
Freescale Semiconductor
Application Note

© 2011 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
SATA module provides the feature to measure the die
temperature during its operation. The die's temperature is
measured through voltage differences within the internal
analog circuitry. The measured voltages are converted
through ADC within SATA PHY block in order for the user
to obtain the temperature data in the data register.

In order to obtain usable temperature, user must sample the
voltage data 80 times each for two different sampling modes
then apply the obtained data to the formula. The details on
the procedures and formula will be shown in the following
sections.

2 SATA Registers Used to
Obtain Temperature Data

Obtaining the die temperature data requires the user to
access internal SATA control and status registers. The
internal SATA registers are not mapped to i.MX's register
memory addresses. Therefore, to access these internal
registers located in SATA, i.MX's SATA registers

Document Number: AN4380
Rev. 0, 10/2011

Contents

1 Introduction . 1
2 SATA Registers Used to Obtain Temperature Data . . .1
3 SATA Temperature Accessing/Flow-Chart9
4 Limitation of the Temperature Readouts and

Troubleshooting .12
5 Conclusion .12
6 Revision History .13

SATA Temperature Sensor (i.MX53)
by Multimedia Applications Division

Freescale Semiconductor, Inc.

Austin, TX

SATA Temperature Sensor (i.MX53), Rev. 0

2 Freescale Semiconductor

SATA Registers Used to Obtain Temperature Data

(SATA_P0PHYCR and SATAP0PHYSR) are required.

2.1 SATA_P0PHYCR (SATA PHY control register)

Figure 1. SATA PHY Control Register

The register is used for Port PHY control. This register is also used to specify the address of the internal
SATA register, specify the command and to write specific value to the internal registers. This register
supports only 32-bit write access, so if the user wishes to retain command word but change one of the bits,
32-bit word must be written into the register in order to toggle only a few bits. In other words, bit wise
operation cannot be performed.

2.2 SATA_P0PHYSR (SATA PHY Status Register)

Figure 2. SATA PHY Status Register

This register is used to monitor PHY status. This is an important register when the user is reading the status
of the internal SATA register or read out result of the ADC within the SATA PHY. This is the register where
the user will obtain the base data for the temperature calculation.

Table 1. SATA_P0PHYCR Field Descriptions

Field Description

31-0 PortPHY Control.

Table 2. SATA_P0PHYSR Field Descriptions

Field Description

31-0 PortPHY Status.

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 3

SATA Registers Used to Obtain Temperature Data

Figure 3. Internal Registers vs. i.MX Mapped SATA Register

2.3 Internal SATA PHY Registers Required for Temperature Data
Calculation

Table 3 lists the registers required in order to obtain temperature data.

The internal SATA register addresses are 16 bit wide.

2.3.1 DAC Control Register

Figure 4. DAC Control Register

Table 3. Registers Required for Temperature Data

Register Name Abbreviation Address

DAC Control Register DAC_CTL 0x0008

Resistor Tuning Control Register 0x0009

ADC Output Register ADC_OUT 0x000A

MPLL Test Register MPLL_TST 0x0017

SATA Temperature Sensor (i.MX53), Rev. 0

4 Freescale Semiconductor

SATA Registers Used to Obtain Temperature Data

2.3.2 Resistor Tuning Control Register

Figure 5. Resistor Tuning Control Register

Table 4. DAC_CTL Field Descriptions

Field Description

15 Reserved.

14–12
dac_mode

DAC output mode:

000 Powers down DAC
001 Reserved
010 High-range margining (VP25 x 418e-6 res)
011 Low-range margining (VP25 x 279e-6 res)
100 100% range DAC, 0% offset
101 36% range DAC, 0% offset
110 36% range DAC, 33% offset
111 36% range DAC, 66% offset

11
ovrd_rtune_rx

Writes DAC_VAL[5:0] to the Rx rtune bus.

10
ovrd_rtune_tx

Writes DAC_VAL[5:0] to the Tx rtune bus.

9–0
dac_val

Digital value to be used for DAC.

Table 5. RTUNE_CTL Field Descriptions

Field Description

15–11 Reserved.

10
adc_trig

Triggers ADC conversion.

9
rtune_trig

Triggers manual resistor calibration.

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 5

SATA Registers Used to Obtain Temperature Data

2.3.3 ADC Output Register

Figure 6. ADC Output Register

8
rtune_dis

Disables automatic resistor recalibrations.

7
cmp_invert

Inverts output of comparator (to reverse successive approximation register (SAR) feedback loop).

6
dac_chop

Polarity of chop control for DAC.

5
rsc_x4

Sets x4 in rescal circuitry.

