
1 Introduction
This application note describes how to implement a robust
software when using MCU device of S08PT60, FL16 and
AC60 in applications with heavy noise interferences. In
general cases, the software design cannot change the physical
media which couples the noise into the system, or reduce the
absolute magnitude of noise generated from external sources.
However, the software must be able to identify a particular
event if it is a false alarm triggered by noise sources or it is a
normal driven event and then make a smart decision on
corresponding actions. For example, the software must not
turn on a power control stage if there is any uncertainty on the
requested action. Good defensive software design is one of the
key factors to improve overall performance, system protection
and operating stability in noise environments.

2 System Overview
A typical software design used for most of the microwave
oven applications is illustrated here to show how to apply
following software techniques in real case. Sample codes for
device PT60, FL16 and AC60 are also included for each topic
as a quick start guide to help user to adopt the techniques more
quickly.

Following software technique is recommended for a good
defensive software.

Freescale Semiconductor Document Number: AN4463
Rev. 0, 03/2012

How To Develop a Robust
Software in Noise Environment
by: Dennis Lui, T.C. Lun

System and Application, Microcontroller Solutions Group

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 System Overview..1

3 Enable WATCHDOG...2

4 Refresh Data Direction Registers............................4

5 Fill Unused Memory...5

6 Define All Interrupt Vectors...................................7

7 Select FLL Engaged Mode.....................................9

8 Re-Confirm Edge Triggered.................................11

9 Input Glitch Filter (PT60 Build-in
Feature)...12

10 Slew Rate Control...12

11 Conclusion...13

12 References...13

• Enable Watch-Dog to avoid code runaway
• Refresh data direction registers periodically
• Fill unused memory to avoid code runaway
• Define all interrupt vectors even those that are not used
• Select Frequency Locked Loop (FLL) engaged mode
• Always re-confirm edge triggered event
• Enable slew rate control on output port
• Enable input glitch filter (PT60 build-in feature)

Figure 1. System Block Diagram

The system block diagram is shown in Figure 1 and the demo software is developed with basic requirements to enable the
whole system working in normal condition and keep most of internal modules running in real application case. For example,
multiplex I/O ports for LED display driving and input key scanning, configure the TPM module as a software timer to
generate all timing information and enable input capture function for zero-crossing and rotary encoder detection. Detection of
open-door error and loss of AC power are also implemented for safety protection. External crystal oscillator is selected as the
reference clock source for the FLL module to generate the bus clock through the bus frequency divider. All unused pins are
configured as output low to avoid high frequency noise coupling into the MCU.

3 Enable WATCHDOG
The Watch-Dog (WDOG) function forces a system reset, when the application software fails to execute as expected, for
example, the running software jumps to an unexpected memory location or runs into an infinite loop when transient noise is
injected into the MCU. To prevent a system reset from the WDOG timer when it is enabled, application software must reset
the WDOG counter periodically. If the application program gets lost and fails to reset the WDOG counter before it times out,
a system reset is generated to force the system back to a known starting point. It is recommended to put the WDOG refresh

Enable WATCHDOG

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

2 Freescale Semiconductor, Inc.

routine in the main loop instead of sub-routines and interrupt routines. The WDOG function is initialized at the beginning of
the main loop and the WDOG counter is reset periodically inside the forever loop. The WDOG reset code is defined by the
macro __RESET_WATCHDOG().

3.1 PT60 Sample code
The sample code for PT60 is given here. There is a new feature for WDOG function in PT60 which allows the user to re-
configure the parameters used by the module, so the initial setup code is slightly different from traditional setting. The
module should be un-locked before doing any modification.

#define __RESET_WATCHDOG() (void)(WDOG_CNT = 0xA602U, WDOG_CNT = 0xB480U)

void main(void) {

Sys_Init();
PE_low_level_init();
MicrowaveInit();

wdog_unlock(); // executing an unlock sequence
WDOG_CS1 = 0xA0; // Set WDOGA = 1 to allow reconfigure watchdog
WDOG_CS2 = 0x01;// Select internal 1 kHz as watchdog clock
WDOG_TMRH = 0x03;// Set watchdog counter to 1000
WDOG_TMRL = 0xE8;
WDOG_WINH = 0; // disable window mode option
WDOG_WINL = 0;

EnableInterrupts;

for(;;) {

DisableInterrupts; // disable interrupts

__RESET_WATCHDOG(); // Reset the watchdog counter

EnableInterrupts; // enable interrupt

MicrowaveTask(); // Application main task

} /* loop forever */
 /* please make sure that you never leave main */
} /* end of Main */

3.2 FL16 Sample code
The sample code for FL16 is given here.

#define __RESET_WATCHDOG() (SRS = 0x55,SRS = 0xAA,(byte)ERR_OK)
void main(void) {
PE_low_level_init();
MicrowaveInit();
for(;;) {
__RESET_WATCHDOG(); // Reset the watchdog counter
MicrowaveTask(); // Application main task
} /* loop forever */
/* please make sure that you never leave main */
sure that you never leave main */
} /* end of Main */

