
Freescale Semiconductor
Application Note

Document Number: AN4432
Rev. 0, 01/2012

Contents

Introduction . 1
Overview . 2

2.1 SENT encoding scheme . 2
2.2 SPC protocol . 5
2.3 SENT/SPC physical layer . 6
SENT/SPC software driver for the MPC560xP and
MPC564xL. 8

3.1 Physical layer topology . 8
3.2 Utilized MPC560xP/MPC564xL peripherals 8
3.3 Driver configuration . 9
3.4 API. 15
3.5 Master trigger pulse generation. 18
3.6 SENT data acquisition. 18
3.7 API calling sequence. 20
3.8 Resource metrics. 25
3.9 Application example . 27
Conclusion. 33
References . 34
Acronyms. 35

SENT/SPC Driver for the
MPC560xP and MPC564xL
Microcontroller Families
by: Josef Kramoliš
Rožnov pod Radhoštěm, Czech Republic
1 Introduction
This application note describes the SENT/SPC software
driver for the MPC560xP and MPC564xL 32-bit
microcontrollers. The fundamentals of the Single Edge
Nibble Transmission protocol (SENT, SAE J2716),
along with its Short PWM Code (SPC) enhancement, are
discussed in the overview section of the document.
The driver implementation, API, state diagrams, and
the recommended program flow, along with the
application code examples, are shown in the remainder
of the document.

Most of the information about the SENT protocol was
derived from the SAE-J2716 Surface Vehicle
Information Report, FEB2008.

1
2

3

4
5
6

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Overview
2 Overview
The Single Edge Nibble Transmission protocol is targeted for use in those applications where
high-resolution data is transmitted from a sensor to the ECU. It can be considered as an alternative to
conventional sensors providing analog output voltage, and for PWM output sensors. It can also be
considered as a low-cost alternative to the LIN or CAN communication standards.

Applications for electronic power steering, throttle position sensing, pedal position sensing, airflow mass
sensing, liquid level sensing, etc., can be used as examples of target applications for SENT-compatible
sensor devices.

2.1 SENT encoding scheme
SENT is a unidirectional communication standard where data from a sensor is transmitted independently
without any intervention of the data receiving device (for example the MCU). A signal transmitted by the
sensor consists of a series of pulses, where the distance between consecutive falling edges defines the
transmitted 4-bit data nibble representing values from 0 to 15. Total transmission time is dependent on
transmitted data values and on clock variation of the transmitter (sensor). A consecutive SENT
transmission starts immediately after the previous transmission ends (the trailing falling edge of the SENT
transmission CRC nibble is also the leading falling edge of the consecutive SENT transmission
synchronization/calibration pulse — see Figure 1).

A SENT communication fundamental unit of time (unit time — UT, nominal transmitter clock period) can
be in the range of 3–10 μs, according to the SAE J2716 specification. The maximum allowed clock
variation is ± 20% from the nominal unit time, which allows the use of low-cost RC oscillators in the
sensor device.

NOTE
A 3 μs fundamental unit time will be considered as nominal for unification
of further timing descriptions.

The transmission sequence consists of the following pulses:
1. Synchronization/calibration pulse (56 unit times)
2. 4-bit status nibble pulse (12 to 27 unit times)
3. Up to six 4-bit data nibble pulses (12 to 27 unit times each)
4. 4-bit checksum nibble pulse (12 to 27 unit times)
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor2

Overview
Figure 1. Transmission example of 16-bit and 8-bit signal data

2.1.1 Synchronization/calibration pulse

Since the SAE J2716 specification allows a ± 20% transmitter clock deviation from the nominal unit time,
the synchronization/calibration pulse provides information on the actual transmitter (sensor) unit time
period. The time between synchronization/calibration pulse falling edges defines 56 unit time periods. The
receiver can calculate the actual unit time period of the sensor from the pulse width, and can thus
re-synchronize. The actual sensor data is measured during the synchronization/calibration pulse duration.

The pulse starts with the falling edge and remains low for five or more unit times. The remainder of the
pulse width is driven high (see Figure 2).

Figure 2. Synchronization/calibration pulse format

2.1.2 Status and communication nibble pulse

The status nibble contains 4-bit status information of the sensor (for example, fault indication and mode
of operation). It can also contain a serial message (one bit as a serial data bit, one bit as a start bit).
The complete 16-bit serial message is then transmitted in 16 consecutive SENT transmissions (refer to
SAE J2716 at www.sae.org for detailed description).

The width of the status nibble pulse is dependent on the nibble value. The status nibble pulse and data
nibble pulse formats are identical. Refer to Section 2.1.3, “Data nibble pulse”.

Sync./Calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

152 ÷ 272 UT (456 ÷ 816 μs)

16-bit data 8-bit data

C
R

C

Sync./Calib.

≥ 5 UT (≥ 15 μs)

56 UT (168 μs)
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 3

Overview
2.1.3 Data nibble pulse

A single data nibble pulse carries 4-bit sensor data. A maximum of six data nibbles can be transmitted in
one SENT transmission. The total number of data nibbles depends on the size of the data provided by
the sensor, and this is fixed during the sensor operation (see Figure 1 for a combined 16-bit and 8-bit data
transmission example). Some sensors provide the possibility of pre-programming the resolution of
the measured value using special tools, thus changing the number of data nibbles.

The width of the data nibble pulse is dependent on the nibble value. Figure 3 depicts the format of the data
nibble pulse. The pulse starts with the falling edge and remains low for five or more unit times. The
remainder of the pulse width is driven high. The next pulse falling edge occurs after twelve unit times from
the initial falling edge plus the number of unit times equal to the nibble value. The data pulse width in the
number of unit times is defined by Equation 1:

Eqn. 1

Figure 3. Data nibble pulse format

2.1.4 Checksum nibble pulse

The checksum nibble contains a 4-bit CRC. The checksum is calculated using the x4 + x3 + x2 + 1
polynomial with the seed value of 5 (0b0101), and is calculated over all nibbles except for the status and
communication nibble (according to SAE J2716).

The CRC allows detection of the following errors:
1. All single bit errors.
2. All odd number of errors.
3. All single burst errors of length ≤ 4.
4. 87.5% of single burst errors of length = 5.
5. 93.75% of single burst errors of length > 5.

Refer to SAE J2716 (www.sae.org) for more information about the SENT CRC polynomial error
detection.

DataNibblePulseWidth 12 NibbleValue+()=

≥ 5 UT (≥ 15 μs)

(12 + N) UT, (36 + 3 × N) μs

12 UT (36 μs)

0 15Nibble value (N)

N × UT (0 ÷ 45 μs)
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor4

Overview
NOTE
The driver CRC calculation also includes the status and communication
nibble value as it is primarily intended for use with the Infineon TLE4889C
Hall sensor.

2.2 SPC protocol
The SPC protocol enhances the SENT protocol defined by the SAE 2716 specification. SPC introduces
a half-duplex synchronous communication. The receiver (MCU) generates the master trigger pulse on
the communication line by pulling it low for a defined amount of time (tMT). The pulse width is measured
by the transmitter (sensor) and the SENT transmission is initiated only if the width is within defined limits.
The end pulse is generated additionally after the SENT transmission has completed to provide a trailing
falling edge for the CRC nibble pulse. The communication line then remains idle until a new master trigger
pulse is generated by the receiver. Figure 4 depicts the SENT/SPC frame format.

