Freescale Semiconductor

as AN437/D

ANA437

Using the MC68332 Periodic Interrupt Timer

By Mark Maiolani
Motorola Ltd
East Kilbride

INTRODUCTION

This application note demonstrates the use of the
MC68332 periodic interrupt timer by implementing an
interrupt driven reaktime clock in software.

Aswell as detailing the use of the PIT, the general use
and initialisation of interrupts on the MC68332 is
covered, especially from the ‘C’ programming
language. List files are also included to show the
resultant assembly level program.

THE PERIODIC INTERRUPT TIMER

The Periodic Interrupt Timer, or PIT, provides a way of
generating interrupts to the MC68332 core, i.e. the
CPU32, at programmable regutar intervals.

Essentially the PIT, shown in figure 1, consists of an
8-bit down-counter preceded by a + 4 prescaler, which

generates an interrupt and re-loads with a programmed
value when zero is reached.

The 8-bit value to be re-loaded is stored in the Periodic
Interrupt Timing Register (figure 2), as bits FITR7-0. The
PIT period can therefore be adjusted by modifying this
value, ar disabled by setting it to zero.

A prescaler bit, PTP, can extend the range of the PIT
period, by switching an additional + 512 prescaler into the
counter input when PTP =1.

With a 32.768 kHz oscillator, the resultant period can be
in the range 122us to 15.94 seconds as shown in the
example table of figure 3. The formula to calcuiate the PIT
periods is:

PIT period
= {PITR value * 4) / (EXTAL freq. / Prescaler)

where Prescaler =512 if PTP =1, or 1 for PTP = Q.

PITR7-0
EXTAL PIN PTP BIT +
| . 2
| CLOCK {9 + 4 |- 8-8IT
CLOCK PRESCALER MUX MODULUS COUNTER
DISABLE (+ 512) »
PIT
INTERRUPT
Figure 1. Periodic Interrupt Block Dlagram
© Freescale Semiconductor, Inc., 2004. All rights reserved. freesggglg

For More Information On This Product,
Go to: www.freescale.com

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

rxzb30
Rectangle

B 04:20 From Abee scalesSemicondusior; Inc. To bb 0311

PITR SYFFA24 ‘

15 14 13 12 11 10 9 8 7] 5 4 3 2 1 0

0 0 0 0 0 0 o | PTP PITR| PITR| PITR| PITR| PITR| PITR} PITR| PITR

Note: PTP takes the negated value of the MODCK pin on rising edge of RESET
Y = F if MM bit of MCR Is set, Y = 7 it MM bit Is clear

Figure 2. Periodic Interrupt Timing Register

PITR PIT Period

$0000 Perlodic Interrupt Disabled
§0001 122 us

$0002 244 us

$0004 488 us

$0008 | 977us .
$000F 1.83ms

$0020 3.90 ms

$0040 7.88 ms

$0080 15.6 ms

$00A0 | 19.5ms

$00FF 31.1ms

$0100 Periodic interrupt Disabled
$0101 62.5 ms

$0102 125 ms

$0104 250 ms

$0108 500 ms

$0110 1 second

$0120 2 saconds

$0140 4 seconds

$0180 8 seconds

$01A0 10 seconds

$01FF 15.9 seconds

Figure 3. Example PIT periods

MOTOROLA AN437/0

For More Information On This Product,
Go to: www.freescale.com

}04:20 From MRQESS alacSemiconduectos, Inc. To bb 04/11

CONFIGURING THE PIT INTERRUPT As the PIT is part of the System Integration Module in
the MCE8332, the main SIM Module Configuration
Register (figure 5) also has to be initialised for the

. The second PIT register is the Periodic Interrupt (. oo ts to be handled correctly.

Control Register, or PICR {figure 4}, which is used to
configure the interrupt generated by the PIT. The 1ne |nterrupt Arbitration Bits, IARB3-0, are used for
Periodic Interrupt Request Level bits determine the arpitration when interrupts of the same level are
priority of the interrupt from 1 to 7. If the PIRQL field generated simultaneously by different modules on
is set 10 all zeros, the interupt is disabled. the Inter Module Bus, such as the SIM and QSM. A
zero value for a module’s [ARB field results in all
interrupts that it generates being treated as spurious,
whereasavalue from 1to $F determines its priority on
the IMB, from lowest to highest. It is recommended
that each module on the IMB should be programmed
with a different IARB number to allow the arbitration
process to function as abave.