Enable WATCHDOG

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 3

3.3 AC60 Sample code
The sample code for AC60 is given here.

#define __RESET_WATCHDOG() (SRS = 0x00,(byte)ERR_OK)
void main(void) {
PE_low_level_init();
MicrowaveInit();
for(;;) {
__RESET_WATCHDOG(); // Reset the watchdog counter
MicrowaveTask(); // Application main task
} /* loop forever */
/* please make sure that you never leave main */
} /* end of Main */

4 Refresh Data Direction Registers
The input or output direction state for each port pin should be recovered to the expected condition, if it has been changed by
any transient noise accidentally. The 50Hz or 60Hz periodic signal output from AC power supply through an optical coupling
circuit can be used as a trigger signal for I/O direction registers update. The variable mStatusRegisterUpdate_d is set to
TRUE at each falling edge of the 50Hz or 60Hz signal and then clear to FALSE at the end of the refresh register routine.

4.1 PT60 Sample Code
The sample code for PT60 is given here. The data port direction, input or output, is controlled through the input enable or
output enable registers. After reset, all parallel I/O default to the Hi-Z state. The corresponding bit in output enable register
(PTxOE) or input enable register (PTxIE) must be configured for output or input operation. Each port pin has an input enable
bit and an output enable bit. The output enable state for each data port pin is defined by the macro IOstatusRegPTxDD_Value
and the value for input enable state is equal to the one’s complement of this macro value.

The Port C is configured with input and output multiplex function and the directional status is updated in another key
scanning routine.

void StatusRegisterUpdate(void){
if(mStatusRegisterUpdate_d == TRUE){
IOstatusRegPTAIE_Port = ~IOstatusRegPTADD_Value;
IOstatusRegPTAOE_Port = IOstatusRegPTADD_Value;
IOstatusRegPTBIE_Port = ~IOstatusRegPTBDD_Value;
IOstatusRegPTBOE_Port = IOstatusRegPTBDD_Value;
/* Port C is used as Input and Output port and refresh
by key scanning routine
*/
// IOstatusRegPTCIE_Port = ~IOstatusRegPTCDD_Value;
// IOstatusRegPTCOE_Port = IOstatusRegPTCDD_Value;
IOstatusRegPTDIE_Port = ~IOstatusRegPTDDD_Value;
IOstatusRegPTDOE_Port = IOstatusRegPTDDD_Value;
IOstatusRegPTEIE_Port = ~IOstatusRegPTEDD_Value;
IOstatusRegPTEOE_Port = IOstatusRegPTEDD_Value;
IOstatusRegPTFIE_Port = ~IOstatusRegPTFDD_Value;
IOstatusRegPTFOE_Port = IOstatusRegPTFDD_Value;
IOstatusRegPTGIE_Port = ~IOstatusRegPTGDD_Value;
IOstatusRegPTGOE_Port = IOstatusRegPTGDD_Value;
IOstatusRegPTHIE_Port = ~IOstatusRegPTHDD_Value;
IOstatusRegPTHOE_Port = IOstatusRegPTHDD_Value;
mStatusRegisterUpdate_d = FALSE;
}
}

Refresh Data Direction Registers

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

4 Freescale Semiconductor, Inc.

4.2 FL16 Sample Code
The sample code for FL16 is given here. The data port direction, input or output, is controlled through the data direction
registers and each port pin has a register bit to control corresponding pin is an input or output. The data direction state for
each data port pin is defined by the macro IOstatusRegPTxDD_Value.

The Port C is configured with input and output multiplex function and the directional status is updated in another key
scanning routine.

void StatusRegisterUpdate(void){
if(mStatusRegisterUpdate_d == TRUE){
IOstatusRegPTADD_Port = IOstatusRegPTADD_Value;
IOstatusRegPTBDD_Port = IOstatusRegPTBDD_Value;
/* Port C is used as Input and Output port and refresh
by key scanning routine
*/
// IOstatusRegPTCDD_Port = IOstatusRegPTCDD_Value
IOstatusRegPTDDD_Port = IOstatusRegPTDDD_Value;
mStatusRegisterUpdate_d = FALSE;
}
}

4.3 AC60 Sample Code
The sample code for AC60 is given here. The data port direction control scheme is similar to FL16.

The Port E is configured with input and output multiplex function and the directional status is updated in another key
scanning routine.

void StatusRegisterUpdate(void){
if(mStatusRegisterUpdate_d == TRUE){
IOstatusRegPTADD_Port = IOstatusRegPTADD_Value;
IOstatusRegPTBDD_Port = IOstatusRegPTBDD_Value;
IOstatusRegPTCDD_Port = IOstatusRegPTCDD_Value;
IOstatusRegPTDDD_Port = IOstatusRegPTDDD_Value;
/* Port E is used as Input and Output port and refresh
by key scanning routine
// IOstatusRegPTEDD_Port = IOstatusRegPTEDD_Value;
IOstatusRegPTFDD_Port = IOstatusRegPTFDD_Value;
IOstatusRegPTGDD_Port = IOstatusRegPTGDD_Value;
mStatusRegisterUpdate_d = FALSE;
}
}

5 Fill Unused Memory
Unused memory, Flash or RAM should be filled with a pre-defined content such that the MCU does not execute any
unexpected instruction when the normal execution flow is disturbed by external noise sources. It is recommended to fill all
unused memory with No Operation (NOP) instruction. The MCU will not execute any command when the instruction pointer
incorrectly points to those unused memory. The system will be reset by the WDOG function and forced back to the original
starting point.

