
1 GTM Overview
The GTM is a data flow driven, large scalable timer with a
modular design and a central routing unit. It supports over 200
timed I/O channels and includes application specific modules
for hardware support of 4, 5, 6, and 8 cylinder applications for
powertrain, transmission, and motor control, including angle
clock hardware and motor commutation submodules. The
system functionality of the GTM module is similar to that of
the Freescale eTPU and eMIOS modules.

The GTM has been designed to minimize the amount of
interaction between the GTM and the CPU. This is achieved
through specific integrated technology, which results in fewer
interrupt requests and therefore reduced CPU loading. Most
functions are performed in parallel within the GTM's
dedicated hardware units, ensuring simple latency
calculations. Although the GTM itself is physically a large
module in terms of gate count, the overall system cost is
lowered by reducing the software overhead.

Some modules can be used independently as standalone
functions that are controlled completely by the MCU's host
processor. However, these modules can be combined together
to create complex timing functions by using the Multi-
Channel Sequencer and the Advanced Routing Unit to control
inputs and output to the other GTM submodules.

Freescale Semiconductor Document Number: AN4351

Application Note Rev 2, 4/2014

MPC57xxM Generic Timer Module
(GTM) Quick Start Guide
An introduction to the GTM as implemented on
Freescale MCUs

by: Inga Harris

© 2014 Freescale Semiconductor, Inc.

Contents

1 GTM Overview...1

2 Example 1: Configuring the Microcontroller
to use the GTM...2

3 Example 2: Enabling the GTM...............................7

4 Example 3: Initializing the GTM............................9

5 Example 4: Simple PWM.....................................11

6 Example 5: Synchronizing the TOM and
the ATOM Submodules..13

7 Example 6: Pulse Period Accumulate.15

8 Example 7: Writing, Compiling, and
Programming MCS Code.....................................18

9 Example 8: Queued Output Match
(QOM)..22

10 Example 9: Using the DPLL for a Simple
Micro Tick Function...35

A GTM module definition and revision
information...42

B SIUL2 Configuration Examples............................47

C Include the MCS ASM Binary in a
Greenhills MULTI Project....................................53

D GTM References...55

E Revision History...56

2 Example 1: Configuring the Microcontroller to use the GTM

2.1 Description
The GTM module runs on two clock domains (one for the logic and one for timing) and in multiple modes that must be
configured prior to the module being enabled. To use the GTM's I/O, the pin multiplexing must also be configured prior to
the GTM's initialization.

The GTM Integration module is clocked by the device's Peripheral Bridge A domain, on a special GTM slot. This clock is
used for communication between the GTM and the CPU via the AEIMux and the GTM's register logic. This clock has a
maximum speed of 100 MHz (twice the frequency of the other peripheral bridge slots) on the MPC5746M and MPC5777M
devices . This clock domain is highly configurable and can be sourced from PLL0 (non-FMPLL), PLL1 (FMPLL), XOSC, or
the IRCOSC. These clock sources can be divided down by any integer value between 1 and 64 to reach the desired
frequency.

The GTM system clock (referred to as SYS_CLK in the GTM specification) is sourced from the chip-level peripheral clock
(PER_CLK), which is one of the AUX Clock Selector 0 clocks, group 0. This group of clocks is highly configurable and can
be sourced from PLL0 (non-FMPLL), XOSC, or IRCOSC. This clock has a maximum frequency of 80 MHz on all of the
devices in the family. These clock sources can be divided down by any integer value between 1 and 16 to reach the desired
frequency.

2.2 Implementation
To run the GTM104 on the MPC5777M at its maximum speed, it is recommended that PLL1 is configured to run at 600
MHz and PBRIDGEA_CLK set to PLL1 divided by 12, with PLL0 running at 400 MHz and divided by 5 for the source of
the PER_CLK as shown in Figure 1 below. This 80 MHz clock is used by the GTM CMU sub module to derive the GTM's
local clock signals for its submodules and the GTM's External Clock signals as shown in Figure 2.

PLL0

A
U

X
 C

lo
ck

S
el

ec
to

r
0

÷ 1...16 Peripherals (PER_CLK)

0

PLL1

S
ys

te
m

 C
lo

ck
S

el
ec

to
r

÷ 1...64

2

PBRIDGEA_CLK GTM Slot

Figure 1. GTM clocking tree on MPC5777M

Example 1: Configuring the Microcontroller to use the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

2 Freescale Semiconductor, Inc.

When the PLL is running at the desired frequency, the clocks can be fed to PBRIDGEA_CLK and PER_CLK by writing to
the chip's Clock Generation Module (MC_CGM) configuration registers. Some examples for the preliminary MPC57xx
devices set up as shown above are provided in the following table.

Device PBRIDGEA_CL
K (Max)

PER_CLK
(Max)

System Clock
Selector 0

System Clock
Selector
Divider

AUX Clock
Selector 0

AUX Clock
Selector 0

Divider

MPC5777M 100 MHz (600/6) 80 MHz (400/5) MC_CGM.SC_D
C1.R

6 MC_CGM.AC0_
DC0.R

5

MPC5746M 100 MHz (600/6) 80 MHz (400/5) MC_CGM.SC_D
C1.R

6 MC_CGM.AC0_
DC0.R

5

The GTM's timing clock source is SYS_CLK, which is the PER_CLK signal at the chip level. The device's reference manual
describes the maximum frequencies for the PBRIDGEA_CLK and PER_CLK clocks inside their respective System clock
frequency limitations section in the Clocking chapter.

Example 1: Configuring the Microcontroller to use the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 3

Figure 2. Clock tree inside GTM104

The inputs and outputs of the GTM's TOM, ATOM, and TIM submodules are not routed to the device pads by default. As the
pads on the family of devices are highly multiplexed, each individual I/O to be used in the application must be configured in
the SIUL2 module before use.

Inside the SIUL2 module are the registers that control the I/O, the Multiplexed Signal Configuration Registers (MSCR_MUX
and MSCR_IO). The Source Signal Select (SSS) value selects which source signal is connected to the associated destination
pin. The output channels (TOM and ATOM) functionality must be configured including drive strength, output drive circuit,
and pullup/down. These output pins are controlled by the MSCR_MUX registers. The input channels (TIM) must have their
Input Buffer enabled by setting the IBE bit in the MSCR_IO register. The example in Code is one possibility of the
combinations of TIM, TOM and ATOM that will allow all the inputs and outputs to fit on the smallest MPC5746M 176 QFP
package without conflict. The code below uses these arrays to set all the inputs and outputs up for use during development.

The I/O Signal Description Table excerpts below show the entries for Port B9 and Port F1. To configure Port B9 as the
TOM0_CH0 function, the SIUL2 MSCR_MUX register number 25 should be written with the SSS value of 0000_1000
(8hex) with the other output pin characteristics required.

Example 1: Configuring the Microcontroller to use the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

4 Freescale Semiconductor, Inc.

Figure 3. PB[9] MSCR table

To configure Port F1 as the TIM0_CH0 function, the SIUL2 MSCR Input register number 512 should be written with the
SSS value of 0x0000_0011 (3hex) and the ports associated MSCR register number 81 Input Buffer Enabled (IBE).

Figure 4. PF[1] MSCR table

NOTE
The I/O signal tables are included in the chip's reference manual as an attached Excel®

spreadsheet.

2.3 Code
The arrays below show one possible way to have all of the GTM103 inputs and outputs on the MPC5746M routed to the
device's I/O on the 292 MAPBGA package.

NOTE
Some ports are unavailable on the chip's smaller package options. Refer to the data sheet
for details on which ports are available on specific packages.

Example 1: Configuring the Microcontroller to use the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 5

/* SIUL2 set up arrays **********/

int TIM_MSCR_SSS[32] = {/*TIM0*/3, 2, 5, 2, 2, 2, 2, 2,
 /*TIM1*/8, 3, 7, 3, 4, 4, 7, 3,
 /*TIM2*/7, 7, 7, 9, 8, 9, 7, 8,
 /*TIM3*/7, 6, 6, 7, 7, 7, 8, 8};
int TIM_MSCR[32] = {/*TIM0*/81, 96, 118, 137, 141, 140, 139, 138,
 /*TIM1*/122, 80, 113, 58, 145, 146, 126, 116,
 /*TIM2*/197, 185, 185, 185, 185, 185, 195, 192,
 /*TIM3*/200, 199, 157, 156, 159, 158, 190, 191};

int TOM0_MSCR_SSS[16] = {8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
int TOM1_MSCR_SSS[16] = {9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 8};
int TOM2_MSCR_SSS[16] = {9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};

int TOM0_MSCR[16] = {25, 26, 24, 10, 8, 9, 50, 49, 34, 32, 41, 40, 39, 38, 37, 36};
int TOM1_MSCR[16] = {35, 33, 57, 2, 1, 12, 13, 0, 62, 63, 190, 123, 3, 56, 71, 52};
int TOM2_MSCR[16] = {93, 196, 47, 91, 45, 44, 43, 42, 53, 72, 73, 82, 127, 70, 86, 87};

int ATOM0_MSCR_SSS[8] = {0xA, 0xA, 0xA, 0xA, 0xA, 0xA, 0xA, 0xA};
int ATOM1_MSCR_SSS[8] = {0xA, 0xA, 0xB, 0xB, 0xB, 0xB, 0xB, 0xB};
int ATOM2_MSCR_SSS[8] = {0xA, 0xA, 0xA, 0xA, 0xA, 0xA, 8, 8};
int ATOM3_MSCR_SSS[8] = {0xB, 0xB, 0xB, 0xB, 0xB, 0xB, 0xB, 0xB};
int ATOM4_MSCR_SSS[8] = {0xB, 0xB, 0xB, 0xB, 0xB, 0xB, 0xB, 0xB};

int ATOM0_MSCR[8] = {90, 55, 54, 14, 11, 15, 61, 67};
int ATOM1_MSCR[8] = {111, 84, 64, 65, 66, 60, 88, 117};
int ATOM2_MCSR[8] = {48, 147, 121, 120, 119, 143, 152, 150};
int ATOM3_MCSR[8] = {68, 76, 136, 46, 27, 51, 109, 110};
int ATOM4_MCSR[8] = {115, 75, 74, 114, 92, 124, 94, 69};

Refer to SIUL2 for GTM Inputs and Outputs for further details on the SIUL2 module and the mapping of GTM pins to the
device port pins/pads on the GTM103 and GTM104 variants on the MPC57xx family.

Below is the function SetUpSIUIO which uses the above data to configure all the GTM I/O on the GTM103-based
MPC5746M device.

void SetUpSIUIO()
{
 unsigned char i;

 //Sets up all TIM channels
 for (i=0; i<32; i++){
 SIUL2.MSCR_MUX[TIM_MSCR[i]].B.SSS = TIM_MSCR_SSS[i];
 SIUL2.MSCR_IO[TIM_MSCR[i]].B.IBE = 1;
 }

 //Sets up all TOM channels
 for (i=0; i<16; i++){
 SIUL2.MSCR_IO[TOM0_MSCR[i]].R = (0x02080000|TOM0_MSCR_SSS[i]);
 SIUL2.MSCR_IO[TOM1_MSCR[i]].R = (0x02080000|TOM1_MSCR_SSS[i]);
 SIUL2.MSCR_IO[TOM2_MSCR[i]].R = (0x02080000|TOM2_MSCR_SSS[i]);
 }

 //Sets up all ATOM channels
 for (i=0; i<8; i++){
 SIUL2.MSCR_IO[ATOM0_MSCR[i]].R = (0x02080000|ATOM0_MSCR_SSS[i]);
 SIUL2.MSCR_IO[ATOM1_MSCR[i]].R = (0x02080000|ATOM1_MSCR_SSS[i]);
 SIUL2.MSCR_IO[ATOM2_MSCR[i]].R = (0x02080000|ATOM2_MSCR_SSS[i]);
 SIUL2.MSCR_IO[ATOM3_MSCR[i]].R = (0x02080000|ATOM3_MSCR_SSS[i]);
 SIUL2.MSCR_IO[ATOM4_MSCR[i]].R = (0x02080000|ATOM4_MSCR_SSS[i]);
 }
}

These could be configured one step at a time instead of in one looped function. Below is an example of how one such input
configuration would be done:

• SIUL2.MSCR_MUX[81].B.SSS = 3; sets up TIM0_CH0 on PF1.
• SIUL2.MSCR_IO[81].B.IBE = 1; sets TIM0_CH0 (on PF1) as an input (81+512 = 593).