4
sel_atbp

Selects atb_s_p for A/D measurement.

3
pwron_lcl

Value of power-on to force.

2
frc_pwron

Overrides internal power-on.

1-0
mode

Resistor tune SAR mode:

00 Normal restune
01 ADC
10 Rx Resistor test
11 Tx Resistor test

Table 6. ADC_OUT Field Descriptions

Field Description

15-11 Reserved.

Table 5. RTUNE_CTL Field Descriptions

Field Description

SATA Temperature Sensor (i.MX53), Rev. 0

6 Freescale Semiconductor

SATA Registers Used to Obtain Temperature Data

2.3.4 MPLL Test Register

Figure 7. MPLL Test Register

10
fresh

Flag indicates that a new A/D conversion result is present.

9–0
value

A/D conversion result.

Based on RTUNE_CTL.MODE, this value is the result of either the last conversion (MODES 0 or 1) or the
current Tx/Rx cal value (MODES 3/2).

Table 7. MPLL_TEST Field Descriptions

Field Description

15
ovrd_ctl

Overrides MPLL reset and gearshift controls.

14
gearshift_val

Value to override for mpll_gearshift.

13
reset_val

Value to override for mpll_reset.

12–2
meas_iv

Measures various MPLL controls:

Bit 2: Measures dcc_vcntrl_p on atb_sense_p
Bit 3: Measures dcc_vcntrl_m on atb_sense_m
Bit 4: Measures 1-V supply voltage on atb_sense_m
Bit 5: Measures vp_cp voltage on atb_sense_p; gd on atb_sense_m
Bit 6: Measures VCO supply voltage on atb_sense_p; gd on atb_sense_m
Bit 7: Measures clock tree supply voltage on atb_sense_p; gd on atb_sense_m
Bit 8: Measures vp16 on atb_sense_p; gd on atb_sense_m
Bit 9: Measures vref on atb_sense_p; gd on atb_sense_m
Bit 10: Measures vcntrl on atb_sense_m
Bit 11: Measures copy of bias current in oscillator on atb_force_m
Bit 12: Enables phase linearity testing of phase interpolator and VCO

Table 6. ADC_OUT Field Descriptions

Field Description

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 7

SATA Registers Used to Obtain Temperature Data

2.4 How to Access Internal SATA Registers Through i.MX SATA
Register

All temperature reading operation must be executed through the usage of i.MX’s SATA registers:
SATA_P0PHYCR and SATA_P0PHYSR. SATA_P0PHYCR and SATAP0PHYSR are the two registers
that are mapped to i.MX’s SATA register locations. All of SATA’s internal status and control registers
located within SATA block must be accessed and modified through SATA_P0PHYCR and
SATA_P0PHYSR. This rule, also applies to all of the registers relevant to temperature data read operation.

Even though the word length of SATA_P0PHYCR and SATAP0PHYSR are 32bit wide, the actual data
address word for internal SATA register is 16 bits. The upper 16bits of SATA_P0PHYCR is used for the
following actions.

• Bit 16 (0x0001_0000): this is to specify in SATA_P0PHYCR register that the user is writing a
16bit-word as an internal SATA register address value for capturing the data stored in that particular
address location (LATCH_ADDR).

• Bit 17 (0x0002_0000): this is to specify in SATA_P0PHYCR register that the user is writing a
16bit-word as the data value to be written into internal SATA register (LATCH_DATA).

• Bit 18 (0x0004_0000): this is the command to write the data into the current captured internal
SATA address (WRITE COMMAND).

• Bit 19 (0x0008_0000): this is the command to read the content of the current captured internal
SATA address (READ COMMAND).

Likewise, SATA_P0PHYSR is 32bit wide and the lower 16bits are normally used for read register for the
data captured from internal SATA registers. The upper 16bits are used for status check. Bit 18 is used for
acknowledge flag. This bit is used to check whether the command is sent correctly, whether the address is
ready to accept data or the data is ready to be read.

2.4.1 Specify Address and Reading the Contents of the Internal SATA
Registers

Below, example is given how to specify the internal address and read the value stored in the register
corresponding to the address value. In this example, MPLL_TST (address = 0x0017) address is accessed,
and the value in MEAS_IV bit is stored into a temporary location.

1
meas_gd

Measures Ground For correct measurements, this field must be set when various meas_iv bits are set.

0
atb_sense

Hooks up ATB sense lines.