The unused memory can be filled by adding the FILL option in the linker parameter file (for example, Project.prm). The
option FILL 0x9D instructs the linker to initialized the memory content with 0x9D which is equal to the object code value for
a NOP instruction.

Fill Unused Memory

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 5

5.1 PT60 Sample Code
The sample code for PT60 is given here.

/* This is a linker parameter file for the mc9s08pt60 */
/* CodeWarrior will pass all the needed files to the linker by command line. But here you
may add your own files too. */
NAMES END
/* Here all RAM/ROM areas of the device are listed. Used in PLACEMENT below. */
SEGMENTS
Z_RAM = READ_WRITE 0x0040 TO 0x00FF FILL 0x9D;
RAM = READ_WRITE 0x0100 TO 0x0BCF FILL 0x9D;
RAM_CODE = READ_ONLY 0x0BD0 TO 0x103F FILL 0x9D;
ROM = READ_ONLY 0x3200 TO 0xF5FF FILL 0x9D;
ROM1 = READ_ONLY 0x1040 TO 0x2FFF FILL 0x9D;
ROM2 = READ_ONLY 0xFF80 TO 0xFFAF FILL 0x9D;
EEPROM = READ_ONLY 0x3100 TO 0x31FF FILL 0x9D;
FLASH_TO_RAM = READ_ONLY 0xF600 TO 0xFBFF RELOCATE_TO 0x0BD0;
USER_PARAM = READ_ONLY 0xFC00 TO 0xFDFF;
/* INTVECTS = READ_ONLY 0xFFB0 TO 0xFFFF; Reserved for Interrupt Vectors */
END

5.2 FL16 Sample Code
The sample code for FL16 is given here.

/* This is a linker parameter file for the mc9s08fl16 */
/* CodeWarrior will pass all the needed files to the linker by command line. But here you
may add your own files too. */
NAMES
END
SECTIONS
Z_RAM = READ_WRITE 0x0040 TO 0x005F FILL 0x9D;
RAM = READ_WRITE 0x0060 TO 0x043F FILL 0x9D;
ROM = READ_ONLY 0xC000 TO 0xFFAD FILL 0x9D;
END
PLACEMENT
DEFAULT_RAM, /* non-zero page variables */
INTO RAM;
DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;
_DATA_ZEROPAGE, /* zero page variables */
MY_ZEROPAGE INTO Z_RAM;
END
INIT _EntryPoint /* The entry point of the application. */
STACKSIZE 0x0080 /* Size of the system stack. */

5.3 AC60 Sample Code
The sample code for AC60 is given here.

/* This is a linker parameter file for the mc9s08AC60 */
/* CodeWarrior will pass all the needed files to the linker by command line. But here you
may add your own files too. */
NAMES
END
SECTIONS
Z_RAM = READ_WRITE 0x0070 TO 0x008F FILL 0x9D;
RAM = READ_WRITE 0x0090 TO 0x086F FILL 0x9D;
ROM = READ_ONLY 0x1860 TO 0xFFAF FILL 0x9D;

Fill Unused Memory

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

6 Freescale Semiconductor, Inc.

END
PLACEMENT
DEFAULT_RAM, /* non-zero page variables */
INTO RAM;
DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;
_DATA_ZEROPAGE, /* zero page variables */
MY_ZEROPAGE INTO Z_RAM;
END
INIT _EntryPoint /* The entry point of the application. */
STACKSIZE 0x0080 /* Size of the system stack. */

6 Define All Interrupt Vectors
The reason to define the interrupt vectors for each unused interrupt function is to allow the MCU to jump into a pre-defined
interrupt routine and back to previous execution step correctly when a particular unused interrupt associate flag is mis-
triggered by a noise source. The interrupt function for each unused interrupt can be the same, so just one dummy interrupt
routine can be used for all unused interrupt functions.

The interrupt routine for each interrupt function is assigned in the interrupt vector table as given in following sample code.