Figure 4. SENT/SPC frame format

The SPC protocol allows choosing between various protocol modes. For example, the TLE4998C Hall
sensor can be pre-programmed in one of three protocol modes:

1. Synchronous mode — a single sensor is connected to the MCU; a master trigger pulse width in a
defined range triggers the transmission.

2. Synchronous mode with range selection — a single sensor is connected to the MCU; the width of
the master trigger pulse defines the magnetic range for the triggered transmission.

3. Synchronous transmission with ID selection — up to four sensors are connected in parallel to
the MCU; the width of the master trigger pulse defines which sensor will start the transmission.

SENT Transmission

Sensor Response Time

tMT

Sync./calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

M
as

te
r

Tr
ig

ge
r

E
nd
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 5

Overview
2.3 SENT/SPC physical layer
The receiver side (ECU) provides the stabilized 5 V voltage to supply the sensor. The communication line
is pulled up by the 10 ÷ 51 kΩ resistor to the supply voltage. The receiver input is formed by the parasitic
capacitance of the input pin and its ESD protection, and the 560 Ω/2.2 nF EMC low-pass filter to suppress
RF noise coupled to the communication line. The open-drain output pin on the MCU pulls down
the communication line to generate the master trigger pulse. See Figure 5.

The transmitter provides a bidirectional open-drain I/O pin with an EMC filter to suppress the RF noise
coupled to the communication line. The communication line is pulled down by its output driver to generate
the SENT pulse sequence. See Figure 5.

Signal shaping is required to limit the radiated emissions. The maximum limits for the falling and rising
edge durations are TFALL = 6.5 μs and TRISE = 18 μs with a maximum allowed 0.1 μs falling edge jitter.
An example of a TLE4998C SENT/SPC compatible Hall sensor waveform is shown in Figure 6.

The overall resistance of all connectors is limited to 1 Ω, the bus wiring to 0.1 nF/m capacitance, and
the maximum cable length to 5 m.

The transmitter-receiver network devices are protected from short-to-ground and short-to-supply
conditions. Upon recovery from these faults, normal operation is resumed.

Figure 5. SENT/SPC circuit topology

Transmitter (sensor board/package)

Input pin

Output pin
(Open Drain)

EMC filter

10÷51 kΩ

Cin

560 Ω Rf

2.2 nF Cf RV

Sensor device
with SENT

protocol
generator

Receiver (ECU)5 V

MCU

Communication
Line
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor6

Overview
Figure 6. TLE4998C SENT/SPC 12-bit Hall waveform

M
as

te
r

Tr
ig

ge
r

S
yn

ch
./C

al
ib

.

S
ta

tu
s

D
at

a1

D
at

a2

D
at

a3

C
R

C

E
nd

0x
03

0x
03

0x
0F

0x
0D

0x
0D

OUT = 0x3FD = 1021
B = -25 mT @ Brange = ±50 mT
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 7

SENT/SPC software driver for the MPC560xP and MPC564xL
3 SENT/SPC software driver for the MPC560xP and
MPC564xL

The driver is provided as example code only, and in the form of source code optimized for the Green Hills
compiler. It is intended for use with all members of the MPC560xP and MPC564xL families and
the Infineon TLE4998C programmable linear Hall sensor. The driver supports code execution by both
the MPC564xL e200z4 cores, and can be used for handling up to four independent SENT/SPC channels
on the MPC560xP and up to six independent SENT/SPC channels on the MPC564xL.

3.1 Physical layer topology
The driver is designed to control an external transistor connected to the output pin (2-pin solution).
The output transistor is driven by a pulse of positive polarity, thus pulling the communication line low to
generate the master trigger pulse. The output pin driver operates in the push-pull output mode. Figure 7
shows a typical TLE4998C Hall sensor application circuit with an external transistor.

Figure 7. Typical TLE4998C application circuit with external transistor

3.2 Utilized MPC560xP/MPC564xL peripherals
The driver utilizes the following MPC560xP/MPC564xL peripherals:

• System Integration Unit Lite (SIUL) — 2 pins for a single SENT/SPC channel
• Enhanced Motor Control Timer (eTimer)

— 1 channel for a single SENT/SPC channel
— 1 eTimer DMA request channel for a single SENT/SPC channel

• Enhanced Direct Memory Address engine (eDMA) — a single channel for a single SENT/SPC
channel

Voltage supply
sensor

MCU
voltage supply

TLE
4998C4

GND

VDD

in/out

MCU

VDD

Input pin

Output pin

GND

47 nF

2 k2

20 k
4.7 nF

1 nF

50
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor8

SENT/SPC software driver for the MPC560xP and MPC564xL
3.3 Driver configuration
There are four pre-processor macros (accessible in the SENT_SPC_Driver.h header file) that need to be
properly defined before the final application can be finally built. Additionally, a target microcontroller
specific macro symbol needs to be specified by the compiler option during compilation. Table 1 lists
a description of all macros.

3.3.1 SENT/SPC channel configuration structure

Each SENT/SPC channel has its own configuration structure in the form of a variable of type
SENT_SPC_CONTROL_T which needs to be initialized before the driver can be initialized, using
the appropriate API function. The driver uses a pointer to the SENT/SPC channel configuration structure
as an input parameter to all API functions. Use the steps below to properly initialize the configuration
structure.

1. Declare a variable of type SENT_SPC_CONTROL_T.
2. Initialize members of this variable:

a) Initialize structure member SentSpcEtimer.
b) Initialize structure member SentSpcEtimerOutput.
c) Initialize structure member SentSpcEtimerInput.
d) Initialize structure member SentSpcOutputMux.
e) Initialize structure member SentSpcInputMux.
f) Initialize structure member SentSpcEtimerDma.
g) Initialize structure member SentSpcDma.
h) Initialize structure member SentSpcFrame.

Consult Table 2 for proper channel configuration structure member values.

Table 1. Pre-compile time parameters

Macro Range Description

SENT_SPC_INTERRUPT 0 or 1 Defines whether the eDMA channel interrupt or an additional eDMA transfer request
is generated at the end of the SENT/SPC frame transfer.

SENT_SPC_INTVEC_MODE 0 or 1 Defines the interrupt vector mode type.
0 Interrupt Controller configured in the software vector mode
1 Interrupt Controller configured in the hardware vector mode

SENT_SPC_UT — Defines the number of the eTimer module primary input clock ticks per 3 µs. This can
be calculated using the formula:

Eqn. 2

MPC5604P — This symbol needs to be defined by the compiler -D option (-DMPC5604P) to select
the MPC560xP as the target device family.

MPC5643L — This symbol needs to be defined by the compiler -D option (-DMPC5643L) to select
the MPC564xL as the target device family.

SENT_SPC_UT MotorControlClockFrequency 3 10 6–⋅ ⋅=
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 9

SENT/SPC software driver for the MPC560xP and MPC564xL
Each SENT/SPC channel has to have its own unique eDMA channel,
eTimer DMA request channel, and eTimer channel(s) input/output pins
assigned in the channel configuration structure variable. The driver,
however, provides an internal checking mechanism for duplicated
parameter selection.