Table 7. MPLL_TEST Field Descriptions

Field Description

SATA Temperature Sensor (i.MX53), Rev. 0

8 Freescale Semiconductor

SATA Registers Used to Obtain Temperature Data

2.4.1.1 STEP 1

Write internal SATA register address (value=0x0017) into SATA_P0PHYCR (i.MX register address =
0x1000_0178)

/*pseudocode*/

mpll_tst = 0x0017;

SATA_P0PHYCR = mpll_tst; /*write address value to P0PHYCR and goto next step*/

2.4.1.2 STEP 2

Capture the internal SATA register address for MPLL_TST, and check for ACK bit in SATA_P0PHYSR.

/*pseudocode*/

SATA_P0PHYCR = (mpll_tst | 0x10000); /*bit 16 is used to capture the address*/

while(((SATA_P0PHYSR >> 18)&0x1)!= 0x1); /*dummy loop to capture acknowledge*/

SATA_P0PHYCR = mpll_tst & 0xffff;/*deassert bit16 (capture address bit)*/

while(((SATA_P0PHYSR>>18)&0x1) == 0x1); /*dummy loop to capture acknowledge deassertion*/

/*ready for next step*/

2.4.1.3 STEP 3

Send read command, then read the retrieved data from SATA_P0PHYSR.

/*pseudocode*/

SATA_P0PHYCR = 0x80000;/*read command sent to SATA block*/

while(((SATA_P0PHYSR >>18)&0x1) != 0x1); /*dummy loop to capture acknowledge*/

Readout = SATA_P0PHYSR & 0xffff; /*read data state of the internal SATA register 0x0017*/

SATA_P0PHYCR = 0x00000000;/*deassert bit16 (capture address bit)*/

while(((SATA_P0PHYSR >>18)0x1) == 0x1); /*dummy loop to capture acknowledge deassertion*/

/*end of read register data*/

2.4.2 Specify Address and Writing Data Into the Internal SATA Registers
On this section, an example and pseudo code for write operation onto the same internal address (0x0017)
is presented.

2.4.2.1 STEP 1

Write internal SATA register address (value=0x0017) into SATA_P0PHYCR (i.MX register address =
0x1000_0178)

/*pseudocode*/

mpll_tst = 0x0017;

SATA_P0PHYCR = mpll_tst; /*write address value to P0PHYCR and goto next step*/

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 9

SATA Temperature Accessing/Flow-Chart

2.4.2.2 STEP 2

Capture the internal SATA register address for MPLL_TST, and check for ACK bit in SATA_P0PHYSR.

/*pseudocode*/

SATA_P0PHYCR = (mpll_tst | 0x10000); /*bit 16 is used to capture the address*/

while(((SATA_P0PHYSR >> 18)&0x1)!= 0x1); /*dummy loop to capture acknowledge*/

SATA_P0PHYCR = mpll_tst & 0xffff;/*deassert bit16 (capture address bit)*/

while(((SATA_P0PHYSR>>18)&0x1) == 0x1); /*dummy loop to capture acknowledge deassertion*/

/*ready for next step*/

2.4.2.3 STEP 3

Temp_write = 512; /*this is the actual data to be written into MPLL_TST*/

Temp_write |= 0x20000;/*write command sent to SATA block*/

SATA_P0PHYCR = Temp_write;

while(((SATA_P0PHYSR >>18)&0x1) != 0x1); /*dummy loop to capture acknowledge*/

Temp_write &= 0xffff/*deassert capture address write*/

SATA_P0PHYCR = Temp_write;

while(((SATA_P0PHYSR >>18)0x1) == 0x1); /*dummy loop to capture acknowledge deassertion*/

Temp_write |= 0x40000;/*write command*/

while(((SATA_P0PHYSR >>18)&0x1) != 0x1); /*dummy loop to capture acknowledge*/

SATA_P0PHYCR = 0x0;/*deassert ack*/

while(((SATA_P0PHYSR >>18)0x1) == 0x1); /*dummy loop to capture acknowledge deassertion*/

/*end of pseudocode*/

3 SATA Temperature Accessing/Flow-Chart
SATA temperature monitor was designed to work when SATA is powered up. If a user wishes to measure
the temperature but wishes not to use the SATA module for interfacing SATA devices, the SATA module
must still be powered up through VP and VPH pins according to its prescribed voltage requirements. In
addition to powering up SATA, reference clock (25MHz to 156.25MHz) must be supplied externally to
SATA through external reference clock or USB PHY PLL. When the clock is supplied through USB PHY
or external reference, SATA_REXT can be left unconnected. This section assumes that the SATA module
is turned on properly prior to the usage, therefore the details on SATA setup prior to its usage is not going
to be covered in this section.

In order to read the temperature off of the SATA block, it requires the user to take seven major steps. Details
on each step are provided in the following paragraphs.