6.1 PT60 Sample Code
The sample code for PT60 is shown here.

void (* near const _vect[])(void) @0xFFB0 = { /* Interrupt vector table */
Cpu_Interrupt, /* Int.no. 39 Vnvm (at FFB0) Unassigned */
Cpu_Interrupt, /* Int.no. 38 Vkbi1 (at FFB2) Unassigned */
Cpu_Interrupt, /* Int.no. 37 Vkbi0 (at FFB4) Unassigned */
Cpu_Interrupt, /* Int.no. 36 Vtsi (at FFB6) Unassigned */
Cpu_Interrupt, /* Int.no. 35 Vrtc (at FFB8) Unassigned */
Cpu_Interrupt, /* Int.no. 34 Viic (at FFBA) Unassigned */
Cpu_Interrupt, /* Int.no. 33 Vspi1 (at FFBC) Unassigned */
Cpu_Interrupt, /* Int.no. 32 Vspi0 (at FFBE) Unassigned */
Cpu_Interrupt, /* Int.no. 31 Vsci2txd (at FFC0) Unassigned */
Cpu_Interrupt, /* Int.no. 30 Vsci2rxd (at FFC2) Unassigned */
Cpu_Interrupt, /* Int.no. 29 Vsci2err (at FFC4) Unassigned */
Cpu_Interrupt, /* Int.no. 28 Vsci1txd (at FFC6) Unassigned */
Cpu_Interrupt, /* Int.no. 27 Vsci1rxd (at FFC8) Unassigned */
Cpu_Interrupt, /* Int.no. 26 Vsci1err (at FFCA) Unassigned */
Cpu_Interrupt, /* Int.no. 25 Vsci0txd (at FFCC) Unassigned */
Cpu_Interrupt, /* Int.no. 24 Vsci0rxd (at FFCE) Unassigned */
Cpu_Interrupt, /* Int.no. 23 Vsci0err (at FFD0) Unassigned */
Cpu_Interrupt, /* Int.no. 22 Vadc (at FFD2) Unassigned */
Cpu_Interrupt, /* Int.no. 21 Vacmp (at FFD4) Unassigned */
Cpu_Interrupt, /* Int.no. 20 Vmtim1 (at FFD6) Unassigned */
Cpu_Interrupt, /* Int.no. 19 Vmtim0 (at FFD8) Unassigned */
Cpu_Interrupt, /* Int.no. 18 Vftm0ovf (at FFDA) Unassigned */
Vftm0ch1_Interrupt /* Int.no. 17 Vftm0ch1 (at FFDC Used */
Vftm0ch0_Interrupt /* Int.no. 16 Vftm0ch0 (at FFDE) Used */
Cpu_Interrupt /* Int.no. 15 Vftm1ovf (at FFE Unassigned */
Cpu_Interrupt /* Int.no. 14 Vftm1ch1 (at FF Unassigned */
Cpu_Interrupt, /* Int.no. 13 Vftm1ch0 (at FFE4) Unassigned */
Cpu_Interrupt, /* Int.no. 12 Vftm2ovf (at FFE6) Unassigned */
Cpu_Interrupt, /* Int.no. 11 Vftm2ch5 (at FFE8) Unassigned */
Cpu_Interrupt, /* Int.no. 10 Vftm2ch4 (at FFEA) Unassigned */
Vftm2ch3_Interrupt, /* Int.no. 9 Vftm2ch3 (at FFEC) Used */
Vftm2ch2_Interrupt, /* Int.no. 8 Vftm2ch2 (at FFEE) Used */
Cpu_Interrupt, /* Int.no. 7 Vftm2ch1 (at FFF0) Unassigned */
Cpu_Interrupt, /* Int.no. 6 Vftm2ch0 (at FFF2) Unassigned */
Cpu_Interrupt, /* Int.no. 5 Vftm2flt (at FFF4) Unassigned */
Cpu_Interrupt, /* Int.no. 4 Vclk (at FFF6) Unassigned */
Cpu_Interrupt, /* Int.no. 3 Vlvd (at FFF8) Unassigned */

Define All Interrupt Vectors

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 7

Cpu_Interrupt /* Int.no. 2 VirgVwdog (at FFFA) Unassigned */
Cpu_Interrupt, /* Int.no. 1 Vswi (at FFFC) Unassigned */
_Startup /* Int.no. 0 Vreset (at FFFE) Reset vector */

};