Example 1: Configuring the Microcontroller to use the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

6 Freescale Semiconductor, Inc.

Below is an example of how one such output configuration would be done:

• SIUL2.MSCR_IO[90].R = 0x0208000A; sets up ATOM0_CH0 as a digital output pin on PF10 with weak drive,
push-pull, safe mode and the weak pull disabled.

NOTE
There are not enough I/Os on the MPC5777M to have all of the GTM104 inputs and
outputs available on external pins.

3 Example 2: Enabling the GTM

3.1 Description
The Generic Timer Module (GTM) is a complex timing subsystem intended to be used in automotive powertrain
applications. To enable the the GTM, several operations must be performed. Both the clocks to the GTM Integration Module
and the GTM module itself are gated off out of reset.

The GTM can operate in all SoC modes if it is configured to do so. The GTM Stop mode referenced in the GTM
specification is any SoC mode in which the GTM clock sources are not enabled.

3.2 Implementation
The GTM module has two reset signals, both of which must be released before the GTM can be enabled and configured. The
first reset signal is from the chip's slave bus and the second is from the peripheral clock domain. The release of the last reset
signal resets the the GTM logic and the GTM registers.

When the GTM reset signals are both released, the GTM wrapper is in asynchronous mode and write responses are not
masked but the module is still disabled with MDIS = 1. When the GTM's two reset signals are released the GTM's MCS and
DPLL RAM memories are automatically initialized by writing to each location. This is required to ensure that the ECC parity
bits for each RAM address are true.

NOTE
The GTM's FIFO memories are not initialized because the FIFOs are not read directly.
They are written before any read access occurs from either the GTM or by the device's
cores.

The first step to enabling the GTM is to enable the Slow Crossbar and peripheral clocks to the Mode Entry (ME) module's
Run Peripheral Configuration 0 register (ME_RUN_PC0).

The clocks to the GTM do not become active until the run mode is updated in the ME module. Normally, this would be done
after initialization of all of the peripheral clocks and core operating modes is completed.

Finally, the GTM itself can be enabled by clearing the Module Disable (MDIS) in the GTM Module Configuration Register
(GTMMCR) located at the Base Addr + 0xC0. The default value of this register is 0x4000_4000 (the module is disabled and
the GTM is in Stop mode). The GTM Stop Mode Status (STPS) bit is cleared when the GTM is enabled. This MDIS bit must
be cleared to enable writes to the GTM registers for configuration before operation. The other registers in this integration
register set are the Interrupt Clear and AEI Control registers which are unlikely to be written during initialization.

Verification that the GTM is enabled can be done by reading the GTM Version Control register (GTM_REV). This register is
not readable when the GTM is disabled and contains the GTM module type (3-digit Device Encoding), the GTM major and
minor revision number, the development year, and IP delivery number. See GTM module definition and revision information.

Example 2: Enabling the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 7

Figure 5. Enabling the GTM

Table 2. Steps to enable the GTM

Step Operation Description Pseudo Code

I Initialized State See Example 1 —

1 Enable the GTM clock Enable the clock in the ME
Peripheral Configuration 0
Register (ME_RUN_PC0). A value
of 0xF8 enables the following
modes: RUN3, RUN2, RUN1,
RUN0, and DRUN.

Write ME_RUN_PC0 =
0x0000_00F8

2 Change the run mode to enable
clocks

Write target mode (DRUN) in the
ME Mode Control register
(ME_MCTL) with the first key

Write ME_MCTL = 0x3000_5AF0

Write target mode (DRUN) in the
ME Mode Control register
(ME_MCTL) the inverse key

Write ME_MCTL = 0x3000_A50F

3 Enable the GTM Enable the GTM by clearing the
MDIS bit in the MCR.

Write GTM_MCR = 0x0000_0000

4 Confirm GTM enabled Read GTM Version Control
register1

Read GTM_REV

1. The GTM Version control register cannot be read if the GTM is disabled.

Example 2: Enabling the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

8 Freescale Semiconductor, Inc.

3.3 Code
This function is an example based on the MPC5777M device. It only configures the clocks and modes required for the GTM
module to run, assuming the PLLs and all other sources have been configured independantly.

void GTM_CLK_INIT(void){

/* Assumes PLL0 at 400 MHz from 40 MHz XOSC and PLL1 @ 600 MHz from 40 MHz XOSC with
progressive clock switching enabled */
/* All cores enabled and all MC_RGM faults cleared */

/** Step 1 **/
 /* Setting RUN Configuration Register */
 MC_ME.RUN_PC[0].R=0x000000F8; /* GTM ON in RUNx and DRUN modes */

/** Step 2 **/
 /* Mode change Re-enter the DRUN mode, to start cores, clock tree & PLL1 */
 MC_ME.MCTL.R = 0x30005AF0; /* Mode & Key */
 MC_ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

 while(MC_ME.GS.B.S_MTRANS == 1); /* Wait for mode entry complete */
 while(MC_ME.GS.B.S_CURRENT_MODE != 0x3); /* Check DRUN mode entered */

/** Step 3 **/
 GTMINT.GTM_MCR.R = 0x000000000; //Enable GTM Module, MDIS = 0

/* Step 4 */
 if (GTM_REV != 0x104155A1){
 /* See Appendix A for the value for each GTM Derivatives Revision Number */
 /* report an error */
 }
}

4 Example 3: Initializing the GTM

4.1 Description
Once the GTM chip-top integration configuration has been initialized, the other top-level GTM Configuration Registers in
the GTM Integration module should be initialized for use by the application. These include the GTM Control, Bridge Mode,
and interrupt (IRQ) registers. The GTM specification refers to two bridge modes.

NOTE
The integration of the GTM module in MPC57xx devices is the asynchronous bridge
mode (BRG_MODE = 1). When the GTM is used in asynchronous mode, the two clock
inputs to the GTM subsystem must have identical frequency and phase, which cannot be
guaranteed within the MPC57xx integration scheme.

In general, the next stage of initialization for the GTM is the Clock Management Unit (CMU) and the Time Base Unit
(TBU). The CMU submodule controls the GTM clocking. There is a global clock divider ratio applied to all the internal
GTM clocks, which is not applied to the CMU's External Clock Generation Unit. The Global Clock Divider has a mechanism
to protect it from being misconfigured (that is, to prevent the numerator or denominator from being 0 or the ratio from being
less than 1). The clock dividers, clock select, and clock enable bits control the CMU submodules' outputs. The TBU can then
be configured to generate the different time bases that can be used by the other GTM submodules.

Interrupts and DMA must also be configured for use with the GTM. Outside of the GTM modules, the interrupts and DMA
configuration is the same as any other module. Refer to AN4352, Initializing the MPC5746M, for further information on how
to configure these events to meet your application's demands.

Example 3: Initializing the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 9

Inside the GTM the interrupt and DMA events sent to the chip's interrupt and DMA controllers are all handled as interrupts.
Each individual interrupt event that will be used in the end application must be enabled for use inside the respective
submodule.

NOTE
The GTM IP has the ability to handle four interrupt modes: Level, Pulse, Pulse-notify,
and Single-pulse modes. However, the integration of the GTM IP inside of the MPC57xx
devices uses Level mode (b00, reset state) only. Writing any value other that b00 to these
bit fields results in an AEI_STATUS of Illegal Address Access (b10) and generates the
GTM AEI shared interrupt, vector number 706, GTM_ICM_IRQG_0(AEI_IRQ).

4.2 Implementation
The GTMINT module will exit reset in a default state which does not need any modifications to work with the GTM-IP in the
MPC57xx chips.

There are four steps to enable the GTM internal clocks using the CMU submodule.

1. Set the global clock divider ratio.
2. Select a fixed-frequency clock divider.
3. Select the source and divider for each CLKn signal.
4. Enable the clocks.

Table 3. Initializing the internal GTM clocks

Step Operation Description Psuedo Code

1 Define the global clock as a
fraction of the PER_CLK

Write the numerator and
denominator values of the divider

CMU_GCLK_NUM = 0xN;
CMU_GCLK_DEN = 0xN;

2 Select the fixed frequency clock
divider source

Chose from any other internal
CMU clock

CMU_FXCLK_CTRL = 0xN;

3 Define the CMU_CLKn source and
divider

Define the integer divider value for
the clock and the source where
available (CLK6 and CLK7)

CMU_CLK_0_CTRL = 0xN;
CMU_CLK_1_CTRL = 0xN;
CMU_CLK_2_CTRL = 0xN;
CMU_CLK_3_CTRL = 0xN;
CMU_CLK_4_CTRL = 0xN;
CMU_CLK_5_CTRL = 0xN;
CMU_CLK_6_CTRL = 0xN;
CMU_CLK_7_CTRL = 0xN;

4 Enable the clocks Enable all the clock prescalers and
FXCLK

CMU_CLK_EN = 0x00AAAAAA;

4.3 Code
Below is a C function that shows an example of the CMU clock configurations.

void init_GTM_clocks (void){

 GTM_CMU.GCLK_NUM.R = 0xFFFFFF;
 GTM_CMU.GCLK_DEN.R = 0xFFFFFF; // define CMU_GCLK_EN as PER_CLK / 1

 GTM_CMU.FXCLK_CTRL.R = 0x1; //FXCLK sourced from CMU_CLK0

 GTM_CMU.CLK_CTRL[0].R = 0x0; // define CMU_GCLK_EN/1 clock

Example 3: Initializing the GTM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

10 Freescale Semiconductor, Inc.

 GTM_CMU.CLK_CTRL[1].R = 0x1; // define CMU_GCLK_EN/2 clock
 GTM_CMU.CLK_CTRL[2].R = 0x3; // define CMU_GCLK_EN/4 clock
 GTM_CMU.CLK_CTRL[3].R = 0x7; // define CMU_GCLK_EN/8 clock
 GTM_CMU.CLK_CTRL[4].R = 0x9; // define CMU_GCLK_EN/10 clock
 GTM_CMU.CLK_CTRL[5].R = 0x4F; // define CMU_GCLK_EN/80 clock
 GTM_CMU.CLK_6_CTRL.R = 0x4F; // define CMU_GCLK_EN/80 clock
 GTM_CMU.CLK_6_CTRL.R = 0x4F; // define CMU_GCLK_EN/80 clock

 // enable all the clock prescalers and FXCLK
 GTM_CMU.CLK_EN.R = 0x00AAAAAA;

}

NOTE
The Time Base Unit channels can also be enabled, if required by the GTM submodules,
by writing to the TBU_CHEN register (for example, TBU_CHEN = 0x0000002A;).

5 Example 4: Simple PWM
When first starting with a module as big and complex as the GTM it is a good idea to start with a simple function that enables
you to check the clock speed and toggle some GTM pins.

5.1 Description
The Timer Output Module (TOM) is the simplest of the submodules to turn on since it is not connected through the ARU.
This example uses TOM0, channels 0, 1, 2, and 3.