See Section 3.9, “Application example” for the example of the declaration and initialization of two
SENT/SPC channel configuration structure variables.

Refer to Table 3, Table 4, Table 5, Table 6, and Table 7 for input/output pin multiplexing options.

Table 2. Mandatory parameters of the SENT/SPC channel configuration structure

Structure member Range Description

SentSpcEtimer 0..1 (MPC560xP),
0..2 (MPC564xL)

The eTimer module number used for SENT/SPC channel operation.

SentSpcEtimerOutput 0..5 The eTimer channel number used for driving the external transistor and for
data reception.

SentSpcEtimerInput 0..5 The eTimer module input number which will be used for data reception.

SentSpcOutputMux See Table 3, Table 4,
Table 5, Table 6, Table 7

The eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel output
pin multiplexing settings.

SentSpcInputMux See Table 3, Table 4,
Table 5, Table 6, Table 7

The eTimer_[SentSpcEtimer] module input pin SentSpcEtimerInput
multiplexing settings.

SentSpcEtimerDma 0..1 The eTimer DMA request channel used for SENT/SPC channel operation.

SentSpcDma 0..15 The eDMA channel number used for SENT/SPC channel operation.

SentSpcFrame SPC_FRAME_6,
SPC_FRAME_5,
SPC_FRAME_4,
SPC_FRAME_3

SENT/SPC frame format of the device connected to the SENT/SPC
channel.
SPC_FRAME_6 6 data nibbles (16-bit Hall, 8-bit temperature)
SPC_FRAME_5 5 data nibbles (12-bit Hall, 8-bit temperature)
SPC_FRAME_4 4 data nibbles (16-bit Hall)
SPC_FRAME_3 3 data nibbles (12-bit Hall)
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor10

SENT/SPC software driver for the MPC560xP and MPC564xL
Table 3. MPC560xP eTimer_0 I/O pin multiplexing options

SentSpcEtimerOutput/
SentSpcEtimerInput

SentSpcOuputMux/
SentSpcInputMux

0 1 2

0 A[0] — —

1 A[1] — —

2 A[2] — —

3 A[3] — —

4 A[4]1 C[11] B[14]2

5 C[12] B[8]2 —

1 Pin A[4] is shared between MPC560xP eTimer_0 and
eTimer_1.

2 Pins B[8] and B[14] can by used only as respective
eTimer_0 channel’s inputs.

Table 4. MPC560xP eTimer_1 I/O pin multiplexing options

SentSpcEtimerOutput/
SentSpcEtimerInput

SentSpcOuputMux/
SentSpcInputMux

0 1 2 3

0 A[4]1

1 Pin A[4] is shared between MPC560xP eTimer_0 and eTimer_1.

C[15] — —

1 C[13] D[0] — —

2 B[0] C[14] D[1] —

3 B[1] D[2] F[12] —

4 A[14] C[3] D[3] F[13]2

2 Pin F[13] can by used only as the eTimer_1_ETC[4] input.

5 A[5] A[15] D[4] —
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 11

SENT/SPC software driver for the MPC560xP and MPC564xL
Table 5. MPC564xL eTimer_0 I/O Pin multiplexing options

SentSpcEtimerOutput/
SentSpcEtimerInput

SentSpcOuputMux/
SentSpcInputMux

0 1 2 3

0 A[0] D[10]1 — —

1 A[1] D[11]1 — —

2 A[2] F[0]1 — —

3 A[3] D[14]1 — —

4 A[4]2 C[11] B[14]1 G[3]1

5 C[12] E[13] B[8]1 G[4]1

1 Pins B[8], B[14], D[10], D[11], D[14], F[0], G[3], and G[4] can be
used only as the respective eTimer_0 channel’s inputs.

2 Pin A[4] is shared between MPC564xL eTimer_0 and eTimer_1.

Table 6. MPC564xL eTimer_1 I/O pin multiplexing options

SentSpcEtimerOutput/
SentSpcEtimerInput

SentSpcOuputMux/
SentSpcInputMux

0 1 2 3

0 A[4]1

1 Pin A[4] is shared between MPC564xL eTimer_0 and eTimer_1.

C[15] — —

1 C[13] D[0] — —

2 B[0] C[14] D[1] —

3 B[1] D[2] F[12] —

4 A[14] D[3] D[8] F[13]

5 A[5] A[15] D[4] E[14]

Table 7. MPC564xL eTimer_2 I/O pin multiplexing options

SentSpcEtimerOutput/
SentSpcEtimerInput

SentSpcOuputMux/
SentSpcInputMux

0 1

0 H[4] I[0]

1 H[7] I[1]

2 H[10] I[2]

3 H[13] I[3]

4 H[14] —

5 H[15] —
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor12

SENT/SPC software driver for the MPC560xP and MPC564xL
Figure 8 illustrates possible utilization of particular MCU modules by two SENT/SPC channels,
differentiated by colors (a single eTimer module usage example). It also shows channel control structure
parameters assigned to an appropriate hardware module configuration.

Figure 8. Example of MCU peripheral utilization (two SENT/SPC channels)

Channel 1Filter

Channel 0Filter

Channel 5Filter

Channel 2Filter

...
...

...
...

...
...

...
...

IPBus
(Motor control clock)

DMA

Primary input clock

eTimer channel
secondary input

select

Out 0

Input pin MUX

Out 1

Out 2

Out 5

Output pin MUX

DMA_MUX

eDMA

SentSpcInputMux SentSpcEtimerInput SentSpcInputMuxSentSpcEtimerOutput

6

SRAM

SentSpcDma

In 0

In 1

In 2

In 5

Other DMA trigger sources

6 : 2

SIUL SIUL

eTimer SentSpcEtimerDma

SentSpcEtimer
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 13

SENT/SPC software driver for the MPC560xP and MPC564xL
In eTimer module terminology, the SentSpcEtimerInput parameter refers to the eTimer channel m
secondary input selection; ergo eTimer input n is equal to the SentSpcEtimerInput value, and m is equal to
the SentSpcEtimerOutput parameter value defining the eTimer channel used for SENT/SPC operation.
The output m is statically assigned to the eTimer channel m. The value of the SentSpcEtimerInput is not
limited to the same value as SentSpcEtimerOutput, thus providing more flexibility for SENT/SPC channel
input and output pin assignment.

The SentSpcInputMux parameter provides selection of the input pin from the group of pins dedicated to
the selected eTimer input n. The SentSpcOutputMux parameter provides similar selection of the selected
eTimer channel m output pin. Since input and output pin selection is made from the single group of I/O
pins when SentSpcEtimerInput is equal to SentSpcEtimerOutput (m equals n, SIUL multiplexers are
identical for In m and Out m signals), the driver provides an internal checking mechanism for duplicate
assignment of the same input and output pin.

The SentSpcEtimerDma parameter provides selection of the eTimer module DMA request channel.
Further assignment of an eDMA channel is made by the SentSpcDma parameter.