6.2 FL16 Sample Code
The sample code for FL16 is given here.

extern near void _EntryPoint(void);
void (* near const _vect[])(void) @0xFFD2 = { /* Interrupt vector table */
Cpu_Interrupt, /* Int.no. 22 Vscitx (at FFD2) Unassigned */
Cpu_Interrupt, /* Int.no. 21 Vscirx (at FFD4) Unassigned */
Cpu_Interrupt, /* Int.no. 20 Vscierr (at FFD6) Unassigned */
Cpu_Interrupt, /* Int.no. 19 VReserved19 (at FFD8) Unassigned */
Cpu_Interrupt, /* Int.no. 18 VReserved18 (at FFDA) Unassigned */
Cpu_Interrupt, /* Int.no. 17 Vadc (at FFDC) Unassigned */
Cpu_Interrupt, /* Int.no. 16 Vtpm2ovf (at FFDE) Unassigned */
Encoder1_Interrupt, /* Int.no. 15 Vtpm2ch1 (at FFE0) Used */
Encoder2_Interrupt, /* Int.no. 14 Vtpm2ch0 (at FFE2) Used */
Cpu_Interrupt, /* Int.no. 13 Vtpm1ovf (at FFE4) Unassigned */
Cpu_Interrupt, /* Int.no. 12 VReserved12 (at FFE6) Unassigned */
Cpu_Interrupt, /* Int.no. 11 VReserved11 (at FFE8) Unassigned */
Zero_Interrupt, /* Int.no. 10 Vtpm1ch3 (at FFEA) Used */
SoftTimer_Interrupt, /* Int.no. 9 Vtpm1ch2 (at FFEC) Used */
Cpu_Interrupt, /* Int.no. 8 Vtpm1ch1 (at FFEE) Unassigned */
Cpu_Interrupt, /* Int.no. 7 Vtpm1ch0 (at FFF0) Unassigned */
Cpu_Interrupt, /* Int.no. 6 Vmtim (at FFF2) Unassigned */
Cpu_Interrupt, /* Int.no. 5 VReserved5 (at FFF4) Unassigned */
Cpu_Interrupt, /* Int.no. 4 VReserved4 (at FFF6) Unassigned */
Cpu_Interrupt, /* Int.no. 3 Vlvd (at FFF8) Unassigned */
Cpu_Interrupt, /* Int.no. 2 Virq (at FFFA) Unassigned */
Cpu_Interrupt, /* Int.no. 1 Vswi (at FFFC) Unassigned */
_EntryPoint /* Int.no. 0 Vreset (at FFFE) Reset vector */
};

6.3 AC60 Sample Code
The sample code for AC60 is given here.

extern near void _EntryPoint(void);
void (* near const _vect[])(void) @0xFFC6 = { /* Interrupt vector table */
Cpu_Interrupt, /* Int.no. 28 Vtpm3ovf (at FFC6) Unassigned */
Cpu_Interrupt, /* Int.no. 27 Vtpm3ch1 (at FFC8) Unassigned */
Cpu_Interrupt, /* Int.no. 26 Vtpm3ch0 (at FFCA) Unassigned */
Cpu_Interrupt, /* Int.no. 25 Vrti (at FFCC) Unassigned */
Cpu_Interrupt, /* Int.no. 24 Viic1 (at FFCE) Unassigned */
Cpu_Interrupt, /* Int.no. 23 Vadc1 (at FFD0) Unassigned */
Cpu_Interrupt, /* Int.no. 22 Vkeyboard1 (at FFD2) Unassigned */
Cpu_Interrupt, /* Int.no. 21 Vsci2tx (at FFD4) Unassigned */
Cpu_Interrupt, /* Int.no. 20 Vsci2rx (at FFD6) Unassigned */
Cpu_Interrupt, /* Int.no. 19 Vsci2err (at FFD8) Unassigned */
Cpu_Interrupt, /* Int.no. 18 Vsci1tx (at FFDA) Unassigned */
Cpu_Interrupt, /* Int.no. 17 Vsci1rx (at FFDC) Unassigned */
Cpu_Interrupt, /* Int.no. 16 Vsci1err (at FFDE) Unassigned */
Cpu_Interrupt, /* Int.no. 15 Vspi1 (at FFE0) Unassigned */
Cpu_Interrupt, /* Int.no. 14 Vtpm2ovf (at FFE2) Unassigned */
Encoder1_Interrupt, /* Int.no. 13 Vtpm2ch1 (at FFE4) Used */
Encoder2_Interrupt, /* Int.no. 12 Vtpm2ch0 (at FFE6) Used */
Cpu_Interrupt, /* Int.no. 11 Vtpm1ovf (at FFE8) Unassigned */
Cpu_Interrupt, /* Int.no. 10 VReserved10 (at FFEA) Unassigned */

Define All Interrupt Vectors

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

8 Freescale Semiconductor, Inc.

Cpu_Interrupt, /* Int.no. 9 VReserved9 (at FFEC) Unassigned */
Zero_Interrupt, /* Int.no. 8 Vtpm1ch3 (at FFEE) Used */
SoftTimer_Interrupt, /* Int.no. 7 Vtpm1ch2 (at FFF0) Used */
Cpu_Interrupt, /* Int.no. 6 Vtpm1ch1 (at FFF2) Unassigned */
Cpu_Interrupt, /* Int.no. 5 Vtpm1ch0 (at FFF4) Unassigned */
Cpu_VicgInterrupt, /* Int.no. 4 Vicg (at FFF6) Used */
Cpu_Interrupt, /* Int.no. 3 Vlvd (at FFF8) Unassigned */
Cpu_Interrupt, /* Int.no. 2 Virq (at FFFA) Unassigned */
Cpu_Interrupt, /* Int.no. 1 Vswi (at FFFC) Unassigned */
_EntryPoint /* Int.no. 0 Vreset (at FFFE) Reset vector */
};

7 Select FLL Engaged Mode
It is recommended to enable the FLL engaged mode with external reference clock in the internal clock source (ICS) module
which provides clock source option for the MCU. For example, a 4 MHz crystal oscillator is used as the reference clock and
the target bus frequency is set to 4MHz. The 4MHz crystal clock frequency is divided by 128 to a 31.25 kHz low frequency
clock by the reference divider first and then multiplied by 512 to 16MHz in the FLL module. The final bus clock is equal to
FLL output divided by bus frequency divider, so the bus clock is 4MHz when the divider is 4.