The TOM0 Channel registers Compare Match 0 (CM0) and Compare Match 1 (CM1) control the PWM frequency and duty
cycle. TOM Channel register Counter (CN0) is the counter. The mode and functionality of the TOM is set from the Channel
Control Register (TOMi_CHn_CTRL). The TOM channels and outputs are enabled with the ENDIS and OUTEN control
registers.

5.2 Implementation
The following example sets up TOM0 channels 0–3 in continuous PWM mode running from the CMU_FXCLK[0] with high
(SL = 1) output level. It does not use any interrupts or time bases and all other setting are default.

There are three main steps that must be taken to generate these synchronized PWM outputs on the TOM module.

1. Set up channel period and duty as this channel triggers the others.
2. Configure the channel mode.
3. Enable the TOM outputs.

Table 4. Simple PWM outputs

Step Operation Description Psuedocode

I Initial state Enable the GTM and clocks by completing
examples 1, 2, and 3.

—

1 Set up CHn period Enter the number of counts that the counter
will compare with for the period and duty.

Write (A)TOMn_CHn_CM1 = duty count and
(A)TOMn_CHn_CM0 = period count

3 Configure CHn Set channel up for cont mode, SL=1,
RST_CCU0=1

(A)TOMn_CHn_CTRL = mode required

Table continues on the next page...

Example 4: Simple PWM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 11

Table 4. Simple PWM outputs (continued)

Step Operation Description Psuedocode

5 Enable outputs Enable the outputs for the channels in
TGC0/1

(A)TOMn_TGCn_OUTEN_CTRL =
0x000000AA;

The resultant waveform is PWM outputs of 1.22 kHz from a GTM clock of 80MHz as shown in Figure 6.

Figure 6. PWM waveform output

5.3 Code
/* Step 1 */
GTM_TOM_0.CH0_CM1.R = 0x00004000; // 16k counts @ 80MHz
GTM_TOM_0.CH0_CM0.R = 0x0000FFFF; // 64k counts @ 80MHz
GTM_TOM_0.CH1_CM1.R = 0x00004400;
GTM_TOM_0.CH1_CM0.R = 0x0000FFFF; // 64k counts @ 80MHz
GTM_TOM_0.CH2_CM1.R = 0x00004800;
GTM_TOM_0.CH2_CM0.R = 0x0000FFFF; // 64k counts @ 80MHz
GTM_TOM_0.CH3_CM1.R = 0x00004C00;
GTM_TOM_0.CH3_CM0.R = 0x0000FFFF; // 64k counts @ 80MHz

/* Step 2 */
GTM_TOM_0.CH0_CTRL.R = 0x00100800; // Ch0: cont mode, SL=1, RST_CCU0=1
GTM_TOM_0.CH1_CTRL.R = 0x00100800; // Ch1: cont mode, SL=1, RST_CCU0=1
GTM_TOM_0.CH2_CTRL.R = 0x00100800; // Ch2: cont mode, SL=1, RST_CCU0=1
GTM_TOM_0.CH3_CTRL.R = 0x00100800; // Ch3: cont mode, SL=1, RST_CCU0=1

//Enable TOM global Channel control units to output
/* Step 3 */
GTM_TOM_0.TGC0_OUTEN_CTRL.R = 0x000000AA;
GTM_TOM_0.TGC0_ENDIS_CTRL.R = 0x000000AA;
GTM_TOM_0.TGC0_OUTEN_STAT.R = 0x000000AA;
GTM_TOM_0.TGC0_ENDIS_STAT.R = 0x000000AA;

Example 4: Simple PWM

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

12 Freescale Semiconductor, Inc.

6 Example 5: Synchronizing the TOM and the ATOM
Submodules

6.1 Description
The GTM TOM and ATOM submodules have a synchronous update mechanism. The compare registers, CM0 and CM1,
have shadow register equivalents, SR0 and SR1. Synchronous updates of the PWM duty and/or period can be achieved by
loading the shadow registers with the next required value of CM0 and CM1 while the update mechanism is enabled. The
shadow register values are transferred to the compare registers at the start of the next period.

The TOM and ATOM Clock Source register can also be synchronously updated by writing a new value to the CLK_SRC
register.

The TGC0/1 Global Control register UPEN_CTRLn bit field controls the update mechanism. This bit field is modified by
writing 0b01 to disable updates or 0b10 to enable updates. Writing 0b00 or 0b11 has no effect. This bit field can be read to
find the status of the update mechanism: 0b00 means the channel is disabled and 0b11 means the mechanism is enabled.

6.2 Implementation
The following example sets up TOM0 channels 0–3 in continuous PWM mode running from the CMU_FXCLK[0] with high
(SL = 1) output level with channel 0 as the triggering master. It does not use any interrupts or time bases and all other setting
are default.

There are eight main steps that must be taken to generate these synchronised PWM outputs on the TOM module.
1. Configure channel 0 mode.
2. Configure channel 1, 2, and 3 modes.
3. Set up channel 0 period and duty, as this channel triggers the others.
4. Set up channel 1, 2, and 3 period and duty.
5. Enable the TOM outputs.
6. Force an update of the TOM registers.
7. Wait some time to observe the waveform on an oscilloscope.
8. Alter channel 1 period and duty synchronously.

Table 5. Synchronized PWM outputs

Step Operation Description Psuedocode

I Initial state Enable the GTM and clocks by completing
examples 1, 2 and 3

—

1 Configure CH0 mode Set channel up for cont mode, SL=1, Trigout
= 1

TOM0_CH0_CTRL = 0x01001800;

2 Configure CHn mode Set channels up for cont mode, SL=1,
RST_CCU0 = 1

TOM0_CHn_CTRL = 0x00101000;

3 Set up CH0 Enter the number of counts that the counter
will compare with for the period and duty,
including the shadow register values

TOM0_CH0_CM1 = TOM0_CH0_SR1 =
0x00000032; TOM0_CH0_CM0 =
TOM0_CH0_SR0 = 0x00000064;
TOM0_CH0_CN0 = 0x00000000;

Table continues on the next page...

Example 5: Synchronizing the TOM and the ATOM Submodules

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 13

Table 5. Synchronized PWM outputs (continued)

Step Operation Description Psuedocode

4 Set up CHn Enter the period and duty for all other
channels

TOM0_CHn_CM1 = TOM0_CHn_SR1 =
duty; TOM0_CHn_CM0 = TOM0_CHn_SR0
= period;

5 Enable outputs Set OUTEN for the channels used TOM0_TGC0_OUTEN_CTRL =
0x000000AA; TOM0_TGC0_ENDIS_CTRL
= 0x000000AA;
TOM0_TGC0_OUTEN_STAT =
0x000000AA; TOM0_TGC0_ENDIS_STAT
= 0x000000AA;

6 Force update Enable update of registers CM0, CM1, and
CLK_SRC from SR0, SR1, and
CLK_SRC_SR and generate a software
trigger

TOM0_TGC0_GLB_CTRL = 0x00AA0001;

7 Wait Leave some time so you can observe the
PWM signals

Delay function

8 Synchronously
update only CH1

Alter the PWM characteristics in the channel
shadow registers

TOM0_CH1_SR1 = duty; TOM0_CH1_SR0
= period;

The example below of a synchronous update of the period and duty is shown on CH1 of TOM0. On the ATOM submodule,
this update would come from the ARU word rather than a CPU access. The TOM is set up similarly to the set up shown in
Example 4: Simple PWM. The duty cycle and period are updated for CH1 by writing to the SR0/1 registers.

Figure 7. Synchronous Update of PWM Period and Duty

To enable the oscilloscope to capture the event where the PWM was changed as shown in Figure 7, the trigger was set to
CH2 on a pulse width >10µs.

6.3 Code
void Synchronous_PWM_Update(void)
{
 //**
 // Channel 0 is master that defines period of PWM

Example 5: Synchronizing the TOM and the ATOM Submodules

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

14 Freescale Semiconductor, Inc.

 // Channels 1 and 2 are synchronised to channel 0
 //**
 GTM_TOM_0.CH0_CTRL.R = 0x01001800; // Ch0: cont mode, SL=1, Trigout=1
 GTM_TOM_0.CH1_CTRL.R = 0x00101000; // Ch1: cont mode, SL=1, RST_CCU0=1
 GTM_TOM_0.CH2_CTRL.R = 0x00101000; // Ch2: cont mode, SL=1, RST_CCU0=1

 GTM_TOM_0.CH0_CM1.R = 0x00000032;
 GTM_TOM_0.CH0_SR1.R = 0x00000032;
 GTM_TOM_0.CH0_CM0.R = 0x00000064;
 GTM_TOM_0.CH0_SR0.R = 0x00000064;
 GTM_TOM_0.CH0_CN0.R = 0x00000000;

 GTM_TOM_0.CH1_CM1.R = 0x00000028;
 GTM_TOM_0.CH1_SR1.R = 0x00000028;
 GTM_TOM_0.CH1_CM0.R = 0x0000003C;
 GTM_TOM_0.CH1_SR0.R = 0x0000003C;

 GTM_TOM_0.CH2_CM1.R = 0x00000026;
 GTM_TOM_0.CH2_SR1.R = 0x00000026;
 GTM_TOM_0.CH2_CM0.R = 0x0000003E;
 GTM_TOM_0.CH2_SR0.R = 0x0000003E;

 //Enable TOM Global Channel control units to output
 GTM_TOM_0.TGC0_OUTEN_CTRL.R = 0x0000002A;
 GTM_TOM_0.TGC0_ENDIS_STAT.R = 0x0000002A;

 Delay(100);
 GTM_TOM_0.TGC0_GLB_CTRL.R = 0xAAAA0001;

 // Synchronous update of PWM characteristic on channel 1
 GTM_TOM_0.CH1_SR1.R = 0x00000002;
 GTM_TOM_0.CH1_SR0.R = 0x0000004C;
}

7 Example 6: Pulse Period Accumulate
The Pulse Period Accumulate (PPA) function provides Pulse Width Modulation and Period Measurement accumulated over
one or more pulses or periods. The maximum value of the accumulated pulse or period is limited to 24 bits by the TIM
submodule. Two different types of pulse width measurement are supported: either the high pulse width or the low pulse width
is measured. Two different types of period measurement are supported: the period measurement is updated either on the
rising edge of the waveform or the falling edge.

7.1 Description
This example uses the ATOM, ARU, and PSM submodules to generate a complex PWM waveform with variable period/duty
on ATOM0_CH0. This can be connected on the board to TIM0_CH0, which captures the data in TPWM mode and routes it
to the FIFO for a core to read and process. Alternatively, the captured data could be sent to the MCS for further processing—
for example, summing of a number of low time values or dividing the pulse and period values to calculate a duty value.

The PPA measurement is expressed in counts of the selected GTM timebase. The example uses TBU_TS0 as the timebase for
the measurement. The number of TBU counts that have been accumulated multiplied by the period of one system clock count
will give the total measurement expressed in seconds.

Example 6: Pulse Period Accumulate

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 15

7.2 Implementation
The PPA function is realized using the TIM PWM submodule PWM Measurement Mode (TPWM). In TPWM Measurement
Mode, the TIM channel measures the duty cycle and period of an incoming PWM signal and stores the pulse width in the
GPR0 register and the period in the GPR1 register which can be read by any destination submodule such as the MCS or the
PSM.

In this example, the data is read by the PSM. The selection of the measurement of the high or low pulse or the start of the
measurement of the period from the rising or falling edge is controlled by the Signal Level Control bit (DSL) in the TIM
channel control register (TIMx_CHn_CTRL). The selection of the period or duty is controlled by the PSM's F2A submodule
by the transfer mode (TMODE) in the F2A Channel Stream Configuration register F2Ax_CHn_STR_CFG.