Lastly, the SentSpcEtimer parameter value selects the eTimer module number.
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor14

SENT/SPC software driver for the MPC560xP and MPC564xL
3.4 API
The driver API consists of the following functions:

1. SENT_SPC_Init()
2. SENT_SPC_Request()
3. SENT_SPC_Load()
4. SENT_SPC_Read_Hall()

3.4.1 SENT_SPC_Init

Syntax: SENT_SPC_STATE_T SENT_SPC_Init(SENT_SPC_CONTROL_T *pParam);

Reentrancy: Non-reentrant.

Parameters: *pParam — pointer to the SENT/SPC channel configuration structure variable.

Return: 16-bit driver status word.

Description: The function initializes all on-chip peripherals which are required for the proper generation
of the master trigger pulse, SENT data reception, and processing of the selected SENT/SPC
channel data. The function updates the internal SENT/SPC channel 16-bit status word (see
Table 11).

NOTE
Initialization of the e200z0 core (MPC560xP) and the e200z4 core(s)
(MPC564xL), system clock (PLL_0), motor control clock (PLL_1), on-chip
FLASH memory, SRAM, interrupt controller (INTC), and the interrupt
vector table is not handled by the driver — it is the responsibility of the user.

3.4.2 SENT_SPC_Request

Syntax: SENT_SPC_STATE_T SENT_SPC_Request(SENT_SPC_CONTROL_T *pParam,
uint8_t u8MasterTime);

Reentrancy: Non-reentrant.

Parameters: *pParam — pointer to the SENT/SPC channel configuration structure.
u8MasterTime — the width of the external transistor gate driving pulse in μs.

Return: 16-bit driver status word.

Description: The function generates the master trigger pulse on the communication line of the selected
SENT/SPC channel via the external transistor. The function updates the internal SENT/SPC
channel 16-bit status word (see Table 11).
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 15

SENT/SPC software driver for the MPC560xP and MPC564xL
NOTE
The actual master trigger pulse width is dependent on the communication line
resistor/capacitor parameters and the operating temperature, and is always
wider than the gate pulse width defined by the u8MasterTime input parameter.
The user shall ensure (for example by a measurement) that the master trigger
pulse width will be always within the proper limits with respect to the sensor
edge detection thresholds.

The driver provides predefined macros for the u8MasterTime input parameter, which were tested for
compliance of the master trigger pulse width according to the TLE4998C data sheet at a 23 °C ambient
temperature, and using the typical application circuit shown in Figure 7. Table 8, Table 9, and Table 10 list
the provided macros based on the preprogrammed SPC protocol mode of the TLE4998C device(s).

Table 8. Typical master trigger pulse timing macro for TLE4998C Synchronous mode

Macro
Master trigger

pulse width [UT]
Gate pulse width [μs]

SPC_SYNCH 2.75 4

Table 9. Typical master trigger pulse timing macros for TLE4998C ID Selection mode

Macro Sensor ID
Master trigger

pulse width [UT]
Gate pulse width [μs]

SPC_ID_0 0 10.5 28

SPC_ID_1 1 21 59

SPC_ID_2 2 38 110

SPC_ID_3 3 64.5 190

Table 10. Typical master trigger pulse timing macros for TLE4998C Dynamic Range mode

Macro
Magnetic field

range
Master trigger

pulse width [UT]
Gate pulse width [μs]

SPC_RANGE_200 ±200 mT 3.25 6

SPC_RANGE_100 ±100 mT 12 32

SPC_RANGE_50 ±50 mT 31.5 91
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor16

SENT/SPC software driver for the MPC560xP and MPC564xL
3.4.3 SENT_SPC_Load

Syntax: SENT_SPC_STATE_T SENT_SPC_Load(SENT_SPC_CONTROL_T *pParam);

Reentrancy: Non-reentrant.

Parameters: *pParam — pointer to the SENT/SPC channel configuration structure variable.

Return: 16-bit driver status word.

Description: The function checks the time-out condition and cause of the timeout (no master trigger pulse,
or an invalid number of received nibbles with respect to the selected frame format). It
decodes and stores the data nibble values into an internal memory array which is part of the
SENT/SPC channel configuration structure. It also tests the nibble value range, calculates a
CRC checksum, and compares it with the received checksum nibble value. The function
updates the internal SENT/SPC channel 16-bit status word (see Table 11).

3.4.4 SENT_SPC_Read_Hall

Syntax: SENT_SPC_STATE_T SENT_SPC_Request(SENT_SPC_CONTROL_T *pParam,
uint16_t *pHall, uint8_t *pStatus);

Reentrancy: Non-reentrant.

Parameters: *pParam — pointer to the SENT/SPC channel configuration structure.
*pHall — pointer to the user variable where the received sensor Hall value will be

stored.
*pStatus— pointer to the user variable where the received sensor status will be stored.

Return: None

Description: The function returns the actual Hall value and the status of the sensor. If any SENT/SPC
channel error status bit is set, this function does nothing.
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 17

SENT/SPC software driver for the MPC560xP and MPC564xL
3.5 Master trigger pulse generation
The SENT_SPC_Request() API function initiates generation of the external transistor gate driving pulse to
generate the master trigger pulse on the communication line.

The eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel operates in the output compare mode.
The pulse width is defined by the u8MasterTime input parameter of the SENT_SPC_Request() API
function. The eTimer channel compare load control 2 is set up by the SENT_SPC_Init() API function in
such a way that the channel counter behaves as a modulo counter with a modulo value 0xFFFE (channel
counter reset on 0xFFFE compare 2). The gate driving pulse rising edge is generated immediately once
the eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel is enabled (compare on 0x0000), since
the channel counter is already reset to 0x0000 by the software (a match with reload has already occurred).
The gate driving pulse falling edge compare value is then set by the software (compare 1, according to
the u8MasterTime value), and the compare 1 reload value is set to 0xFFFF. Once the falling edge of
the transistor gate driving pulse is generated, the next compare 1 value is automatically reloaded to
0xFFFF (compare load control 1) outside of the counter range. This ensures that the gate driving pulse
won’t be generated again after a modulo counter overflow.

The channel is disabled and its counter and compare registers are re-initialized each time
the SENT_SPC_Request() API function is called.

3.6 SENT data acquisition
The eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel detects falling edges on
the eTimer_[SentSpcEtimer] module input pin SentSpcEtimerInput. Detection of each falling edge of
the SENT/SPC frame captures the actual counter value of
the eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel in the CAPT1 register and resets
the channel counter to 0x0000. Simultaneously, an eDMA channel transfer request is generated on
the selected eTimer_[SentSpcEtimer] DMA request channel (SentSpcEtimerDma). The eDMA engine
then transfers the captured value to the driver timestamp buffer. The timestamp of each falling edge is used
by the SENT_SPC_Load() API function to calculate the actual sensor unit time value and sensor data
values.

After all the falling edges (defined by the selected SENT/SPC frame format) of the SENT/SPC frame are
detected, the eDMA interrupt is invoked. Its ISR updates the driver status. The eDMA interrupt is invoked
only if the SENT_SPC_INTERRUPT macro value is set to 1.

NOTE
On the MPC564xL, the eDMA_0 interrupt can be detected by the INTC_0
and handled by Core_0 only. The SENT/SPC channel control structure must
reside in the lower half of the SRAM (0x40000000–4000FFFF) in the
Decoupled Parallel Mode (DPM).