SATA Temperature Sensor (i.MX53), Rev. 0

10 Freescale Semiconductor

SATA Temperature Accessing/Flow-Chart

Figure 8. Temperature Measurement Flowchart

3.1 STEP 1: READ INTERNAL SATA Registers
The first step is to save the state of the registers the users are about to modify. Save these registers in a
temporary location until temperature reading procedure is done. After temperature is obtained, the user is
required to restore the register values before exiting the subroutine.

• Store MPLL_TST.MEAS_IV[12:2] into a temporary memory location

• Store RTUNE_CTL.MODE[1:0] into a temporary memory location

• Store DAC_CTL.DAC_MODE[14:12] into a temporary memory location

• Store RTUNE_CTL.SEL_ATBP[4] into a temporary memory location

On important note is that only to save those bits listed above and not the entire register, since SATA module
may modify other bits during its operation. In other words, only to save the state of the register bits listed

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 11

SATA Temperature Accessing/Flow-Chart

above and only restore those bits listed above before exiting the subroutine. Failing to do so may cause
erroneous SATA operation.

3.2 STEP 2: WRITE to Internal SATA Registers
 On this step, the user is required to write the setup for each of the control registers that were accessed in
the previous step. The actual values of the internal SATA registers are written below.

• Set MPLL_TST.MEAS_IV[12:2] = 0x200 (or 512)

• Set RTUNE_CTL.MODE[1:0] = 0x1

• Set DAC_CTL.DAC_MODE[14:12] = 0x4

• Set RTUNE_CTL.SEL_ATBP[4] = 0

One important note is that only modify those bits listed above; user should take extra care not to overwrite
or modify other bits within the registers, since SATA and other software components (such as kernel of an
OS) may modify other bits within the SATA module. It is a good programming exercise to only modify the
bits of interest before updating the i.MX’s SATA register.

3.3 STEP 3: 80 Consecutive Raw Data Read and Averaging
On this step, the raw data is retrieved from the ADC_OUT register of the internal SATA registers. The raw
data must be read 82 times. The first and the second reads are done as dummy reads in order to ensure the
data retrieved are not garbage data. After 80 consecutive read, the raw data are averaged, then stored as the
first intermediate value. In the Figure2, this intermediate value is named as “m1.”

3.4 STEP 4: Switch RTUNE_CTL.SEL_ATBP[4] to 1
On this step, bit 4 of RTUNE_CTL register must be set. This is to switch the measuring mode to
ATB_SENSE. This prepares the system for the STEP 5.

3.5 STEP 5: 80 Consecutive Raw Data Read and Averaging
This step is similar to STEP 3. The number of read and procedure should be the same as the one described
in STEP3. Only this time, the intermediate after averaging to be stored into the intermediate variable
named “m2.”

3.6 STEP 6: Calculate the temperature value
Using two averaged intermediate values “m1” and “m2,” apply those values onto the following formula.

a = (m2 – m1)/m2

Temp = (-66.485) * (a^2) + (761.907)*a + -284.645

The calculated value “Temp” is the die temperature.

3.7 STEP 7
Restore register bits stored in STEP 1 and exit subroutine.

SATA Temperature Sensor (i.MX53), Rev. 0

12 Freescale Semiconductor

Limitation of the Temperature Readouts and Troubleshooting

4 Limitation of the Temperature Readouts and
Troubleshooting

Although the temperature data provides useful operational parameter, one must realize that the value
gained in this procedure is only an approximation of the temperature within the die. The accuracy of the
values calculated is dependent on the calculation method applied within the software and its precision.
Also, the temperature value fluctuate greatly by the source voltage/current levels, number of modules and
processes present, along with the surrounding air and junction temperature. Because of all the factors
mentioned above, the values obtained through the temperature sensor should only be used as a reference
point rather than to be taken as an absolute value.

5 Conclusion
Even with the limitations mentioned above, the temperature data on the die gives the user valuable
information. This data point can be used to dynamically adjust the clock speed and/or to trigger the cooling
mechanism. It can also be used to adjust the current source level after detecting certain temperature
threshold. Whatever the application and its product specification requirements, this function can be a
useful features to the users.

SATA Temperature Sensor (i.MX53), Rev. 0

Freescale Semiconductor 13

Revision History

6 Revision History
Table 8 provides a revision history for this application note.

Table 8. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 10/2011 Initial Release.

Document Number: AN4380
Rev. 0
10/2011

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM CortextTM-A8 is the trademark of ARM
Limited.
© 2011 Freescale Semiconductor, Inc.