Table 6. Setting for each PPA mode

Mode Result storage TIM CH DSL setting F2A CH TMODE setting

High Pulse GPR0 b0 b00

Low Pulse GPR0 b1 b00

Rising Edge GPR1 b0 b01

Falling Edge GPR1 b1 b01

High Pulse, Rising Edge GPR0 and GPR1 b0 b10

Low Pulse, Falling Edge GPR0 and GPR1 b1 b10

The following steps are required to perform the PPA function as described:

1. Configure the TIM channel in TPWM mode with the counter clocked from the TBU_TS0 and the GPR0/1 registers set
to use CNT as the source and the ARU enabled.

2. Configure the FIFO start and end address along with the mode and RAM lock required, flush the FIFO is necessary.
Enable the FIFO interrupt/DMA.

3. Configure the F2A to read from the TIM channel and which direction and words to read. Then enable the stream.
4. Generate the signal for the TIM channel to capture. In this example, the ATOM is used; it pulls its next value from

another FIFO stream in ring buffer mode.

Table 7. Steps to Perform PPA on the GTM

Step Operation Description

I Initial state Repeat examples 1, 2, and 3

1 Configure TIM Channel TPWM mode with the counter clocked from the TBU_TS0 and the
GPR0/1 registers set to use CNT as the source and the ARU
enabled.

2 Configure FIFO Start and end address defined along with the FIFO mode and RAM
lock enable/disable. Flush the FIFO. Enable the FIFO interrupts/
DMAs.

3 Configure F2A Read from the TIM channel and which direction and words to read.
Then enable the stream.

4 Generate input stimuli Configure a TOM/ATOM or signal generator to input a PWM for the
TIM.

Example 6: Pulse Period Accumulate

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

16 Freescale Semiconductor, Inc.

7.3 Code
#define FIFO_SIZE 32
#define TIM0_WRADDR0 0x001
#define F2A0_WRADDR0 0x051

int FIFO_values[33] = {0x00010000, 0x00000F00, 0x0000F000, 0x00000F00, 0x0000E000,
0x00000F00, 0x0000D000, 0x00000F00, 0x0000C000, 0x00000F00, 0x0000B000, 0x00000F00,
0x0000A000, 0x00000F00, 0x00009000, 0x00000F00, 0x00008000, 0x00000F00, 0x00007000,
0x00000F00, 0x00006000, 0x00000F00, 0x00005000, 0x00000F00, 0x00004000, 0x00000F00,
0x00003000, 0x00000F00, 0x00002000, 0x00000F00, 0x00001000, 0x00000F00, 0x00010000};

int TIM_results[32];

void PPA(void){

GTM_TIM_0.CH0_CTRL.R = 0x00000F21;
/* -- CLK_SEL = 0b00 => CMU_CLK0 selected
-- FLT_CTR_FE = 0 => Up/Down Counter
-- FLT_MODE_FE = 0 => Immediate edge propagation mode
-- FLT_CTR_RE = 0 => Up/Down Counter
-- FLT_MODE_RE = 0 => Immediate edge propagation mode
-- FLT_CNT_FRQ = 0b00 => FLT_CNT counts with CMU_CLK0
-- FLT_EN = 0 => Filter disabled
-- ISL = 0 => use DSL bit for selecting active signal level
-- DSL = 0 => Measurement starts with rising edge
-- CNTS_SEL = 0 => use TBU_TS0 as input to CNT
-- GPR1_SEL = 0b11 => 00 = use CNT as input
-- GPR0_SEL = 0b11 => 00 = use CNT as input
-- CICTRL = 0=> use signal TIM_IN(x) as input for channel x
-- ARU_EN = 1 => enabled
-- OSM = 0 (continous mode) ;
-- TIM_MODE = 0b000 => PWM Measurement Mode;
-- TIM_EN = 1 => enabled */
while(GTM_TIM_0.CH0_CTRL.R!=0x00000F21);

//config FIFO output channel
GTM_FIFO_0.CHANNEL[0].END_ADDR.R = 0x0000001F; // Start address = 0, size = 32
GTM_FIFO_0.CHANNEL[0].CTRL.R = 0x0000000D; // RAM write unlocked, FIFO flushed and Ring
Buffer Mode
GTM_FIFO_0.CHANNEL[0].IRQ_EN.R = 0x00000000; // Disable all the FIFO0 Ch0 Interrupts
/*************************/
// LOAD FIFO MEMORY
// preload input FIFO with ATOM duty/period values
/*************************/
for (i = 0; i < FIFO_SIZE; i++) {
 GTM_AFD_0.CH[0].BUF_ACC.R = FIFO_values[i];
}
GTM_FIFO_0.CHANNEL[0].CTRL.R = 0x00000001; // RAM write locked
GTM_F2A_0.CH_STR_CFG[0].R = 0x00060000; // Transport both words from FIFO to ARU

//config FIFO input channel
GTM_FIFO_0.CHANNEL[1].END_ADDR.R = 0x000021F; // Start address = 0x200, size = 32
GTM_FIFO_0.CHANNEL[1].CTRL.R = 0x00000004; // RAM write locked, FIFO flushed and Normal FIFO
Mode
GTM_FIFO_0.CHANNEL[1].IRQ_EN.R = 0x00000002; // Enable the FIFO0 Ch1 Full Interrupt
GTM_F2A_0.CH_ARU_RD_FIFO[1].R = TIM0_WRADDR0;
GTM_F2A_0.CH_STR_CFG[1].R = 0x00020000; // Transport both words from ARU to FIFO

GTM_F2A_0.ENABLE.R = 0x0000000A; // Enable streams 0 and 1;

//config ATOM
GTM_ATOM_0.CH0_RDADDR.R = ((F2A0_WRADDR0<<16)+(F2A0_WRADDR0));
GTM_ATOM_0.CH0_CTRL.R = 0x0800000A; // SOMP, TB1_SEL=0, ARU_EN=1, SL=0, WR_REQ=0
GTM_ATOM_0.AGC_OUTEN_CTRL.R = 0x00000002;
GTM_ATOM_0.AGC_ENDIS_CTRL.R = 0x00000002;
while (GTM_ATOM_0.AGC_ENDIS_STAT.R != 0x00000000);

Example 6: Pulse Period Accumulate

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 17

GTM_ATOM_0.AGC_GLB_CTRL.R = 0x00020001; // setting of bit 0
}

NOTE
Ensure that the ATOM and TIM port pins are configured for a high drive strength to get
accurate results.

Below is an example of a ISR that could test the values received against those that were transmitted by the ATOM.

void IRQ_GTM_PSM0_CH1 (void){

int i, error = 0;

for (i = 0; i < 32; i++) {
 TIM_results[i] = GTM_AFD_0.CH[0].BUF_ACC.R;
 if (TIM_results[i] != FIFO_values[i+1]){
 error = (error|1<<i);
 }
}

GTM_FIFO_0.CHANNEL[1].IRQ_NOTIFY.R = 0x0000000F; // Clear All IRQs
GTM_FIFO_0.CHANNEL[1].CTRL.R = 0x00000004; // Flush FIFO

}

8 Example 7: Writing, Compiling, and Programming MCS
Code

8.1 Description
The HighTec™ assembler tool generates machine code for the Multi Channel Sequencer (MCS) submodule. The assembler
takes a user-created assembler source file (.mcs) for a specific instantiation of MCS and creates the executable and linkable
format file (.elf) that is used to initialize the memory of the MCS instantiation in the chip environment. The HighTec tool
also requires an include file (.inc) that includes predefined architecture specific definitions (instruction definitions, for
example), a list of predefined assembler symbols and the ARU write address labels (which should not be modified), and a
linker description file (.lin) where the memory description of the GTM/MCS is defined.

Example 7: Writing, Compiling, and Programming MCS Code

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

18 Freescale Semiconductor, Inc.

.mcs

.inc

.o .lin

.elf

mcs-ld

mcs-as

.map

mcs-objcopy

.bin

Figure 8. MCS code process flow chart

NOTE
The HighTec MCS assembler generates an ELF file that is big endian, whereas the
MPC57xx chip is little endian.

NOTE
Depending on the C compiler used for the MPC57xx chip and the project environment,
you may wish to transform the .elf file with the GNU utility mcs-objcopy in to a raw
binary file (.bin) for direct import in to the chip. This example does this and gives an
example of one possible way in which this can be incorporated it in to a Green Hills™

project.

8.2 Implementation
Follow these nine steps to generate MCS code and data for each MCS instantiation. That is, if you are using all four MCS
modules, these steps must be repeated for each MCS; however, all eight MCS channels can be configured and coded inside
one .mcs program.

1. Locate your latest HighTec installation directory (v4.6.1.2 or above), for example, C:\HIGHTEC\toolchains\ppc
\v4.6.2.0

2. Write the MCS assembly code program. An example can be found in the software package that accompanies this
application note, inside the QOM example folder (for example, MCS0_QOM.mcs). The GTM-IP specification
described the assembler instruction operations.

3. Copy the *.mcs file, *.inc file, and *.lin in to the directory.
4. Type cd <HIGHTEC_MCS_DIR>\bin in the Windows command shell, where <HIGHTEC_MCS_DIR> refers the

directory containing the installation located above in step 1.
5. Type mcs-as -o mcs0_qom.o MCS0_QOM.mcs in the Windows command shell to generate the object file mcs0_qom.o

or your own example.
6. Check the directory to ensure mcs0_qom.o was generated.

Example 7: Writing, Compiling, and Programming MCS Code

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 19

7. Type mcs-ld -o mcs0_qom.elf -dT mcs.lin --extmap=a -Map=mcs.map mcs0_qom.o in the Windows command shell to
generate the elf file mcs0_qom.elf or your own example.

NOTE
If you want a binary instead of an ELF file, use mcs-objcopy -O binary
mcs0_qom.elf mcs0_qom.bin to convert the file format.

8. Copy the resultant file (.elf or .bin) from the HighTec directory into your project directory and include the file in your
project environment.

9. Add software to copy the big endian array in to the little endian MCS memory.

Table 8. MCS assembler process

Step Operation Description

1 Download and install HighTec Locate your latest HighTec installation directory (v4.6.1.2 or above)

2 Write MCS algorithm Write the MCS assembly code program

3 Move files Copy the *.mcs file, *.inc file, and *.lin in to the directory

4 Open command prompt in HighTec
directory

Type cd <HIGHTEC_MCS_DIR>\bin in the windows command shell

5 Create object code Type mcs-as -o mcs0_qom.o MCS0_QOM.mcs in the Windows
command shell to generate the object file mcs0_qom.o

6 Check for *.o generation Check the directory to ensure mcs0_qom.o was generated

7 Generate *.elf file Type mcs-ld -o mcs0_qom.elf -dT mcs.lin --extmap=a -
Map=mcs.map mcs0_qom.o in the windows command shell to
generate the elf file mcs0_qom.elf

8 Move files from HighTec to project Copy the Executable and Linkable Format file (.elf) from the HighTec
directory in to your project directory and include the .elf file in your
project environment.