When the CPU32 detects an interrupt, itrequests the
number of the vector which contains the address of
the exception handler routine. The vector number
returned in response to a PIT interrupt is determined
by the Periodic Interrupt Vectar field in the PICR. This
can be any vector number from 0 to 255, although
normally it would be set to indicate one of the CPU32
user defined vectors, numbered from 64 to 255.

PICR $YFFA22

. 5 14 13 12 11 1 ¢ 8 7 6 &5 4 3 2 10
0 0 ol ol o [FROUPIRQUPIRQL PIV | PIV | PIV | PV | PIV | PIV | PIV | PNV

2 | 1 o 71 6| 5| 4| 3| 2 1 0

Figure 4. Periodic Interrupt Control Register

MCR :) $SYFFAQQ

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

HEN |
exorr Frzsw|Frzam| o [siven| o [SPEN|SHEN supy| mm | o | o |'AFB| ARS8 | 1ARE) ARS

Figure 5. Module Configuration Register

AN43I?D MOTOARNI A

For More Information On This Product,
Go to: www.freescale.com

} 04:20 From MEV@ESGalaSemiconduetor, Inc. To bb 05A1

INITIALISATION OF THE CPU32 VECTOR If the PICR is set to assign the PIT interrupt 1o vector
TABLE number 64, which is the first user-defined vector, then

the four bytes starting at address {VBR) + (64 * 4)) .

. should be programmed with the address of the PIT
Before the PIT interrupt can be enabled, the address exception handler.

of the software routine to be executed in response to
the interrupt, ie. the exception handler, has to be

programmed into the correct vector table entry. USING THE PERIODIC INTERRUPT
FROM THE 'C’ LANGUAGE

The starting address of the vector table is defined by

the CPU Vector Base Register, in a similar manner to

the 68010/20 MPUs. The PIT (or indeed any other MC68332 interrupt) can

be configured efficiently withvery few 'C’ instructions.
This is shown in the example program ‘332RTC’,
where the vector table is initialised with the address
of the exception handler, clocki().

As the table consists of 256 vectors {figure 6), where
each vector is a byte address, the address of vector n
can be calculated as:

Address = VBR + (n* 4}

Vector Offset Vector Assignment Veclor Number

000 | Reset: Initial Suparvisor Stack Pointer
004 | Reset: Initial Program Gounter

008 | Bus Emor

00C | Address Error

010 | lllegal Instruction

014 | Zero Divide

018 | CHK Instruction

01C | _TRAPcc, TRAPV Instructions

020 | Privilege Violation

024 | Trace

o

W oo N s WA -

028 | Line 1010 Emulator 10

02C | Line 1111 Emulator 1

030 | Hardware Breakpoint 12

034 | (Reserved, coproc protocol vialation) 13

038 | Format Error 14

03C | Unintialised Interrupt 15
040 - 05C | (Unassigned and Reserved) 16-23

060 | Spurious Interrupt 24
064 - 07C | Level 1-7 Interrupt Autovectors 25 - 31
080 - 0BC | TRAP #0-15 Instruction 32-47
0C0O—0E8 | Reserved for Coprocessor) 48 - 58
0EC - OFC | (Unassigned and Reserved) 59-63
100 -~ 3FC | User Interrupt Vectors 64 -255

Figure 6. CPU32 Vector Table .

MATABN A AN437/D

For More Information On This Product,
Go to: www.freescale.com

ANA3T/D

3 04:20

The program line :
*{long "}{vecno * 4) + vbr} = {longlclock;

with the resultant assembly code :

move.l #clock,256

takes the address of the routine clock, convertsittoa
leng value, and stores it in the location pointed to by
the long value ({vecno * 4) + vbr).

Note that this program assumes that startup code has
initialised the CPU VBA register to a fixed value, as it
defines ‘vbr' to be “0x00". An alternative way to
determine the value of the VBR, which is shown
commented out in "332RTC, is to import its value
directly from the startup code.

One important point to remember when dealing with
interrupts in high level languages is that the exception
handler must always be terminated by the assembly
instruction 'Return from Exception’, RTE, rather than
the ‘Return from Subroutine’ or RTS instruction. With
some Compilers a directive can be used to force the
use of RTE to terminate a routine instead of RTS.

The program "332RTC’ uses the '_mod2__’ directive
available on the Introl 332 compiler for this purpose.

Other methods of vectoring interrupts ¢an be used,
either involving user written assembly level exception
handlers which will ‘re-vector’ the interrupt to the
handier routine via @ JSR instruction, or alternative
methods ‘built-in’ to the compiler.