An additional eDMA transfer request is generated when the SENT_SPC_INTERRUPT is set to 0. This
additional eDMA transfer clears the driver status. This interrupt-free approach saves on CPU execution
time but increases SRAM memory consumption (see Section 3.8.1, “Memory consumption,” on page 25).
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor18

SENT/SPC software driver for the MPC560xP and MPC564xL
The eTimer_[SentSpcEtimer]_ETC[SentSpcEtimerOutput] channel counter is reset each time
the SENT_SPC_Request() API function is called, and each time the falling edge is detected. Figure 9
illustrates the data acquisition process.

Figure 9. SENT/SPC data acquisition

Sync./calib. S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

M
as

te
r

Tr
ig

ge
r

E
nd

SENT/SPC Frame
(eTimer Input)

eTimer Channel
Output

eTimer Channel
Counter

0x0000

eDMA
Transfer Request

eDMA Channel Interrupt
Request

Application Code **ISR

*SENT_SPC_Request()
**eDMA Channel ISR

*RCode execution
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 19

SENT/SPC software driver for the MPC560xP and MPC564xL
3.7 API calling sequence
To guarantee the correct behavior of the driver, the following API call sequence is recommended
(Figure 10 for illustration):

1. SENT_SPC_Init()
2. SENT_SPC_Request() (after a 1.2 ms modulus timer start — not handled by the driver)
3. SENT_SPC_Load() (after a modulus timer interrupt — not handled by the driver)
4. SENT_SPC_Read_Hall()
5. SENT_SPC_Request()
6. SENT_SPC_Load() (after the following modulus timer interrupt — not handled by the driver)
7. SENT_SPC_Read_Hall()
8. SENT_SPC_Request()
9. ...

3.7.1 Functional description

The driver channel status is internally held in the SENT/SPC channel configuration structure. However,
all API functions, except for SENT_SPC_Read_Hall(), update and return the driver status in the form of
data type SENT_SPC_STATE_T. Table 11 lists all SENT_SPC_STATUS_T type structure members.

Table 11. SENT_SPC_STATUS_T status word type definition

Structure bit member Size Range
Updated by API

function(s)
Description

ErrorCRC 1-bit 0 or 1 SENT_SPC_Load This bit reflects the result of the cyclic redundancy
check.
0 CRC correct
1 CRC incorrect

StateInvalidData 1-bit 0 or 1 SENT_SPC_Init,
SENT_SPC_Load

This bit indicates if the data is prepared for reading by
the SENT_SPC_Read_Hall() API function.
0 Data is ready for reading
1 Data isn’t ready for reading or is invalid

ErrorMultipleDMA 1-bit 0 or 1 SENT_SPC_Init This bit indicates the result of eDMA channel
initialization.
0 eDMA channel initialization done properly
1 eDMA channel is already used by another

SENT/SPC channel or the channel number is out
of range

ErrorMultipleEtimer 1-bit 0 or 1 SENT_SPC_Init This bit indicates the result of eTimer unified channel
initialization.
0 eTimer channel initialization done properly
1 eTimer_[SentSpcEtimer]

_ETC[SentSpcEtimerOutput] channel and/or
eTimer_[SentSpcEtimer] module
input SentSpcEtimerInput is already used by
another SENT/SPC channel
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor20

SENT/SPC software driver for the MPC560xP and MPC564xL
StateTransmission 1-bit 0 or 1 SENT_SPC_Request This bit indicates if the driver is waiting on new data
from a sensor.
0 Driver acquired all data according to the selected

frame format
1 Driver is waiting on new data

ErrorTimeout 1-bit 0 or 1 SENT_SPC_Load This bit indicates if all data from a sensor was acquired
properly at the time of the SENT_SPC_Load() API
function call.
0 Data was acquired properly
1 Master trigger pulse was not generated or an

incorrect number of data nibbles was received

ErrorNibbleOverflow 1-bit 0 or 1 SENT_SPC_Load This bit reflects the result of the data nibble value
check.
0 Data nibble value is in the proper range

(0x00..0x0F)
1 Data nibble overflow (greater than 0x0F or pulse

shorter than 12UT)

ErrorNumberOfNibbles 1-bit 0 or 1 SENT_SPC_Load This bit indicates if the number of received nibbles is
correct according to the selected frame format.
0 Correct number of nibbles was received
1 Incorrect number of nibbles was received

ErrorNoMasterPulse 1-bit 0 or 1 SENT_SPC_Load This bit indicates if the master trigger pulse was
properly generated on the communication line.
0 Master trigger pulse properly generated
1 Master trigger pulse not generated

(SENT_SPC_Request() API function was not
called or an external transistor malfunction
occurred)

ErrorMultipleETDma 1-bit 0 or 1 SENT_SPC_Init This bit indicates the result of the eTimer DMA request
channel initialization.
0 eTimer_[SentSpcEtimer] DMA request channel

initialization done properly
1 eTimer_[SentSpcEtimer] DMA request channel is

already used by another SENT/SPC channel

Table 11. SENT_SPC_STATUS_T status word type definition (continued)

Structure bit member Size Range
Updated by API

function(s)
Description
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 21

SENT/SPC software driver for the MPC560xP and MPC564xL
The driver initialization is done by the SENT_SPC_Init() API function. If any of the eTimer channel
outputs or inputs (including assigned pins), eTimer DMA request channels, or eDMA channels defined in
the SENT/SPC channel configuration structure is already used by another initialized SENT/SPC channel,
the ErrorMultipleEtimer, ErrorPinMuxing, ErrorMultipleETDma, or ErrorMultipleDMA status bits are
set. These are the development errors. The SENT/SPC channel configuration structure needs to then be
re-initialized to proper values.

If the configuration structure is properly initialized, the StateInvalidData status bit is set to indicate that
the driver is initialized and the data in the internal buffer is invalid.

The SENT_SPC_Request() API function needs to be called to request the data from the sensor.
The StateTransmission status bit is set after the request is processed, indicating that the request was
properly processed and the driver is waiting on new data. This bit is then cleared automatically after a
successful SENT/SPC frame reception.

ErrorPinMuxing 1-bit 0 or 1 SENT_SPC_Init This bit reflects the result of the eTimer input/output
pin multiplexing configuration.

0 eTimer input/output pin multiplexing configuration
done properly

1 eTimer input/output pin multiplexing error
(SentSpcInputMux and/or SentSpcOutputMux
values set incorrectly in the SENT/SPC channel
control structure) — one or more of the following
conditions occurred:

 • SentSpcInputMux and/or SentSpcOutputMux value
is greater than the number of pin multiplexing
options for the selected eTimer_[SentSpcEtimer]
module

 • Invalid multiplexing combination (no pin assigned to
a multiplexing option)

 • Selected input pin is already used as an output by
another SENT/SPC channel (or vice versa)

 • Duplicate usage of pin A[4] between eTimer_0 and
eTimer_1

Reserved 5-bit — — Reserved bits.

Table 11. SENT_SPC_STATUS_T status word type definition (continued)

Structure bit member Size Range
Updated by API

function(s)
Description
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor22

SENT/SPC software driver for the MPC560xP and MPC564xL
The SENT_SPC_Request() function call should be done periodically. The minimum possible period of
time is defined by the sum of the complete SENT/SPC frame maximal width and the execution time of
the SENT_SPC_Load(), SENT_SPC_Read_Hall() and SENT_SPC_Request() API functions (see
Table 14). The 1.2 ms time period is considered as a safe value.