9 Write device code to copy the MCS code
devices RAM

Add software to copy the big endian MCS assembly array in to the
MCS's local RAM memory

8.3 Code
Write the MCS assembly code program. The code below is a HighTec assembly code example.

Prepare assembler for MCS memory

.arch mcs
.set memid ,0
.set memsize ,0x1800

Define some constants

.set EN_H_MSK ,0x000001
.set EN_L_MSK ,0xFFFFFE
.set IRQ_H_MSK ,0x000002
.set IRQ_L_MSK ,0xFFFFFD

Initialize reset vectors of MCS channels 0 and 1
--
.org 0x0
jmp tsk0_init
jmp tsk1_init
jmp tsk2_init
jmp tsk3_init

Example 7: Writing, Compiling, and Programming MCS Code

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

20 Freescale Semiconductor, Inc.

jmp tsk4_init
jmp tsk5_init
jmp tsk6_init
jmp tsk7_init

Allocate and initialize memory variables

.org 0x20
mem_var_a: .lit24 17 # define memory variable mem_var_a with value of 17

Allocate stack frames (each task has 16 memory locations)
--
.org 0x20
tsk0_stack:.lit24 0
.org 0x60
tsk1_stack:.lit24 0
.org 0xA0
tsk2_stack:.lit24 0
.org 0x100
tsk3_stack:.lit24 0
.org 0x140
tsk4_stack:.lit24 0
.org 0x180
tsk5_stack:.lit24 0
.org 0x1C0
tsk6_stack:.lit24 0
.org 0x200
tsk7_stack:.lit24 0

Program entry for MCS-channel 0

tsk0_init:
movl R7, tsk0_stack # initialize stack pointer
mrd R4, tsk0_config # load config value to register R0
btl r4, QOM_REF_MODE_RAM
jbc STA, Z, tsk0_ref_mode_ram
…

tsk0_ref_mode_ram:
mrd r3, tsk0_ref # ram value as reference
 jmp tsk0_reference_created
…

Program entry for MCS-channel 1

tsk1_init:
movl R7, tsk1_stack # initialize stack pointer
mrd R4, tsk1_config # load config value to register R0
btl r4, QOM_REF_MODE_RAM
jbc STA, Z, tsk1_ref_mode_ram
…etc.

Add software in to the CPU program to copy the assembly code n to the MCS memory

#define MCS_RAM_ENTRIES 1024

#define SWAPW(w) \
 (((w & 0xff) << 24) | ((w & 0xff00) << 8) \
 | ((w & 0xff0000) >> 8) | ((w & 0xff000000) >> 24)) /* change endianness */

extern int __MCS0_ADDR; /* Label of location of the raw data set in the linker */

// load raw bin data in to MCS0 RAM = 0xFFD38000
dest = (int)&MCS0_MEM; /* CPU view of the address of the MCS memory space */
src = (int)&__MCS0_ADDR; /* Label of location of the raw data set in the linker */
memcpy_swap_word(dest, src, MCS_RAM_ENTRIES);

void memcpy_swap_word(unsigned int * dst, unsigned int * src, signed int size)
{

Example 7: Writing, Compiling, and Programming MCS Code

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 21

 while (size-- > 0)
 {
 *dst++ = SWAPW(*src);
 src++;
 }
}

NOTE
The syntax difference between the Bosch™ CASPR MCS assembler and the HighTec
assembler are as follows:

• Comments start with ; (caspr) vs # (HighTec)
• Hexadecimal prefixed with $ (caspr) vs 0x (HighTec)
• Operands separated with a blank (caspr) vs , (HighTec)
• Constants defines with .define (caspr) vs .set (HighTec)
• 24-bit literal values defined with lit24 (caspr) vs .lit24 (HighTec)

9 Example 8: Queued Output Match (QOM)
Previous Freescale timer libraries have often contained a Queued Output Match (QOM) function that generates complex
output pulse trains without CPU intervention using a sequence of output matches.

An output match occurs when a user-defined value is matched by the value of an internal timebase. When an output match
occurs, a user-specified pin state is driven on the output pin.

The GTM QOM function, like the eTPU QOM function described in Freescale application note AN2857, generates multiple
output matches using a table of offset times. These offset times, along with the corresponding pin states, are stored in Data
Memory. The table size is user-programmable. Various modes of queue operation are supported.

9.1 Description
The following example contains Multi-Channel Sequencer (MCS) code which, together with the ATOM channel, provides
the QOM functionality.

Entries in the QOM queue (event table) are relative match offsets, not absolute match times. The next match time in a
sequence is calculated by adding the next offset in the table to the time of the last match. If the match is the first match in a
sequence, the first offset value in the table is added to a selectable reference time.

The reference from which the first match in a sequence is scheduled can be the immediate value of the selected timebase, the
time of the last match of a previous sequence, or a reference contained in Data Memory. Using the time of the last match of a
previous sequence as a reference allows a series of sequences to be chained together. Using a reference from Data Memory
allows a sequence of output matches to be referenced to a value supplied by another GTM channel.

Pin state (high or low) when a match occurs is programmable. Pin state is determined by the value of the LSB in each table
entry.

The function can operate in three modes: Single-shot mode, Loop mode, and Continuous mode. In Single-shot mode, a
sequence of match outputs is generated once. In Loop mode, a sequence of match outputs is generated a specified number of
times (1 to 256). In Continuous mode, the entire sequence repeats until the channel is disabled.

In Single-shot and Loop modes, the event time of the last match in the table is written back into Data Memory, which can be
accessed by the CPU. During initialization, the pin can be configured to be high, low, or no change. Matches are scheduled
using the GTM's ATOM units. Each match offset can have a maximum value of 0x40_0000 counts. This allows the second
future match to be up to 0x80_0000 counts in the future. If more than two table offset values are programmed for the same
pin state, the duration of an output event can effectively be extended beyond the normal 0x80_0000 count limit.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

22 Freescale Semiconductor, Inc.

Figure 9 below shows the main components of the QOM function and how these are constructed. The system consists of a
number of inter-linked functions that are realized using submodules of the GTM configured to achieve the particular task. An
overview of a single instance of the components of the system is shown in the following figure.

Figure 9. QOM implementation overview

Table 9. QOM functional stages

Step Operation Description

1 Generate input edge Generate a falling edge on TOM0

2 Capture edge event Wait for a falling edge on TIM0

3 Route event to MCS Send edge event to MCS0

41 Process data Calculate the next command for the ATOM submodule from
the match table in RAM

5 Send command to ATOM Send that data out for the ATOM

6 Read in waveform through
TIM

Read the ATOM channel back in to the GTM through the TIM

7 Read in edge times Move the edge times in to the ARU

8 Send the out of GTM via FIFO Place the values in FIFO for CPU to test

1. Steps 4 and 5 are repeated 6 times in this example

Step 1: TIM channel 0 is used in Timer Input Event Mode (TIEM) One-shot mode to capture the TBU_TS0 values when the
TOM0 channel 0 signal goes low. A physical external wire connection is needed on the evaluation board between the TOM
output pin and the TIM input pin.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 23

Step 2 and 3: The Advanced Routing Unit (ARU) sends the TBU_TS0 value captured by the TIM to the Multi Channel
Sequencer (MCS) channel. The MCS channel is running a rudimentary basic Queued Output Match(QOM) function (more
details later). After the MCS channel is enabled, it waits for the ARU to provide the capture value from TIM channel 0.

Step 4 and 5: When this value becomes available to the MCS channel, the QOM function calculates a match value, relative
to the TIM capture value, based on a table of offsets and uses the ARU to write the match value and future pin state to the
ARU-connected Timer Output Module (ATOM channel).

When this match and subsequent matches occur, the MCS channel waits for a match value to be sent via the ARU from the
ATOM channel. The ATOM channel has been configured in Signal Output Mode Compare (SOMC) mode.

Step 6, 7 and 8: A wired connection is needed between the ATOM QOM pin and the TIM pin reading it back in. This TIM
channel is running in TIEM mode and copies the captured values and edge count via the AFD submodule to a FIFO.

Values can be read from the FIFO by the CPU. Because the QOM matches were scheduled relative to the TIM edge time
(TBU_TS0 value), it is possible to check that the values read from the FIFO are correct by software.

The described systems consists of four input trigger channels (TIM0 channels 0–3), four ATOM channels (ATOM0_channel
0–3), four MCS channels, four TIM channels for capturing the edge times and counts (TIM0_channel 4–7), four AFD
streams, and four FIFOs. For simplicity, only the first instance of each type is described. The remaining channels are
operating in a similar way, only the time of the trigger event differs between them.

9.1.1 ARU function description
The ARU’s role is to transfer data from a source submodule to destination submodules. The destination submodule controls
the data stream configuration inside the ARU. That is, the destination submodule defines where its data will be sourced from;
the ARU just enables that particular data stream, as shown in ARU function description. The routing is done in a
deterministic manner with a basic round-robin scheduling scheme of connected channels that always receive 53 bits of data
(two 24 bits of data and 5 control bits) through the ARU.

Data is only transferred once as as soon as the ARU reads the data from the source for delivery to the destination that data is
marked as invalid at the source; in other words, the ARU access is a destructive read. This also means that if the source does
not supply new data, the destination will not receive any further information. There is a worst case round-trip time associated
with the data transfer.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

24 Freescale Semiconductor, Inc.

Figure 10. GTM routing unit

The specific round-trip delay for a given system depends upon the number of destinations connected to the ARU.The
maximum round-trip time can be found in the GTM's Appendix B document (see GTM References).

Each data source has a fixed and unique source address. These are also defined in Appendix B. To configure a transfer to a
specific destination, the source address of the data must be written to the destination’s configuration registers.

The ARU supports a blocking mechanism to synchronize submodules to the routed data streams. This blocking mechanism
means that it is possible for a channel to become inactive as long as no new input data is available for the channel. This
means that there is no interrupt to inform the destination that new data is available at the source. The destination will be given
new data by the ARU from the source and will continue to run without interrupting the CPU. In summary, if a data
destination requests data from a data source over the ARU but the data source does not have any data yet, it has to wait until
the data source provides new data.

This concept is used in the example system to enable TIM channel 0 to provide a reference for the MCS channel (step 3 from
figure 10). The MCS channel also waits until the match event has occurred on the ATOM channel before deriving the next
match time and writing it to the ATOM hardware (step 5 from figure 10) and the TIM channel 4 provides the captured
waveform to the ARU for the PSM system to record (step 7 from figure 10)

Refer to the GTM Architecture and Advanced Routing Unit (ARU) chapters of the Generic Timer Module (GTM) Reference
Manual for more information on the ARU operation.

9.1.2 TIM function description
The Timer Input Module (TIM) is responsible for the input signal capture and characterization in the GTM. The TIM
channels have a dedicated filter mechanism with different filter strategies and edge filter thresholds for each channel. The
TIM has shadow registers to hold measurement data while a new input signal is processed. The submodule can be controlled
by the CPU or the ARU with five different, configurable, edge characterization modes. The TIM channels can work totally
independently of each other in different operation modes.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 25

In this example, the TIM channels are all operating in Timer Input Event Mode (TIEM). In TIEM, edges at the TIM input
channel can be characterized with either two different time stamps or a time stamp and an edge counter. It is configurable
whether both edges, only rising, or only falling edges should be considered as an input event. Measurement starts with the
first relevant edge. This example captures the falling edge immediately, with filters disabled, and captures the Time Base
Unit Time Stamp 0 (TBU_TS0) value at that event.

9.1.3 MCS function description
The MCS code along with the ATOM channel and ARU realize the bulk of the QOM functionality as described earlier.

A jump table based at location 0 defines program entry points for each of the MCS channels used in the example system,
based on the reset value of the channel's program counter.

The MCS chapter of the Generic Timer Module (GTM) Reference Manual has further details on the assembler instructions.

9.1.4 ATOM function description
The ATOM submodule is used to output the signal calculated by the MCS submodule based on the TIM input edge.

9.1.5 F2A function description
The FIFO functionality in the QOM example is not essential to the example's operation. It is just a way for the timestamp
values of the waveform output from the ATOM to be recorded to be read by the user, or by the CPU, to test that the output
waveform was as expected rather than by testing by visual inspection of the output waveform on an oscilloscope.

The F2A is a part of the GTM parameter storage module (PSM) mechanism. The PSM is used to transfer data to and from the
GTM in a buffered way. This decreases the CPU's interrupt load because the data is stored inside the PSM. Interrupts are
only generated when programmable thresholds are reached. The PSM has an ARU interface and can act as source and
destination at the ARU. The PSM can be organized as a FIFO where the data is transferred in first-in-first-out order.

