455 A 2 a2l 2222222 2 s aidRiidlst st isli s asdinsdls s
0456 d Subroutine CANINIT - Initialises the CAN Module
0457 * Registers as follows:
0458 *
0459 * tSCL = 1 uS @ 2 MHz internal operating frequency
0460 * tSJW = 4 x tSCL
0461 i tSBG1 = 5 x tSCL, tSBG2 = 4 x tSCL, tBIT = 10 x t SCL = 10 uS
0462 .
0463 * o/p drivers set up for push/pull configuration.
0464 *
0465 . Data o/p - opposite polarity on Tx0 and Tx1 for diffential
0466 * bus operation
0467 -
0468 * Message Filtering set to accept identifier range $700 to $77F
0469 -
0470 * Overrun, Error, Receive and Tranaemit Interrupts enabled
0471 *
0472 AA AR 222 222222 L2 22t iRl i 22220 2222222222222
0473 *
0474 10e5 a6 61 CANINIT LDA #5561 Set Reset Request, disable interrupts
0475 10e7 b7 20 STA CANCTRL select slow mode
0476 10e9 a6 e0 LDA #SEO0 Identifier ID10 to ID3 values
0477 10eb b7 24 STA CANACC Store in Acceptance Code Reg.

AN464/D I I ! IIII! I’ MOTOROLA

Go to: www.freescale.com 29

4\ Freescale Semiconductor, Inc.
0478 10ed a6 Of LDA #SOF
0479 10ef b7 25 STA CANACM Store in CAN Acceptance Mask Reg.
0480 . Allows identifier range
0481 10f1 a6 01 LDA #$01
0482 10f3 b7 26 STA CANBTO Bus Timing Reg. O, tSCL = 1 uS @ 4 MHz
0483 - tSJW = 1 x tSCL
0484 10f5 a6 12 LDA #5812 Bus Timing Reg. 1
0485 10£7 b7 27 STA CANBT1 tSEG1 = 3tSCL, tSEG2 = 2tSCL, tBIT = 6 tSCL
0486 -
0487 10f9 aé fa LDA 4SFA Set o/p control reg.
0488 10fb b7 28 STA CANOPC Normal mode 1
0489 *
0490 10fd a6 7e LDA #S7E Overrun, Error, Transmit and Receive
0491 10ff b7 20 STA CANCTRL Interrupts enabled, Reset Reg. cleared
0492 »
0493 1101 Sa CLI
0494 1102 81 RTS
0495 .
0496 . .
049‘7 LA 22222 2222 A 222 it adddiillisiiiistli il iidls)
0498 * CAN Module Interrupt Routine
0499 *
0500 * - Checks all CAN Interrupt flags to determine source
0501 . of interrupt and calls appropriate service routine. RAM
0502 hd reg. USINTE is checked and if the corresponding user interrupt
0503 * enable is set, the program executes a JSR instruction to the
0504 - appropriate instruction in the user JUMP table.
0505 *
0506 A2 222222222 2222222 2222 2 22 2222 221222222222 22222222%
0507 *
0508 1103 b6 23 CANIRQ LDA CANINT Fetch CAN Interrupt register
0509 1105 46 RORA Check for Receive Interrupt flag set
0510 1106 25 Oc BCS RXINT
0511 1108 46 RORA Check for Transmit Interrupt flag set
0512 1109 25 16 BCS TXINT
0513 110b 46 RORA Check ‘for Error Interrupt flag set
0514 110c 25 22 BCS ERRINT
0515 110e 46 RORA Check for Overrun Interrupt flag set
0516 110f 25 29 BCS OVINT
0517 1111 20 31 BRA WUINT Wake Up Interrupt assumed
0518 1113 80 INTEND RTI
0519 *
0520 1114 cd Of b8 RXINT JSR RECEIVE
0521 1117 bé 5S¢ LDA USINTE
0522 1119 a4 01 AND #3501 Check for User Receive Interrupt Enable set
0523 111b 27 f£6 BEQ INTEND
0524 1114d cd 0f 31 JSR MCST+1
0525 1120 80 RTI
0526 -
0527 1121 cd Of 40 TXINT JSR TRANSMIT
0528 1124 b6 Sc LDA USINTE
0529 1126 a4 02 AND #3502 Check for User Transmit Interrupt Enable set
0530 1128 27 e9 BEQ INTEND
0531 112a cd Of 34 JSR MCST+4
0532 1124 11 00 BCLR 0,PORTA CPU Overhead analysis
0533 112f 80 RTI
0534 b
0535 1130 b6 S5c ERRINT LDA USINTE
0536 1132 a4 04 AND #3504 Check for User Error Interrupt Enable set
0537 1134 27 a4 BEQ INTEND
0538 1136 cd 0Of 37 JSR MCST+7
0539 1139 80 RTI
0540 .
0541 113a b6 S5c OVINT LDA USINTE
0542 113c a4 08 AND #$08 Check for User Overrun Interrupt Enable set
0543 113e 27 a3 BEQ INTEND
0544 1140 cd Of 3a JSR MCST+$0A
0545 1143 80 RTI
0546 A
0547 1144 b6 Sc WUINT LDA USINTE
0548 1146 a4 10 AND #$10 Check for Wake Up Interrupt Enable set
0549 1148 27 c9 BEQ INTEND
0550 114a cd Of 34 JSR MCST+$0D
0551 1144 80 RTI
0552 *
0553 1ffa ORG S1FFA
0554 1ffa 11 03 FDB CANIRQ
0555 -
0556 END
0557 + END

30 Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

This page intentionally left blank.

Go to: www.freescale.com 3

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Z “freescale”

semiconductor

AN464/D

Go to: .f le. X
© tor www-Ireescate-com | R m!) TRIN TN B0 000 0 1A

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	Motorola CAN Module
	CAN Driver Interface
	CAN Driver Routines
	Processor Overhead
	Transmit Routines
	Driver Routines