The advantages of the frequency conversion using the FLL module instead of directly using the external crystal oscillator as
the bus clock are:

• The impact of transient noise glitch on high frequency clock source (direct using crystal oscillator) is more significant
compared to a low frequency clock source (divided by 128) in terms of the glitch width against the clock cycle.

• In general, the response of the FLL module is not fast enough to react to such kind of short pulse noise due to the low-
pass filter characteristic.

7.1 PT60 Sample Code
The sample code for PT60 is given here.

#define EXT_CLK_CRYST 4000 /* Use 4MHz crystal*/
#define BUS_CLK_HZ 4000000L /* set bus clock to 4MHz */
void FEI_to_FEE(void)
{
/* assume external crystal is 8Mhz or 4MHz
enable OSC high range and select oscillator output as OSCOUT
*/
ICS_OSCSC |= ICS_OSCSC_OSCEN_MASK
#if defined(CRYST_HIGH_GAIN)
| ICS_OSCSC_HGO_MASK /* Rs must be added and be large up to 200K */
12
#endif
| ICS_OSCSC_RANGE_MASK
| ICS_OSCSC_OSCOS_MASK;
asm{
nop
nop
}
/* wait for OSC to be initialized
*
*/
while(!(ICS_OSCSC & ICS_OSCSC_OSCINIT_MASK));
/* divide down external clock frequency to be within 31.25K to 39.0625K
*
*/
#if (EXT_CLK_CRYST == 8000)
/* 8MHz */
ICS_C1_RDIV = 3; /* now the divided frequency is 8000/256 = 31.25K */

Select FLL Engaged Mode

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 9

#elif (EXT_CLK_CRYST == 4000)
/* 4MHz */
ICS_C1_RDIV = 2; /* now the divided frequency is 4000/128 = 31.25K */
#else
#error "Error: crystal value not supported!\n";
#endif
/* change FLL reference clock to external clock */
ICS_C1_IREFS = 0;
/* wait for the reference clock to be changed to external */
asm{
nop
nop
}
while(ICS_S & ICS_S_IREFST_MASK);
/* wait for FLL to lock */
while(!(ICS_S & ICS_S_LOCK_MASK));
/* now FLL output clock is 31.25K*512 = 16MHz
*
*/
#if (BUS_CLK_HZ == 16000000)
// now system/bus clock is 16MHz
ICS_C2_BDIV = 0;
#elif (BUS_CLK_HZ == 4000000)
// ICS_C2_BDIV = 1; // now system/bus clock is 8MHz
ICS_C2_BDIV = 2; // now system/bus clock is 4MHz
#endif
/* clear Loss of lock sticky bit */
ICS_S |= ICS_S_LOLS_MASK;
}

7.2 FL16 Sample Code
The sample code for FL16 is given here.

/* System clock initialization */
/* Test if the device trim value is stored on the specified address */
if (*(unsigned char*)0xFFAF != 0xFF) {
/* Initialize ICSTRM register from a non volatile memory */
ICSTRM = *(unsigned char*)0xFFAF;
/* Initialize ICSSC register from a non volatile memory */
ICSSC = (unsigned char)((*(unsigned char*)0xFFAE) & (unsigned char)0x01);
}
/* ICSC1: CLKS=0,RDIV=2,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
setReg8(ICSC1, 0x12); /* Initialization of the ICS control register 1 */
/* ICSC2: BDIV=1,RANGE=1,HGO=1,LP=0,EREFS=1,ERCLKEN=1,EREFSTEN=0 */
setReg8(ICSC2, 0x76); /* Initialization of the ICS control register 2 */
/* Wait until the initialization of the ext. crystal oscillator is completed */
while(!ICSSC_OSCINIT) {
SRS = 0x55; /* Reset watchdog counter write 55, AA */
SRS = 0xAA;
}
/* ICSSC: DRST_DRS=0,DMX32=0 */
clrReg8Bits(ICSSC, 0xE0); /* Initialization of the ICS status and control */
/* Wait until the FLL switches to Low range DCO mode */
while((ICSSC & 0xC0) != 0x00) {
SRS = 0x55; /* Reset watchdog counter write 55, AA */
SRS = 0xAA;
}

Select FLL Engaged Mode

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

10 Freescale Semiconductor, Inc.

7.3 AC60 Sample Code
The sample code for AC60 is given here. The 4MHz crystal clock frequency is multiplied by factor of 4 to a 16Mhz
frequency clock in the FLL module. The final bus clock is equal to FLL output divided by the reduced frequency divider plus
a fixed divider (by 2), so the bus clock is 4MHz when the whole division factor is 4.