The eDMA channel interrupt is invoked after all the SENT/SPC frame pulses are properly detected.
The respective ISR (SENT_SPC_DMA_Interrupt_Ch[15..0]) then clears the StateTransmission status bit
to indicate a complete frame reception. The eDMA interrupt is invoked only if the
SENT_SPC_INTERRUPT macro is equal to one. Otherwise, the additional eDMA transfer request to clear
the status is generated. See Table 1 for the SENT_SPC_INTERRUPT macro description.

To process the captured timing values, the SENT_SPC_Load() API function needs to be called at
the beginning of the next 1.2 ms period. If all the SENT/SPC frame pulses are not properly detected by
the driver at the time of the SENT_SPC_Load() API function call (the StateTransmission bit is still set to
one), the ErrorTimeOut status bit is set. To extend the information value, the ErrorNoMasterPulse status
bit is then set, even if the master trigger pulse was not detected, or the ErrorNumberOfNibbles status bit is
set indicating an invalid number of received pulses with respect to the selected SENT/SPC channel frame
format.

If all the SENT/SPC frame nibble pulses were properly detected, the ErrorNibbleOverflow status bit is set
if one or more data nibble pulse contains a data value greater than 15 (0x0F) or the width of the pulse is
shorter than 12 UT. If the calculated CRC value is not equal to the received checksum nibble value,
the ErrorCRC status bit is set.

The StateInvalidData status bit remains set during the data processing by the SENT_SPC_Load() API
function.

NOTE
If the SENT_SPC_Load() API function returns any errors, the user is
advised to request new data by the SENT_SPC_Request() function.
The status is then updated by the subsequent SENT_SPC_Load() function
call at the beginning of the consecutive 1.2 ms periods. If these errors
remain set, the SENT/SPC channel frame format might be set incorrectly,
the sensor is providing erroneous data, an external transistor malfunction
has occurred, or the API sequence was not executed in the proper order.

The actual Hall value is extracted from the received data by the SENT_SPC_Read_Hall() API function
based on the selected frame format. If any SENT/SPC channel error status bit is set, this function does
nothing.

Figure 10 shows the API calling sequence, possible state transitions, and error reporting. The figure shows
also all possible transitions, differentiated by colors.
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 23

SENT/SPC software driver for the MPC560xP and MPC564xL
Figure 10. API calling sequence and status
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor24

SENT/SPC software driver for the MPC560xP and MPC564xL
3.8 Resource metrics
This chapter provides information about the memory consumption and execution times of the driver API
and interrupt. The driver was compiled using the Green Hills compiler options listed in Table 12 without
any optimization.

3.8.1 Memory consumption

Table 13 lists the memory consumption of the driver API functions, static functions, static variables, and
constants.

Table 12. Compiler options

Compiler option Description

-bsp generic Generic target board.

-cpu=ppc560xp or -cpu=ppc564xl Target processor (MPC560xP or MPC564xL).

-G Generates Green Hills MULTI debugging information.

-dual_debug Enables generation of DWARF, COFF, or BSD debugging information in the
object file, according to the convention of the target.

--no_commons Allocates uninitialized global variables to a section and initializes them to
zero at program startup.

-pnone Disables call count profiling.

-vle Enables VLE code generation and linkage with VLE libraries.

-c Produces an object file for each source file.

-noSPE Disables the use of the Signal Processing Engine and vector floating point
instructions by the compiler.

Table 13. Driver memory consumption

API function / internal function /
ISR / variable / constant

Memory
section

Memory
type

Size [bytes]
(MPC5604P)

Size [bytes]
(MPC5643L)

SENT_SPC_INTERRUPT

0 1 0 1

SENT_SPC_Init() .vletext Flash 2828 2662 3434 3268

SENT_SPC_Request() .vletext Flash 710 702 710 702

SENT_SPC_Load() .vletext Flash 458 440 458 440

SENT_SPC_Read_Hall() .vletext Flash 94 94 94 94

SENT_SPC_DMA_Process_Interrupt() .vletext Flash — 44 — 44

SENT_SPC_Interrupt[15..0]() .vletext Flash — 42 — 114

Single SENT/SPC channel configuration structure variable .bss SRAM 128 42 128 42

Internal constants .rodata Flash 102 100 138 136

Internal initialized variables .data SRAM 128 128 160 160
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 25

SENT/SPC software driver for the MPC560xP and MPC564xL
3.8.2 Execution time consumption

The numbers of cycles listed in Table 14 were measured on the e200z0 core at a 64 MHz system clock
frequency, and on the e200z4 core at an 80 MHz system clock frequency using optimal flash read wait state
control (see Section 3.9, “Application example”) and with an enabled instruction cache (MPC5643L only).
A 3–data-nibble frame format (12-bit Hall) was used for the measurement.

Table 14. Execution time

API Function / ISR

Number of cycles

MPC5604P (e200z0)
@64 MHz

MPC5643L (e200z4)
@80 MHz

SENT_SPC_INTERRUPT

0 1 0 1

SENT_SPC_Init 885 829 1058 967

SENT_SPC_Request 233 227 273 274

SENT_SPC_Load 449 455 354 368

SENT_SPC_Read_Hall 111 107 102 96

SENT_SPC_DMA_Interrupt_Ch[N] — 801

1 Includes prolog and epilog of the ISR (INTC in hardware vector mode).

— 911
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor26

SENT/SPC software driver for the MPC560xP and MPC564xL
3.9 Application example
Example 3-1 MPC5604P SENT/SPC application example

#include "mpc5604p.h" /* The register and bit field definitions for MPC5604P */

#include "SENT_SPC_Driver.h"

__interrupt void Periodically(void);
void initClock(void);
void initINTC(void);

static uint16_t ui16Nibble_hall_ch0, ui16Nibble_hall_ch1;
static uint8_t ui8Nibble_status_ch0,ui8Nibble_status_ch1;
SENT_SPC_STATE_T ui16Error_ch0,ui16Error_ch1;

#if(SENT_SPC_INTERRUPT == 0)
#pragma alignvar(32)
#endif
static SENT_SPC_CONTROL_T ch0, ch1;

void initClock(void)
{

CGM.CMU_0_CSR.R = 0x00000006; /* Avoid CMU reset when fXOSC<fIRC */

/* Configure PLL_0, PLL_1 */
CGM.FMPLL[0].CR.R = 0x12400000; /* 64MHz PLL_0 @ 40MHz XOSC */
CGM.FMPLL[1].CR.R = 0x113C0000; /* 120MHz PLL_1 @ 40MHz XOSC */

ME.RUN[0].R = 0x001F00F4; /* XOSC sys. clk; Main vol. reg. ON */
/* PLL0/1 ON, XOSC ON, 16MHz_IRC ON */
/* DFLASH/CFLASH ON */

ME.RUNPC[0].R = 0x00000010; /* Peripherals run in RUN0 only */

ME.MCTL.R = 0x40005AF0; /* Enter RUN0 & key */
ME.MCTL.R = 0x4000A50F; /* Enter RUN0 & inverted key */