9.2 Implementation

Figure 11. Queued Output Match

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

26 Freescale Semiconductor, Inc.

A table of match offset values and pin states resides in the RAM of the GTM. These will be used by the MCS and then
ATOM to generate the output waveform.

The following table shows the values stored in MCS RAM to generate the above QOM.

Table 10. TBU_TS0 match table

RAM location Offset time value RAM content Description

1 0x100 0x200 (0x100<<1+pin_state) After 256 timer counts output
goes low

2 0x200 0x401 (0x200<<1+pin_state) After 512 timer counts output
goes high

3 0x300 0x600 (0x300<<1+pin_state) After 768 timer counts output
goes low

4 0x400 0x801 (0x400<<1+pin_state) After 1024 timer counts output
goes high

5 0x500 0xA00 (0x500<<1+pin_state) After 1280 timer counts output
goes low

6 0x600 0xC01 (0x600<<1+pin_state) After 1536 timer counts output
goes high

Matches are on a single timebase only hard-coded to be TBU_TS0 (could be configured to be selectable via configuration
parameter).

The matches can begin :

• Immediately
• Because another channel provided a trigger value via the ARU, as shown in Figure 11
• Relative to some timer counter value (reference stored in RAM)

The MCS works its way through the table scheduling the ATOM output events. The whole process can be repeated:

• Once (Single-shot mode), as shown in Figure 11
• A number of times (Loop mode)
• Continuously (forever; until the MCS channel is disabled by the host or reset).

9.2.1 TIM trigger capture implementation
The steps to configure the TIM channel 0 (TIM0) in Timer Input Event Mode (TIEM) for use in this QOM functions are
shown in the following table. The same steps can be used for each channel used in the example depending on how many
channels you wish to use.

The TIM channel must be set up by the CPU to operate in the required manner. When a falling edge occurs on the input pin,
the 24-bit TBU_TS0 value is copied to TIM0_CH0_GPR0. The TIM channel is clocked from the CMU_CLK0 clock source
with no filtering applied to the input signal. The ARU can then transfer these TBU_TS0 values to MCS channel when an
ARU read instruction is issued by the MCS channel; therefore, the ARU connection must be enabled. Note that the ARU
source address is configured in the MCS assembler code (more on this later).

NOTE
Although in this example the input filters have been disabled, typical applications should
enable the input filter to eliminate noise on the input signal.

The resultant behavior of this configuration is that when a falling edge occurs on the input pin, the TBU_TS0 value is copied
to TIM0_CHn_GPR0 to be read by the ARU.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 27

Table 11. TIM0 channel configuration settings

Bit Bit number Value Description

TOCTRL [31:30] 0 Timeout feature disabled

EGPR1_SEL 29 0 —

EGPR0_SEL 28 0 —

FR_ECNT_OFL 27 0 Overflow will be signaled on
ECNT bit width = 8

CLK_SEL [26:24] 0b00 CMU_CLK0 selected

FLT_CTR_FE 23 0 Up/down counter

FLT_MODE_FE 22 0 Immediate edge propagation
mode

FLT_CTR_RE 21 0 Up/down counter

FLT_MODE_RE 20 0 Immediate edge propagation
mode

EXT_CAP_EN 19 0 External capture disabled

FLT_CNT_FRQ [18:17] 0b00 FLT_CNT counts with
CMU_CLK0

FLT_EN 16 0 Filter disabled

ECNT_RESET 15 0 ECNT counter operating in
wrap around mode

ISL 14 1 Do not use DSL bit for
selecting active signal level

DSL 13 0 Measurement starts with
falling edge (low-level
measurement)

CNTS_SEL 12 0 Use CNT register as input

GPR1_SEL [11:10] 0b11 Use CNT as input

GPR0_SEL [9:8] 0b00 Use TBU_TS0 as input

CICTRL 6 0 Use signal TIM_IN(x) as input
for channel x

ARU_EN 5 1 Enabled

OSM 4 0 Continuous Operation

TIM_MODE [3:1] 0b010 Input Event mode

TIM_EN 0 1 Enabled

Below are the steps required to set up TIM0 channels 0 and 4, including the CMU and TBU clock enabling.

Table 12. TIM Configuration

Step Operation Description Psuedocode

1 Enable CMU_CLK0 Write 0b10 to the CLK0 bit field
and disable all others by writing
0b01

CMU_CLK_EN = 0x00555556;

2 Enable the TBU_TSn channels Write 0b10 to CH0 and CH1 bit
fields and disable CH2 by 0b01

TBU_CHEN = 0x0000001A;

Table continues on the next page...

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

28 Freescale Semiconductor, Inc.

Table 12. TIM Configuration (continued)

Step Operation Description Psuedocode

3 Configure the TIM channels Define and set the require TIM
channel configuration by writing
the configuration to the channel
control register

TIM0_CHn_CTRL = 0x00004c25;

9.2.2 MCS function implementation
The flow chart in Figure 12 shows the nine fundamental functions of the MCS software in this QOM example.

Create the ACB
command to be read

by the ATOM

Check to see if
loop is complete

Decode required
output value for

ATOM

Initialize
Stack Pointer

Load Configuration
Word

Jump to Task

Load Loop Count,
read match values

and number of
matches

Disable the task

Read the Mode,
Reference Value

and then jump to the
appropriate routine

Yes

No

Figure 12. QOM MCS assembly code flow

Table 13. QOM MCS functional steps

Step Operation Description Code Reference

1 Jump to task Move PC to start of code jmp tskn_init

2 Initialize stack pointer Tell the MCS where the
configuration data is located

movl R7 tskn_stack

Table continues on the next page...

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 29

Table 13. QOM MCS functional steps (continued)

Step Operation Description Code Reference

3 Load configuration word Read the configuration word in to
a general use register

mrd R4 tskn_config

4 Read mode data from word Check which bit is set in the
tskn_config word

btl R4 MODE

5 Load loop and match data Find out how many loops are left
and what the match data will be
this time

tskn_reference_created

6 Define the required action For that loop/match value should
the ATOM be instucted to toggle?

tskn-inner_loop

7 Write CM0 and ACB to the ARU Provide the ARU data stream with
the calculated ATOM actions data

tskn_derive_new_match_value_1

8 Has all data been sent Has the QOM sequence
completed

jbc STA Z tskn_Outer_loop

9 Disable task Stop further actions requests from
TIM

andl STA EN_L_MSK

Configuration word: Each task has its own software configuration word stored as data in the MCS RAM. Task0 has a
software configuration parameter called tsk0_config. The user selects how the task will behave by setting bits in the
configuration word. In the configuration parameter, only one the following reference mode selection bits should be set:

• Bit 0 selects RAM reference mode if set
• Bit 1 selects Immediate reference mode if set
• Bit 2 selects Trigger reference mode if set

Bit 4 of the configuration parameter tsk0_config selects continuous mode if set; otherwise, the task will be in Loop mode if
bit 4 is clear. If Loop mode is chosen, then the parameter tsk0_loop_count is used to determine how many loops are executed.

Match count parameter: The match count parameter is called tsk0_n_matches. It determines how many match events are in
the table of events.

RAM reference parameter: The RAM reference parameter is called tsk0_ref. It is used only in RAM reference mode.

Match table: Match events are defined by parameters tsk0_match0…tsk0_matchN where N = tsk0_n_matches – 1.

Each tsk_matchx value equals (TBU_TS0 offset count at which the event will occur) × 2 + pin state when the match happens.

For example, tsk0_match0: lit24 0x201 means that after 0x100 counts (from a reference time), drive the output pin high as
described previously in the TBU_TS0 Match table.

First match event: Depending upon the reference mode which has been chosen the first match time is calculated.

• If the reference mode is RAM reference mode, then the value stored in tsk0_ref is used.
• If immediate mode is chosen, then TBU_TS0 is read and that value is used as reference.
• If trigger mode is chosen, then an ARU read is performed. The MCS waits until the ARU receives data from TIM0

channel 0, TIM0_WRADDR0. In this example, this occurs when the first falling edge happens on that TIM channel. The
ARU copies across the captured value of TBU_TS0 when the falling edge happened.

A match value is calculated relative to the previously derived reference value, then an ARU write command is issued. This
copies the match value into the CM0 register on ATOM0 channel 0 (via the ARU) along with the ACB value.

• ACB42 are the upper 3 bits in the ARU Control bits and are transferred to the ATOM channel along with the match
value on an ARU write

• The ACB42 is defined as 8, which means compare CCU0 only on TBU_TS0. Depending upon the least significant bit
of tsk_match0, 1 or 2 is added to ACB42 giving the full 5 bit ACB value for the ATOM module

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

30 Freescale Semiconductor, Inc.

• ACB = 0x9 (8+1) means the ATOM pin will be driven low on a match event, compare CCU0 only on TBU_TS0
• ACB = 0xA (8+2) means the ATOM pin will be driven high on a match event, compare CCU0 only on TBU_TS0

An ARU read is now performed. This effectively stalls the MCS channel until the previously scheduled match has occurred
and the match value is copied via the ARU to the MCS channel.

Subsequent matches are scheduled relative to the match value read by the ARU from the ATOM channel.

A loop counter is used to control when the process stops (in Loop mode only; in Continuous mode the MCS channel will
continue scheduling matches until the channel is disabled or reset).

A pointer is controlled so the next tsk0_matchx value is read. In Loop and Continuous modes, this must be reset to point to
tsk0_match0 at the beginning of each loop.

9.2.3 ATOM function implementation
The ARU source address must be written into the ATOM channel’s Read Address register. In the case of ATOM0 channel 0
in this example, the read address register is populated with the ARU address corresponding to the MCS channel responsible
for generating the ATOM channel’s match values (MCS0 channel 0).

ATOM channel 0 and MCS channel 0 communicate via the ARU address MCS0_WRADDR0.

For this QOM function, the ATOM channel is configured in Signal Output Mode Compare (SOMC) mode with the ARU
enabled. ARU Blocking mode is enabled. This means that after updating CM0 and CM1 via the ARU, no new data is read
from the ARU until a compare match event has occurred and SR0 and/or SR1 are read.

The output enable and enable bit for the channel are set in ATOM0_AGC_OUTEN_CTRL and
ATOM0_AGC_ENDIS_CTRL.

These bits are copied to ATOM0_AGC_OUTEN_STAT and ATOM0_AGC_ENDIS_STAT by issuing a host trigger
achieved by setting the HOST_TRIGGER bit (bit 0) in the ATOM0_AGC_GLB_CTRL register.

Table 14. ATOM configuration

Step Operation Description Psuedocode

1 Set up the channel Define appropriate triggers,
modes, and clock sources for the
function by writing to the ATOM
Channel Control register

ATOM0_CH0_CTRL =
0x08000809;

2 Enable the channels to output on
the next trigger update

Write 0b10 to each channel's bit
field in the AGC_OUTEN_CTRL
register

ATOM0_AGC_OUTEN_CTRL =
0x0000AAAA;

3 Enable the channel update
mechanism

Write 0b10 to each channel's bit
field in the AGC_ENDIS_CTRL
register

ATOM0_AGC_ENDIS_CTRL =
0x0000AAAA;

4 Trigger an update of the channels Write 1 to the HOST_TRIG bit ATOM0_AGC_GLB_CTRL =
0xAAAA0001;

The Generic Time Module (GTM) Reference Manual contains a detailed explanation of how SOMC mode works. Note that
the MCS code configures the ACB bits so that only CCU0 and TBU_TS0 are used. This was done to keep the example
system relatively simple and easier to understand.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 31

9.2.4 F2A function implementation
In this case, the source address for the ARU read is written to the F2A register interface. This is the ARU address of GPR0/1
registers for TIM0 channel 4.