There is no reference clock divider when external crystal source is selected as reference clock for FLL module, so the crystal
frequency is not divided down before the multiplication process in the FLL.

/* System clock initialization */
/* ICGC1: HGO=1,RANGE=1,REFS=1,CLKS1=1,CLKS0=1,OSCSTEN=1,LOCD=0,??=0 */
setReg8(ICGC1, 0xFC); // Select FEE mode, Ext Xtal =4MHz
/* ICGC2: LOLRE=0,MFD2=0,MFD1=0,MFD0=0,LOCRE=0,RFD2=0,RFD1=0,RFD0=1 */
setReg8(ICGC2, 0x01); // Multiplication factor = 4, Divison factor = 2
if (*(unsigned char*)0xFFBE != 0xFF) { /* Test if the device trim value is stored on the
specified address */
ICGTRM = *(unsigned char*)0xFFBE; /* Initialize ICGTRM register from a non volatile memory */
}
while(!ICGS1_ERCS) { /* Wait until external reference is not stable */
}

8 Re-Confirm Edge Triggered
Multiple reading on input data for each edge triggered interrupt service is almost an essential technique to confirm if the input
event is valid and driven by determined sources. The zero-crossing detection routine given here is one of the basic function
for most of home appliance applications to detect the zero-crossing point in AC power system. The voltage level at zero-
crossing point is almost equal to zero, the controller is allowed to switch on or off any power control stage with minimum
loading on the power system.

The 50Hz or 60Hz signal coupling from the AC power line is applied to a timer input capture pin in MCU and the interrupt
service routine will be called for each falling edge detected at this pin. Multiple reading of the pin status is defined in a “for
loop” to ensure all readings from the pin status are the same before the TRUE flag is set up for this event.

The timing slot between each successive reading inside the for loop should be adjusted with some kind of irregular pattern
such that an even distributed noise pattern will not be recognized as a valid event. A simple random delay function is inserted
between each reading such that the overall repeat period is not consistent. The random delay variable is a free running
counter value captured, when there is an interrupt trigger even from the zero-crossing input pin.

8.1 PT60 / FL16 / AC60 Sample Code
Same sample code for PT60 / FL16 / AC60 and is given here.

/* Random Delay Loop */
uint8_t RandomDelay(void){
uint16_t random_16bit = RANDOM_COUNTER;
mRandomDelayCount = TPMxCnVLvalue(random_16bit);
mRandomDelayCount &= gRandomDelayCountMask_c;
return mRandomDelayCount;
}
void Zero_OnCapture(void)
{
/* Write your code here ... */
uint8_t ZeroTriggerDebounce[gNumberOfZeroTriggerDebounce_c];
uint8_t iRead = 0;
for (iRead = 0; iRead < gNumberOfZeroTriggerDebounce_c; iRead++){
uint8_t idelay;
idelay = RandomDelay();
while(idelay > 0){
--idelay;

Re-Confirm Edge Triggered

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 11

asm(nop);
}
ZeroTriggerDebounce[iRead] = ZeroTrigger_GetPinValue();
if (iRead !=0){
if((ZeroTriggerDebounce[iRead] != ZeroTriggerStateIdle) &&
(ZeroTriggerDebounce[iRead] == ZeroTriggerDebounce[iRead - 1])){
mZeroTriggerRead = ZeroTriggerDebounce[iRead];
}else {
mZeroTriggerRead = ZeroTriggerStateIdle;
}
}
}
if (mZeroTriggerRead == ZeroTriggerStateActive){
mZeroTriggerVaild_d = TRUE;
}else{
mZeroTriggerVaild_d = FALSE;
}
/* Action for Vaild Zero Trigger */
}

9 Input Glitch Filter (PT60 Build-in Feature)
The Input Glitch Filter is a new feature in PT60 MCU that provides, a simple low-pass filter for each port pin that is
configured as a digital input. The glitch width threshold can be easily adjusted by setting registers PORT_IOFLTn and
PORT_FCLKDIV between 1~4096 BUSCLKs (or 1~128 LPOCLKs). Glitches that are shorter than the selected clock width
will be filtered out; glitches that are more than twice the selected clock width will be allowed to pass to the internal circuitry.

This configurable filter provides an adaptive way to handle different types of transient noises with deterministic pulse width
in nature which are difficult to handle by traditional analog filters. This feature is not available in FL16 and AC60.

9.1 PT60 Sample Code
The sample code for PT60 is given here.

#ifdef PortFilterEnable
setReg8Bits(PORT_FCLKDIV, 0x02); // set FLTDIV1 to Bus clock divided by 8
setReg8Bits(PORT_IOFLT0, 0x55); // select FLTDIV1 for Port A/B/C/D
setReg8Bits(PORT_IOFLT1, 0x55); // select FLTDIV1 for Port E/F/G/H
#endif

10 Slew Rate Control
Slew rate control can be enabled for each port pin by setting the corresponding bit in one of the slew rate control registers
(PTxSEn). When enabled, slew control limits the rate at which an output can transition. This reduces EMC emissions. Slew
rate control has no effect on pins which are configured as inputs. This feature is not available in PT60.