/* Wait for mode transition */
while(!(ME.IS.R & 0x00000001))
{
}

ME.IS.R &= 0x00000001; /* Clear I_MTC flag */

while(ME.GS.B.S_PLL0==0); /* Check PLL0 lock status */
while(ME.GS.B.S_PLL1==0); /* Check PLL1 lock status */

CGM.AC0SC.R = 0x05000000; /* PLL_1 output as AUX clk. 0 */
CGM.AC0DC.R = 0x80000000; /* Divided by 1, prescaler enabled */

}

SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 27

SENT/SPC software driver for the MPC560xP and MPC564xL
void initINTC(void)
{

INTC.MCR.R = 1; /* Enable HW vector mode */

INTC.PSR[11].R = 1; /* Set eDMA channel 0 priority higher than 0 */
INTC.PSR[14].R = 1; /* Set eDMA channel 3 priority higher than 0 */
INTC.PSR[59].R = 2; /* Set PIT_0 interrupt priority */

INTC.CPR.R = 0; /* Set current priority for z0 to 0 */
asm("wrteei 1"); /* Enable z0 core external interrupts */

}

void PIT_0_Init(uint32_t tlval)
{

PIT.PITMCR.R = 0x00000001; /* Timer stopped in debug mode */
PIT.CH[0].LDVAL.R = tlval; /* Period */
PIT.CH[0].TFLG.R = 0x00000001; /* Clear RTIF flag */
PIT.CH[0].TCTRL.R = 0x00000003; /* Enable interrupts and timer */

}

void main(void)
{

CFLASH.PFCR0.R = 0x10C580ED; /* Read Wait State Control & Address Pipelining */
/* Control for 64 MHz - Two additional wait states */
/* added, other settings in default */

initINTC(); /* Initialize interrupt controller */
initClock(); /* Set sysclk = 64 MHz running from PLL_0, */

/* Motor control clock = 120 MHz running from PLL_1 */

/* e9414PS - Possible false DMA request from eTimer workaround */
ETIMER_0.ENBL.R = 0x0000;
ETIMER_1.ENBL.R = 0x0000;
ETIMER_0.DREQ[0].R = 0x001F;
ETIMER_0.DREQ[1].R = 0x001F;
ETIMER_1.DREQ[0].R = 0x001F;
ETIMER_1.DREQ[1].R = 0x001F;

ch0.SentSpcEtimer = 0;
ch0.SentSpcEtimerOutput = 0;
ch0.SentSpcEtimerInput = 1;
ch0.SentSpcOutputMux = 0; /* pin A[0] used as output */
ch0.SentSpcInputMux = 0; /* pin A[1] used as input */
ch0.SentSpcEtimerDma = 0;
ch0.SentSpcDma = 0;
ch0.SentSpcFrame = SPC_FRAME_3;

ch1.SentSpcEtimer = 1;
ch1.SentSpcEtimerOutput = 3;
ch1.SentSpcEtimerInput = 3;
ch1.SentSpcOutputMux = 2; /* pin F[12] used as output */
ch1.SentSpcInputMux = 0; /* pin B[1] used as input */
ch1.SentSpcEtimerDma = 1;
ch1.SentSpcDma = 3;
ch1.SentSpcFrame = SPC_FRAME_3;
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor28

SENT/SPC software driver for the MPC560xP and MPC564xL
ui16Error_ch0 = SENT_SPC_Init(&ch0);
ui16Error_ch1 = SENT_SPC_Init(&ch1);

PIT_0_Init(0x12C00); /* Enable PIT_0 with 1.2 ms period */

ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

while (1)
{
} /* Wait forever */

}

__interrupt void Periodically(void)
{

PIT.CH[0].TFLG.R = 0x00000001;

ui16Error_ch0 = SENT_SPC_Load(&ch0);
SENT_SPC_Read_Hall(&ch0,&ui16Nibble_hall_ch0,&ui8Nibble_status_ch0);
ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);

ui16Error_ch1 = SENT_SPC_Load(&ch1);
SENT_SPC_Read_Hall(&ch1,&ui16Nibble_hall_ch1,&ui8Nibble_status_ch1);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

INTC.EOIR.R = 0x0; /* Exit Interrupt (End-of-Interrupt Register) */
}

SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 29

SENT/SPC software driver for the MPC560xP and MPC564xL
Example 3-2 MPC5643L SENT/SPC application example

#include "mpc5643l.h" /* The register and bit field definitions for MPC5643L */

#include "SENT_SPC_Driver.h"

__interrupt void Periodically(void);
void initClock(void);
void initINTC(void);

static uint16_t ui16Nibble_hall_ch0, ui16Nibble_hall_ch1;
static uint8_t ui8Nibble_status_ch0,ui8Nibble_status_ch1;
SENT_SPC_STATE_T ui16Error_ch0,ui16Error_ch1;

#if(SENT_SPC_INTERRUPT == 0)
#pragma alignvar(32)
#endif
static SENT_SPC_CONTROL_T ch0, ch1;

void initClock(void)
{

CGM.AC3SC.R = 0x01000000; /* Clock source for FMPLL_0 to XOSC */
CGM.AC4SC.R = 0x01000000; /* Clock source for FMPLL_1 to XOSC */

/* Configure PLL_0, PLL_1 */
CGM.FMPLL[0].CR.R = 0x1D400000; /* 80MHz PLL_0 @ 40MHz XOSC */
CGM.FMPLL[1].CR.R = 0x113C0000; /* 120MHz PLL_1 @ 40MHz XOSC */

ME.RUN[0].R = 0x001F00F4; /* XOSC sys. clk; Main vol. reg. ON */
/* PLL0/1 ON, XOSC ON, 16MHz_IRC ON */
/* DFLASH/CFLASH ON */

ME.RUNPC[0].R = 0x00000010; /* Peripherals run in RUN0 only */

ME.MCTL.R = 0x40005AF0; /* Enter RUN0 & key */
ME.MCTL.R = 0x4000A50F; /* Enter RUN0 & inverted key */

/* Wait for mode transition */
while(!(ME.IS.R & 0x00000001))
{
}

ME.IS.R &= 0x00000001; /* Clear I_MTC flag */

while(ME.GS.B.S_PLL0==0); /* Check PLL0 lock status */
while(ME.GS.B.S_PLL1==0); /* Check PLL1 lock status */

CGM.AC0SC.R = 0x05000000; /* PLL_1 output as AUX clk. 0 */
CGM.AC0DC.R = 0x80000000; /* Divided by 1, prescaler enabled */

}

SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor30

SENT/SPC software driver for the MPC560xP and MPC564xL
void initINTC(void)
{

INTC.MCR.R = 1; /* Enable HW vector mode */

INTC.PSR[11].R = 1; /* Set eDMA channel 0 priority higher than 0 */
INTC.PSR[14].R = 1; /* Set eDMA channel 3 priority higher than 0 */
INTC.PSR[59].R = 2; /* Set PIT_0 interrupt priority */

INTC.CPR.R = 0; /* Set current priority for z4 Core_0 to 0 */
asm("wrteei 1"); /* Enable z4 Core_0 external interrupts */