From Mt@e9caleSemicanductios, Inc. To bb 06/11

Although these wilt have the disadvantage of increasing
the response time to the interrupt, they will allow the
exception handler to be called by the program itself,
which is not possible if the routine terminates with
RTE.

332RTC - GENERAL INFORMATION

The program ‘332RTC’ was developed on the
MC6E8332 BCC, and runs under the '332Bug’ monitor.
Because of this, the SIM MCR registeris not modified,
butis left in the state programmed by the monitor. As
the PIT interrupt request level is programmed to level
6, the CPU32 interrupt mask must be programmed to
b or less for the interrupt to be recognised. This may
be achieved directly frorn the monitor or by including
this functionin the assembly startup code for‘332RTC".

The PIT interrupt, which is programmed to occur at
1Hz frequency. vectors 1o the routine clock. This
updates the global time variables (hours, minutes and
seconds) before printing a display of the time via a
PRINTF instruction. The ‘PRINTF’ instruction from the
Introl 332 compiler is directed to the MC88332 SCI
port, and allows the messages 1o be viewed ona PC
connected to the BCC or EVS RS232 port.

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

304:20 From MEE@ERGIeSemicandusiaon, Inc. To bb 0711

C SOURCE CODE - 332RTC.C

/* 332RTC.C 17/8/90

C democ showing use of periodic interrupt timer to Llmplement a real
time clock in software. Demonstrates the use of interrupt driven
software in Introl C

The interrupt handler, clock{), updates the time variables, and also
prints the time for demonstration of operation

Periodie interrupt is programmed to level 6 so startup code must
set the interrupt mask to 5 or less

Written by:
Mark Maiolani, Motorela East Kilbride

H* % M ¥ % X X & * * % N N B

La
S

tinclude “332defs.h™ /* General definitlions */

#define pitr Oxfffffa24 /* Address of PITR assuming MM bit =1 */
ddefine pier Oxfffffaz2 /= ,, .« PICR ,, P */
#define vecno 0x40 /* Vector number used */
#define vbr 0xQ0 /* Assume VBR =0 */

/* import vbr Or import from startup file */

A Global Variables ¥/
byte hours=0,minutes=0, seconds=0;

I+ funetion prototypes */
void clock();

main{)

{
* Set up interrupt vector (number vecno) to point to routine clock */

*{long *) {(vecne * 4} + vbr) = (longlclock:;

> Set PITR for 1 second periocd */
*{word *) (pitr) = Ox0110;

/* Set PICR for level & interrupt vector number Ox40 */
*{word *) (picr) = 0x0640;

{* Loop forever */
while (1);
}
void _ med2_ elock()
{
seconds++;
if {seconds>39)
{
seconds=0;
minutes++;
if (minutes>59)
{
minutes=0;
hours++;
if (hours>l2) hours=1;
}

}
printf{"\r$02d:402d %02d", hours, minutes, seconds);

.)

ANA3ITD MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

} 04:20 from MAFEESGalaSemicanduetoy, Inc. To bb 08/11

MERGED C SOURCE AND ASSEMBLY QUTPUT - 332RTC.C

/* 332RTC.C 17/8/90

€ demo showing use of periodic interrupt timer to implement a real
time clock in software. Demonstrates the use of interrupt driven
software in Intrel C

The interrupt handler, clock(}, updates the time variables, and also
prints the time for demonstration of operation

Periodic interrupt is programmed to level 6 so startup code must
set the interrupt mask to 5 or less

Written by:
Mark Maiclani, Motorola East Kilbride

LA A AR L B I I O I NN N B N R B A L

/
tinclude *332defs.h" /* General definitions */
tdefine pitr Oxfffffald /* Address of PITR assuming MM bit =1 */
#define picr Oxfffffa22 ., .» PICR ., e e */
#define vecno 0x40 /* Vector number used */
$define vbr O0x00 /* Assuma VBR =0 */
i import vbr Cr import from startup file */
* Global Variables */
byte hours=0, minutes=0, seconds=0;
6 00000000 ds.w O
7 00000000 hours:
. 8 00000000 QO de.b 0
9 00000001 ds.w 0
10 00000002 minutes:
11 00000002 00 de.b 0
12 00000003 ds.w 0
13 00000004 seconds:
14 00000004 00 de.b 0
16 section.text
L 1
* /* functicn prototypes */
» veld e¢leck();
*
x
* maint)
18 00000009 main: fbegin
19 00000000 4eSEfff0 link fp,#-16
20
* {
* = Set up interrupt vector (number vecno) to point to routine elock */
i *{long *) { (vecno * 4) + vbr) = (long)clock;
22 00000004 »21fc00000000010Q mave.l dclock, 256
L]
* /* Set PITR for 1 second period */
* *(word *) {pitr) = 0x0110;