10.1 FL16 Sample Code
The sample code for FL16 is given here.

/* PTASE: PTASE7=1,PTASE6=1,PTASE4=1,PTASE3=1,PTASE2=1,PTASE1=1,PTASE0=1 */
setReg8Bits(PTASE, 0xDF);
/* PTBSE: PTBSE7=1,PTBSE6=1,PTBSE5=1,PTBSE4=1

Input Glitch Filter (PT60 Build-in Feature)

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

12 Freescale Semiconductor, Inc.

PTBSE3=1,PTBSE2=1,PTBSE1=1,PTBSE0=1 */
setReg8(PTBSE, 0xFF);
/* PTCSE: PTCSE7=1,PTCSE6=1,PTCSE5=1,PTCSE4=1
PTCSE3=1,PTCSE2=1,PTCSE1=1,PTCSE0=1 */
setReg8(PTCSE, 0xFF);
/* PTDSE: PTDSE5=1,PTDSE4=1,PTDSE3=1,PTDSE2=1,PTDSE1=1,PTDSE0=1 */
setReg8Bits(PTDSE, 0x3F);

10.2 AC60 Sample Code
The sample code for AC60 is given here.

/* PTASE: PTASE1=1,PTASE0=1 */
setReg8Bits(PTASE, 0x03);
/* PTBSE: PTBSE3=1,PTBSE2=1,PTBSE1=1,PTBSE0=1 */
setReg8Bits(PTBSE, 0x0F);
/* PTCSE: PTCSE5=1,PTCSE4=1,PTCSE3=1,PTCSE2=1,PTCSE1=1,PTCSE0=1 */
setReg8Bits(PTCSE, 0x3F);
/* PTDSE: PTDSE3=1,PTDSE2=1,PTDSE1=1,PTDSE0=1 */
setReg8Bits(PTDSE, 0x0F);
/* PTESE:PTESE7=1,PTESE6=1,PTESE5=1,PTESE4=1,PTESE3=1,PTESE2=1,PTESE1=1,PTESE0=1 */
setReg8(PTESE, 0xFF);
/* PTFSE: PTFSE5=1,PTFSE4=1,PTFSE1=1,PTFSE0=1 */
setReg8Bits(PTFSE, 0x33);
/* PTGSE: PTGSE6=1,PTGSE5=1,PTGSE3=1,PTGSE2=1,PTGSE1=1,PTGSE0=1 */
setReg8Bits(PTGSE, 0x6F);

11 Conclusion
This application note provides guidelines for developing software to be used in noisy environments. The software techniques
for overall system stability enhancement are demonstrated with PT60, FL16 and AC60 devices as examples, to help customer
to design in Freescale MCU quickly.

12 References
• Ott, H., “Noise Reduction Techniques in Electronic Systems. New York: Wiley, 1976.
• Ott, H., “Digital Circuit Grounding and Interconnection,” Proceedings of the IEEE Symposium on Electromagnetic

Compatibility, pp. 292-297, Aug. 1981.
• C.R. Paul., “Introduction to Electromagnetic Compatibility,” John Wiley Interscience, 1992.
• Martin O,Hara., “EMC at Component and PCB Level,” Newnes, 1998.
• Keith Armstrong., “PCB Design Techniques for Lowest-Cost EMC Compliance, Part1,” Electronics and

Communication Engineering Journal, August 1999.
• Mark I. Montrose., “Printed Circuit Board Techniques for EMC Compliance,” IEEE press series 2000.
• T,C, Lun., “Designing for Board Level Electromagnetic Compatibility,” Freescale Application Note, AN2321. 2002.
• Ross Carlton, Greg Racino, John Suchyta., “Improving the Transient Immunity Performance of Microcontroller-Based

Applications,” Freescale Application Note, AN2764. 2005.

Conclusion

How To Develop a Robust Software in Noise Environment, Rev. 0, 03/2012

Freescale Semiconductor, Inc. 13

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4463
Rev. 0, 03/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	System Overview
	Enable WATCHDOG
	PT60 Sample code
	FL16 Sample code
	AC60 Sample code

	Refresh Data Direction Registers
	PT60 Sample Code
	FL16 Sample Code
	AC60 Sample Code

	Fill Unused Memory
	PT60 Sample Code
	FL16 Sample Code
	AC60 Sample Code

	Define All Interrupt Vectors
	PT60 Sample Code
	FL16 Sample Code
	AC60 Sample Code

	Select FLL Engaged Mode
	PT60 Sample Code
	FL16 Sample Code
	AC60 Sample Code

	Re-Confirm Edge Triggered
	PT60 / FL16 / AC60 Sample Code

	Input Glitch Filter (PT60 Build-in Feature)
	PT60 Sample Code

	Slew Rate Control
	FL16 Sample Code
	AC60 Sample Code

	Conclusion
	References