Stream 0 is enabled and configured to deal with data from TIM0 channel 4.

The data transfer direction is being set to “Transport from ARU to FIFO” and transfer mode is being set to “Transfer both
words from/to FIFO.” This means that both the count and match value from the TIM channel will be transferred to the FIFO
via the ARU.

The CPU can read out the FIFO by accessing the AFD register for that particular FIFO channel.

9.3 Code

9.3.1 TIM trigger capture code
The following code is the I/O processor code required to set up TIM0_CH0 and TIM0_CH4, including the associated CMU
and TBU clock enable.

GTM_CMU.CLK_EN.R = 0x00555556; // only enable CMU_CLK0
while (GTM_CMU.CLK_EN.R != 0x00000003); // confirm only CMU_CLK0 is on

GTM_TBU.CHEN.R = 0x0000002A; // Enable all TBU channels
while (GTM_TBU.CHEN.R != 0x0000003F); //confirm all are enabled

/* TIM Trigger Capture */
GTM_TIM_0.CH0_CTRL.R = 0x00004c25; //configure TIM0_CH0
while(GTM_TIM_0.CH0_CTRL.R!=0x00004c25); //confirm the configuration is effective

/* TIM Output Capture */
GTM_TIM_0.CH4_CTRL.R = 0x00004c25; //configure TIM0_CH4
while(GTM_TIM_0.CH4_CTRL.R!=0x00004c25); //confirm the configuration is effective

9.3.2 MCS code
In the example system, all eight MCS channels have been configured to do the same thing. Task 0 (the task assigned to
MCS0 channel 0) is discussed here but can be read for any of the other channels used.

The MCS assembly code below:

.org $0
jmp tsk0_init
jmp tsk1_init
jmp tsk2_init
jmp tsk3_init
jmp tsk4_init
jmp tsk5_init
jmp tsk6_init
jmp tsk7_init

compiles into machine code that looks like the following:

0xe0000380 , /* JMP 0x0380 */
0xe000040c , /* JMP 0x040C */
0xe0000498 , /* JMP 0x0498 */
0xe0000524 , /* JMP 0x0524 */
0xe00005b0 , /* JMP 0x05B0 */

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

32 Freescale Semiconductor, Inc.

0xe000063c , /* JMP 0x063C */
0xe00006c8 , /* JMP 0x06C8 */
0xe0000754 , /* JMP 0x0754 */

The MCS code below sets up the data for the MCS to use:

tsk0_config: .lit24 18#= QOM_REF_MODE_IMMED + QOM_LOOP_MODE_CONTINUOUS
tsk0_loop_count: .lit24 4 #
tsk0_n_matches: .lit24 6 # number of events
tsk0_ref: .lit24 0x300
tsk0_match0: .lit24 0x200 # match_value * 2 + pin_state
tsk0_match1: .lit24 0x401
tsk0_match2: .lit24 0x600
tsk0_match3: .lit24 0x801
tsk0_match4: .lit24 0xA00
tsk0_match5: .lit24 0xC01

and compiles into data that looks like this:

0x00000012 , /* NOP */
0x00000004 , /* NOP */
0x00000006 , /* NOP */
0x00000300 , /* NOP */
0x00000200 , /* NOP */
0x00000401 , /* NOP */
0x00000600 , /* NOP */
0x00000801 , /* NOP */
0x00000a00 , /* NOP */
0x00000c01 , /* NOP */

at the address specified by the programmer by org $20 tsk0_stack:lit24 0

Below is the remainder of the MCS assembly code described in MCS function implementation.

tsk0_init:

movl R7,tsk0_stack # initialize stack pointer

mrd R4, tsk0_config # load config value to register R0

btl r4, QOM_REF_MODE_RAM
jbc STA, Z, tsk0_ref_mode_ram

btl r4, QOM_REF_MODE_IMMED
jbc STA, Z, tsk0_immediate_mode

btl r4, QOM_REF_MODE_TRIG
jbc STA, Z, tsk0_ref_mode_trig

tsk0_immediate_mode:
 mov r3, TBU_TS0 # capture current TBU_TS0 value
 jmp tsk0_reference_created

tsk0_ref_mode_ram:
 mrd r3, tsk0_ref # ram value as reference
 jmp tsk0_reference_created

tsk0_ref_mode_trig:
 ard r3, ZERO, TIM0_WRADDR0 # read tim0 ch0 capture value from ARU

tsk0_reference_created:
 mrd r1, tsk0_loop_count

tsk0_outer_loop:
 movl R5, tsk0_match0 # load address of match values to register R5
 mrd R6, tsk0_n_matches # load number of matches to register R6

tsk0_inner_loop:
 mrdi r0, r5 # match offset + pin state to r0

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 33

 shr R0, 1 # shift right once to test LS bit
 # r0 now has offset value
 jbc STA, 4, tsk0_drive_zero_1
 movl r2, (ACB42 + 1) # configure acb to drive low on match
 jmp tsk0_derive_new_match_value_1

tsk0_drive_zero_1:
 movl r2, (ACB42 + 2) # configure acb to drive high on match

tsk0_derive_new_match_value_1:
 add R0, R3 # derive new match value
 mov acb, r2 # acb42 to r2
 awr r0, r1, MCS0_POOL0 # write CM0 &ACB to ARU#
 # NB r1 value is not used by the hardware
 # NB the third operand is related to a value
 # populated in ATOMx_CHy_RDADDR
 # third operand = valueof(ATOMx_CHy_RDADDR) - 0x77
 ard r3, ZERO, ATOM0_WRADDR0 # wait and then read sr0 & ACB from ARU
 addl R5, 4 # increment pointer
 subl r6, 1
 jbc STA, Z, tsk0_inner_loop # are we done innerloop?

 btl r4, QOM_LOOP_MODE_CONTINUOUS # in continuous mode?
 jbc STA, Z, tsk0_outer_loop

 subl r1, 1
 jbc STA, Z, tsk0_outer_loop # are we done - outerloop?

 orl STA, IRQ_H_MSK # raise IRQ flag
 andl STA, EN_L_MSK # disable task

Before this code will run in the GTM application the MCS channel must be enabled by the CPU by writing to the enable bit
in the MCS Channel Control register.

MCS0_CH0_CTRL = 0x00000001; // enable the MCS channel

NOTE
The GTM specification lists two sets of MCS registers: internal and configuration
registers. These two register sets are equivalent. The MCS configuration registers are the
CPU view of the MCS internal registers. They act in the same way with two exceptions.
When the CPU is accessing MCS[i]_CH[x]_R[6], the register cannot be written while an
ARDI or NARDI command is pending. When the CPU is accessing
MCS[i]_CH[x]_ACB, this register is only readable.

9.3.3 ATOM code
The code below is the I/O processor code required to set up ATOM0 channel 0.

GTM_ATOM_0.CH0_RDADDR.R = ((MCS0_WRADDR0<<16)+(MCS0_WRADDR0));

GTM_ATOM_0.CH0_CTRL.R = 0x08000809; // SOMC, TB1_SEL=0, ARU_EN=1, SL=1, WR_REQ=0

GTM_ATOM_0.AGC_OUTEN_CTRL.R = 0x0000AAAA;
GTM_ATOM_0.AGC_ENDIS_CTRL.R = 0x0000AAAA;
 while (GTM_ATOM_0.AGC_ENDIS_STAT.R != 0x00000000);

GTM_ATOM_0.AGC_GLB_CTRL.R = 0xAAAA0001; // setting of bit 0

NOTE
Bitfields RDADDR0 and RDADDR1 are populated with the same value. In the example,
RDADDR1 is never used. See the Generic Timer Module (GTM) Reference Manual for
more details on when RADDR1 would be used.

Example 8: Queued Output Match (QOM)

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

34 Freescale Semiconductor, Inc.

9.3.4 F2A code
The following code is the I/O processor code required to set up F2A channels 1–3, including the mode and ARU read
addresses.

GTM_F2A_0.CH_ARU_RD_FIFO[0].R = TIM0_WRADDR4; // used for reading in from TIM

GTM_F2A_0.CH_STR_CFG[0].R = 0x00020000;

GTM_F2A_0.ENABLE.R = 0x00000002;

10 Example 9: Using the DPLL for a Simple Micro Tick
Function

This example shows how to configure the GTM submodules to perform micro tick generation on the MPC5777M devices. It
is based on a Bosch Automotive Electronics application note on DPLL micro tick generation.

10.1 Description
The DPLL submodule is designed to generate a high-frequency micro tick signal based on one or more input signals with a
lower frequency. These input signals can only be connected to the TIM0 submodule as the MAP submodule is required by
the function.

To generate the micro ticks the DPLL needs information about the timing behavior of the input signals. This is done with
time stamps that are provided by the TBU. The TBU generates these time stamps with a clock signal that is generated inside
of the CMU. The DPLL generates the micro tick output signals, sub_incs, which are connected to the TBU and the CMU.

For micro tick generation and other calculations, the DPLL uses internal ALUs and external RAMs, holding data for the
calculations. RAM1a is used for action calculations. An action calculation is a request coming from the ARU where time
points and angle points in the future have to be predicted by the DPLL on behalf of the input signals. RAM1bc holds
calculation parameters for the DPLL, to do calculations for the TRIGGER and STATE inputs and it holds STATE input
characteristic values. RAM2 is used to store TRIGGER input signal characteristics.

Further details on sub_inc signals and RAM usage can be found in the GTM specification.

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 35

Figure 13. Micro tick example block diagram

10.2 Implementation
The following seven steps are the basic parts of the DPLL micro tick set up and function.

1. Configure GTM: Configure the device and the GTM as described in previous examples. For the DPLL application a
resolution of 20 MHz is chosen for the CMU_CLK0. This clock is used for the TRIGGER input signal generation, the
TBU time stamp generation, and the DPLL fast update frequency for the micro ticks.

2. Configure TBU: The TBU provides common time bases for the GTM. Typically, for an engine management system,
the time stamp TBU_TS0 provides a 24-bit time based on CMU_CLK0 while TBU_TS1 provides the angle of the
engine for the system in up/down counter mode from sub_inc1.

3. Configure TIM0: The Timer Input Module 0 is dedicated to sample and preprocess the input signals for the DPLL. The
49-bit wide signal is connected via the MAP submodule to the DPLL. To work properly, the DPLL needs specific
settings inside the corresponding TIM channel: filtering and the time stamp format sampled inside of the TIM channel.
The channel is configured to sample the high resolution time base TBU_TS0 for each incoming edge in the GPR0
register with no filtering in this example.

4. Configure MAP: When the signal preprocessing inside the TIM0 channel is done, the 49-bit data is transferred to the
DPLL via the MAP module. Two data paths exist inside the MAP module. The first path goes from TIM0 channel 0 to
the DPLL TRIGGER input directly. The second path for the DPLL STATE input has to be chosen out of the five TIM0
channel 1 to 5 inputs via a multiplexer.

5. Configure DPLL: The micro ticks for the input signals TRIGGER and STATE are generated inside of the two DPLL
subunits mt_gen1 and mt_gen2. The micro ticks are distributed over the four signal lines sub_inc1, sub_inc1c,
sub_inc2, and sub_inc2c. The micro tick generation is done with a 24-bit adder that generates a tick whenever the 24-
bit accumulator register overflows.

6. Synchronize the tooth profile: Setting the DPLL input TRIGGER signal profile pointer APT_2c to the appropriate
profile location. The DPLL profile synchronization can only be done when the input signal has at a specific location a
specific pattern.

7. Monitor DPLL Lock: After the synchronization for the tooth wheel has been established, the DPLL lock1 bit setting
can be observed to determine if the DPLL has locked after the second gap of the tooth wheel was detected.