AR4ITNO MATNARN 4

For More Information On This Product,
Go to: www.freescale.com

304:20 From MEERCRGASSeMmicanduciar, Inc. To bb 09411

24 0000000c 31f£c0110fa24 move.w #272,-1500
*
* /* Set PICR for leval 6 interrupt vector number 0x40 */
* * (word *) (pler) = Ox0€640; ‘
26 00000012 31fec0640fa22 move.w #1600,-1502
27 00000018 0.4
*
* /* Loop forever ¥/
* while (1);
29 00000018 60fe bra 20.4
* }
31 0000Q0la 71
32
33 000000la 4eSe unlk fp
34 0000001lc 4e75 rts
35 0000001e ferd
*
*
* void _mod2 __ clock{}
38 000000le clock: fbegin
39 000000le deS6ffcc 1ink fp, #-52
40 Q0000022 48eelf07£fd0 movem.1d0/d1/d2/a0/al/a2/a3/ad, (~48, £p)
41 00000028 >45£900000000 lea minutes,a2
42 0000002e >47£300000000 lea hours, a3
43 00000034 >49£900000000 lea seconds, ad
* {
¥ seconds++;
4% 0C000C3a 5214 add.b #1, (a4)
* if {seconds>59)
47 0000003c 0cl4003b armp.b 59, (a4)
48 00000040 6318 bls 71.10
* {
* seconds=0;
50 00000042 4214 clr.b {a4)
. minutes+s;
52 00000044 5212 add.b 11, (a2)
* if (minutes>59)
54 00000046 0cl2Q03b cmp.b #59, {a2)
55 00000042 630e bls 21.10
. {
b minucess0;
57 0Q0DO004e 4212 clr.b {a2)
' hours++;
59 0000004e 5213 add.b 11, (ad) ‘

1 —

MNATARN! A AN43TD

For More Information On This Product,
Go to: www.freescale.com

rrom MK SE alecSemiconductes, Inc.

104:20 To bb 10711
* if (houra>12) hours=1l;
€1 00000050 0c1300Q0c amp.b 12, (a3)
62 00000054 6304 bls ?21.10
. €3 00000056 16be0001 move.b #1, (a3)
64 0000005a 21.10
63 section.strings
* }
* }
printf ("\r$02d:402d $02d", hours, minutes, seconds) ;
§7 Q0000000 ds.w €
68 00000000 25l
69 00000000 0d253032643a2530 de.b 50d, "8%02d:%02d4 %02d', 500
10 section . text
71 line 63
72 0000005a 70G0 move.l #0,d0
73 0000005c 1014 move.b (a4),d0
74 0000005e 280 mova.l dO, (sp)
75 0C000060 T200 move.l #0,dl
76 00000062 1212 move.b (a2),dl
77 00000064 2£01 move.l dl,-(sp)
78 00000066 7400 move.l #0,d2
79 00000068 1413 move.b (a3}, d2
B0 0CD00DEa 2£02 move.l d2,-(sp)
8l 0000006c >487900000000 pea 751
82 00000072 >4eb500000000 jsr printf
B3 QU00G0T8 4fef000c lea (12,spl,sp
* }
85 0000007c 2
86 0000007¢c dceelf(7£{d0 movem,l (=48, fp) ,d0/d1/d2/a0/al/a2/ad/ad
87 00000082 deSe unlk fp
83 00000084 4e73 rte
89 00000086 fend
S0 import printf
91 end
Section synopsis
1 00000005 5) .data
2 00000086 134} .text
3 00000010 | 16) .strings
Symbol table
.data 1 00000000 | ‘
text 2 00000000 | hours E 1400000000 | minutes E 1 00000002 | printf I 0 000coQOOQ
.strings 3 00000000 | clock E 2 000000le | main E 2 00000000 | printf I 0 00000000
Symbol cross~reference
.data *q
.strings 58
Lext *16 *70
clock 22 *38
hours *7 42
main *18
minutes *10 41
printf a2 *90
seconds =13 43

ANS37/D MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

A 8 04:20

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

From NEERESCaeSemicandusiar; Inc. To bb

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale"

semiconductor

For More Information On This Product,
Go to: www.freescale.com

1111

rxzb30
Rectangle

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