}

void PIT_0_Init(uint32_t tlval)
{

PIT.PITMCR.R = 0x00000001; /* Timer stopped in debug mode */
PIT.CH[0].LDVAL.R = tlval; /* Period */
PIT.CH[0].TFLG.R = 0x00000001; /* Clear RTIF flag */
PIT.CH[0].TCTRL.R = 0x00000003; /* Enable interrupts and timer */

}

void main(void)
{

PFLASH2P_LCA.PFCR0.R = 0x10C5EDED; /* Read Wait State Control & Address Pipelining */
/* Control for 80 MHz - Two additional wait */
/* states added, other settings in default */

initINTC(); /* Initialize interrupt controller */
initClock(); /* Set sysclk = 80 MHz running from PLL_0, */

/* Motor control clock = 120 MHz running from PLL_1 */

PBRIDGE.MPROT0_7.R |= 0x00700000; /* Configure eDMA as a trusted master */

/* e9414PS - Possible false DMA request from eTimer workaround */
mcTIMER0.ENBL.R = 0x0000;
mcTIMER1.ENBL.R = 0x0000;
mcTIMER2.ENBL.R = 0x0000;
mcTIMER0.DREQ[0].R = 0x001F;
mcTIMER0.DREQ[1].R = 0x001F;
mcTIMER1.DREQ[0].R = 0x001F;
mcTIMER1.DREQ[1].R = 0x001F;
mcTIMER2.DREQ[0].R = 0x001F;
mcTIMER2.DREQ[1].R = 0x001F;

ch0.SentSpcEtimer = 0;
ch0.SentSpcEtimerOutput = 0;
ch0.SentSpcEtimerInput = 1;
ch0.SentSpcOutputMux = 0; /* pin A[0] used as output */
ch0.SentSpcInputMux = 1; /* pin D[11] used as input */
ch0.SentSpcEtimerDma = 0;
ch0.SentSpcDma = 0;
ch0.SentSpcFrame = SPC_FRAME_3;
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 31

SENT/SPC software driver for the MPC560xP and MPC564xL
ch1.SentSpcEtimer = 2;
ch1.SentSpcEtimerOutput = 2;
ch1.SentSpcEtimerInput = 2;
ch1.SentSpcOutputMux = 1; /* pin I[2] used as output */
ch1.SentSpcInputMux = 0; /* pin H[10] used as input */
ch1.SentSpcEtimerDma = 1;
ch1.SentSpcDma = 3;
ch1.SentSpcFrame = SPC_FRAME_3;

ui16Error_ch0 = SENT_SPC_Init(&ch0);
ui16Error_ch1 = SENT_SPC_Init(&ch1);

PIT_0_Init(0x12C00); /* Enable PIT_0 with 1.2 ms period */

ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

while (1)
{
} /* Wait forever */

}

__interrupt void Periodically(void)
{

PIT.CH[0].TFLG.R = 0x00000001;

ui16Error_ch0 = SENT_SPC_Load(&ch0);
SENT_SPC_Read_Hall(&ch0,&ui16Nibble_hall_ch0,&ui8Nibble_status_ch0);
ui16Error_ch0 = SENT_SPC_Request(&ch0,SPC_SYNCH);

ui16Error_ch1 = SENT_SPC_Load(&ch1);
SENT_SPC_Read_Hall(&ch1,&ui16Nibble_hall_ch1,&ui8Nibble_status_ch1);
ui16Error_ch1 = SENT_SPC_Request(&ch1,SPC_SYNCH);

INTC.EOIR.R = 0x0; /* Exit Interrupt (End-of-Interrupt Register) */
}

SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor32

Conclusion
4 Conclusion
The application note describes the SENT protocol basics along with its SPC enhancement.
The requirements for external components, a list of utilized peripherals, configuration description,
application programming interface description, data acquisition description, the API calling sequence, and
a functional description of the SENT/SPC driver for the MPC560xP and MPC564xL families of
microcontrollers are provided in the text.

The software driver provides full communication with the Infineon TLE4998C programmable linear Hall
sensor. It is fully compatible with all TLE4998C supported SPC modes and SENT/SPC frame formats.

The usage of MPC560xP/MPC564xL on-chip hardware peripherals, such as the eTimer and eDMA,
provides a low e200z0/e200z4 core load. The driver consumes approximately 1.03% of the e200z0
execution time without interrupts, and 1.13% of the execution time with interrupts. The e200z4 consumes
0.76% without interrupts, and 0.86% with interrupts. These percentages are related to a 1.2 ms
transmission triggering loop period at a 64 MHz (MPC560xP) and 80 MHz (MPC564xL) system clock
frequency, and a single SENT/SPC channel operation.
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 33

References
5 References
1. SAE J2716 (R) SENT – Single Edge Nibble Transmission for Automotive Applications, FEB2008
2. MPC5604P Microcontroller Reference Manual, Rev. 4, 15 Apr 2011
3. MPC5604P Microcontroller Data Sheet, Rev. 7, 04/2011
4. MPC5643L Microcontroller Reference Manual, Rev. 8, 09 May 2011
5. MPC5643L Microcontroller Data Sheet, Rev. 7, 3/2011
6. TLE4998C Target Data Sheet, V 0.3, July 2008
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor34

Acronyms
6 Acronyms
API Application Programming Interface

CAN Controller Area Network

COFF Common Object File Format

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DMA_MUX eDMA Channel Multiplexer

ECU Electronic Control Unit

eDMA Enhanced Direct Memory Access

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

ETC eTimer Channel

eTimer Enhanced Motor Control Timer

I/O Input/Output

ID Identification

INTC Interrupt Controller

ISR Interrupt Service Routine

LIN Local Interconnect Network

MCU Microcontroller Unit

PLL Phase-Locked Loop

PWM Pulse Width Modulation

RF Radio Frequency

SAE Society of Automotive Engineers

SENT Single Edge Nibble Transmission

SIUL System Integration Unit Lite

SPC Short PWM Code

SRAM Static Random Access Memory

UT Unit Time

VLE Variable Length Encoding
SENT/SPC Driver for the MPC560xP and MPC564xL Microcontroller Families, Rev. 0

Freescale Semiconductor 35

Document Number: AN4432
Rev. 0
01/2012

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2012. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Overview
	2.1 SENT encoding scheme
	2.1.1 Synchronization/calibration pulse
	2.1.2 Status and communication nibble pulse
	2.1.3 Data nibble pulse
	2.1.4 Checksum nibble pulse

	2.2 SPC protocol
	2.3 SENT/SPC physical layer

	3 SENT/SPC software driver for the MPC560xP and MPC564xL
	3.1 Physical layer topology
	3.2 Utilized MPC560xP/MPC564xL peripherals
	3.3 Driver configuration
	3.3.1 SENT/SPC channel configuration structure

	3.4 API
	3.4.1 SENT_SPC_Init
	3.4.2 SENT_SPC_Request
	3.4.3 SENT_SPC_Load
	3.4.4 SENT_SPC_Read_Hall

	3.5 Master trigger pulse generation
	3.6 SENT data acquisition
	3.7 API calling sequence
	3.7.1 Functional description

	3.8 Resource metrics
	3.8.1 Memory consumption
	3.8.2 Execution time consumption

	3.9 Application example

	4 Conclusion
	5 References
	6 Acronyms