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

36 Freescale Semiconductor, Inc.

Table 15. High-level micro tick implementation steps

Step Operation Description

1 Configure GTM Repeat examples 1, 2, and 3 with special consideration of the CMU

2 Configure TBU TBU has to be configured to provide time stamps to characterize the
DPLL TRIGGER input signal and to provide the micro tick time base

3 Configure TIM0 Configure TIM0_CHn in TIEM mode to react on both edges

4 Configure MAP In this case, use default configuration of from TIM0 channel 0 to the
DPLL TRIGGER input directly.

5 Configure DPLL DPLL generates micro ticks on behalf of a TRIGGER input signal
with 50% low-level duty cycle, where the input signal characteristic
reflects a 60-2 tooth wheel.

6 Synchronize the tooth profile Setting the DPLL input TRIGGER signal profile pointer APT_2c to
the appropriate profile location

7 Monitor DPLL Lock After the synchronization for the tooth wheel was established, the
DPLL lock1 bit setting can be observed

More details on the steps involved in 5, 6, and 7 follow this section.

10.2.1 DPLL micro tick implementation
The DPLL generates micro ticks on behalf of a TRIGGER input signal with 50% low-level duty cycle, where the input signal
characteristic reflects a 60-2 tooth wheel. No adaptation of the tooth is considered in this example and no action generation
takes place. Step 5 above is detailed further in steps 1 to 6 below.

1. Initialize the DPLL RAM Region 2c with the TRIGGER signal for the signal input profile for FULL SCALE.
2. Enable the Trigger Event 0 interrupt.
3. Configure the Timeout value.
4. Write DPLL_CTRL0 with the input signal characteristics (TRIGGER and STATE event characteristics, input filter

characteristics etc).
5. Write DPLL_CTRL1 with the operation mode, micro tick generation, the time stamp resolution, and so on.
6. Enable the DPLL.

NOTE
Since there is no STATE signal input for this application note, the RAM Region 1c3 has
not to be configured at all.

Table 16. Configure the DPLL

Step Operation Description

1 Initialize RAM Region 2c Ensure RAM initialization is not already running and then fill the RAM
with the tooth profile

2 Enable the Trigger Event 0 interrupt Ensure RAM initialization is not already running and then fill the RAM
with the tooth profile

3 Enable the Trigger Event 0 interrupt Configure timeout value for actual TRIGGER slope

4 Write DPLL_CTRL0 DPLL_CTRL_0 register contains input TRIGGER and STATE signal
characteristics as well as the number of micro ticks that should be
generated between two TRIGGER events.

5 Write DPLL_CTRL1 DPLL_CTRL_1 register contains configuration bits for the DPLL
operation. There, the behavior of the micro tick generators, the

Table continues on the next page...

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 37

Table 16. Configure the DPLL (continued)

Step Operation Description

number of virtual increments and the characteristic of the time
stamps is defined.

6 Enable the DPLL Set DEN bit in DPLL_CTRL1

The bitfield settings for DPLL_CTRL0 and DPLL_CTRL1 are shown in the following 2 tables.

Table 17. DPLL_CTRL0 setting : 0x403A257

Bit Field /
Position

Description Setting Value (dec)

MLT / [9:0] Number of micro ticks between two TRIGGER events Set to 599 to generate 600
micro ticks

599

IFP / 10 Filter value resolution Filter is not used 0

SNU / [15:11] Number of STATE events in HALF_SCALE STATE is not used 0

TNU / [24:16] Number of nominal TRIGGER events in HALF_SCALE 60 nominal TRIGGER events
per revolution

60

AMS / 25 Adapt the tooth of STATE due to physical constraints STATE is not used 0

AMT / 26 Adapt the tooth of TRIGGER due to physical constraints No adapt values are taken
into account

0

IDS / 27 Take input delay introduced by TIM0 filter into account for
STATE

STATE is not used 0

IDT / 28 Take input delay introduced by TIM0 filter into account for
TRIGGER

Filter is not used 0

SEN / 29 STATE input enable STATE is not used 0

TEN / 30 TRIGGER input enable Enable 1

RMO / 31 Configure which signal should be used for micro tick
generation

TRIGGER only 0

Table 18. DPLL_CTRL1 setting : 0x80020012

Bit Field /
Position

Description Setting Value (dec)

DMO / 0 This bit defines the DPLL operation mode for micro tick
generation

Automatic End Mode 0

DEN / 1 DPLL enable bit Enable 1

IDDS / 2 Input direction detection strategy The input direction is detected
comparing the THMI value
with the duration between
valid and invalid slope of
TRIGGER

0

COA / 3 Correction strategy for missing micro ticks, when the
Automatic End Mode is chosen for micro tick generation

Missing micro ticks should be
generated with the
CMU_CLK0 clock frequency

0

PIT / 4 Plausibility window resolution definition A time related plausibility
window duration is considered

1

Table continues on the next page...

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

38 Freescale Semiconductor, Inc.

Table 18. DPLL_CTRL1 setting : 0x80020012 (continued)

Bit Field /
Position

Description Setting Value (dec)

SGE1 / 5 This bit enables the sub_inc1 and sub_inc1c output signal line
for micro tick generation

Start right after the
synchronization condition is
detected

0

DML1 / 6 In Direct Load Mode, the micro tick frequency is controlled by
the CPU

Micro tick frequency should
be calculated by the DPLL

0

PCM1 / 7 Pulse Correction Not used 0

Various
SUB_INC2
and STATE
fields all not
used [15:8]

Numerous SUB_INC2 and STATE and field unused and left
out to shorten table

Not used 0

SYN_NT /
[21:16]

This bit field summarizes the total number of virtual
increments in a HALF_SCALE for the TRIGGER input signal

2 missing teeth per revolution 2

LCD / 22 Locking condition definition 1 missing trigger 0

SWR / 23 Software reset Software reset 0

SYSF / 24 SYN_NS for FULL_SCALE STATE not used 0

TS0_HRS / 25 Time stamp high resolution STATE STATE not used 0

TS0_HRT / 26 Time stamp high resolution TRIGGER Resolution of the used DPLL
input TBU_TS0 bits is equal
to the TRIGGER input time
stamp

0

SMC / 27 Synchronous Motor Control TRIGGER and STATE inputs
are used for a control different
to SMC

0

SSL / [29:28] STATE slope select STATE not used 0

TSL / [31:30] The active TRIGGER slope has to be defined by these two
bits

Falling edges 2

NOTE
Since the DPLL_CTRL_1 register bits 11 to 20 and 24 to 31 are write protected in case
the DPLL is enabled, these bit field regions have to be written in an independent write
access before the DPLL is enabled.

10.2.2 Synchronization and lock
The tooth synchronization and DPLL lock are executed in the TIM0_CH0 NEWVAL interrupt and the DPLL TRIGGER
event interrupt 0.

Synchronization means setting the DPLL input TRIGGER signal profile pointer, APT_2c, to the appropriate profile location.
When this pointer is set, the DPLL LOCK1 bit in the DPLL_STATUS register is set, and the DPLL operates on the newly
synchronized profile.

This synchronization can only be done when the input signal is at a specific location of a specific pattern defined in the DPLL
RAM. For this example, the specific pattern is two missing teeth in a normal 60 tooth wheel (only 58 real teeth available).

The software has to detect this gap and then set the APT_2c pointer. Since the TRIGGER signal characteristic for
HALF_SCALE looks the same, the DPLL profile pointer APT_2c is set to the first RAM2c location.

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 39

To detect the gap, an interrupt service routine (ISR) is set up on the TIM0 channel 0 NEWVAL interrupt. Gap detection is
done on the last 2 tooth periods. If the tooth period before the last tooth period is twice the size, this preceding tooth period
was the gap.

Figure 14. Tooth profile

After the gap is detected, the sub_inc1and sub_inc1c generation is enabled and the micro ticks are sent to the TBU channel 1
time base.

After the synchronization for the tooth wheel is established, the DPLL lock1 bit setting can be observed to determine if the
DPLL has locked after the second gap of the tooth wheel was detected.

An interrupt event inside of the tooth profile is defined after the second gap of the tooth wheel FULL_SCALE. A DPLL
TRIGGER event 0 ISR handles the interrupt and determines if the lock1 bit is set.

10.2.3 Tooth signal creation on MPC57xx to run the example on the
bench

To generate a 60-2 tooth signal for the TIM to read the PSM in Ring Buffer mode and ATOM0_CH7 is used in manner
similar to the configuration in the PPA example.

The ATOM channel is configured to read data from PSM channel 10 in SOMP mode with the ARU enabled. The FIFO is set
to run in Ring Buffer mode and transfer both words from the FIFO to the ARU. A normal tooth is defined as a 12,800 count
PWM with 50% duty in the FIFO RAM and the missing tooth is defined as a PWM with three times the normal period and
1/3 (16.667%) of the normal duty.

10.3 Code
void init_tbu(void)
{
 // setup TBU channel 0
 GTM_TBU.CH0_CTRL.R = 0x5; // no LOW_RES, choose CMU_CLK6
 // setup TBU channel 1
 GTM_TBU.CH1_CTRL.R = 0x1; // Up/Down counter mode; sub_inc1c is chosen
 // setup TBU channel 2
 GTM_TBU.CH2_CTRL.R = 0x0; // Free Running counter mode, CMU_CLK0

 // enable TBU channels 0, 1 and 2
 GTM_TBU.CHEN.R = 0x2A;
}

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

40 Freescale Semiconductor, Inc.

void init_dpll(void)
{
 unsigned int ram_ini_v = 0;
 unsigned int i = 0;
 gtm_ptr p;

 // initialize RAM; make sure that no RAM initialization takes place in parallel
 ram_ini_v = GTM_DPLL.RAM_INI.R;
 while(ram_ini_v) { // we have to wait until RAM initialization ends
 ram_ini_v = GTM_DPLL.RAM_INI.R;
 }

 p = &DPLL_RR2;
 p = p + (0x00001000/4); // RAM region 2 offset size is 1024
 for (i=0; i<57; i++){ // file profile for regular tooth
 p[i] = 0x10000; // first HALF SCALE
 }
 p[57] = 0x30000; // 58th is special one!
 p[58] = 0x12000; // Trigger interrupt
 for (i=59; i<115; i++){ // file profile for regular tooth
 p[i] = 0x10000; // second HALF SCALE
 }
 p[115] = 0x30000;

 GTM_DPLL.IRQ_EN.R = 0x00040000; // enable TINT0 interrupt

 // configure timeout value for actual TRIGGER slope
 p = &DPLL_RR1B;
 p[0x428 >> 2] = 0x780; // configure DPLL control registers

 GTM_DPLL.CTRL_0.R = 0x403B0257;
 GTM_DPLL.CTRL_1.R = 0x80020000; // configure TRIGGER input charact. first
 GTM_DPLL.CTRL_1.R = 0x80020012; // now enable the DPLL
}

void microTick(void)
{

 int i = 0;

 //Set Up PSM Channel 0
 GTM_FIFO_0.CHANNEL[0].CTRL.R = 0x1; // PSM operates in Ring Buffer Mode
 GTM_F2A_0.CH_STR_CFG[0].R = 0X60000; // transfer both words to ARU
 for (i=0; i<57; i++) {
 GTM_AFD_0.CH[0].BUF_ACC.R = 3200; // 57 times normal tooth
 GTM_AFD_0.CH[0].BUF_ACC.R = 1600; // 50% duty cycle
 }
 GTM_AFD_0.CH[0].BUF_ACC.R = 9600; // 58 th tooth + 2 tooth gap
 GTM_AFD_0.CH[0].BUF_ACC.R = 1600;

 GTM_F2A_0.ENABLE.R = 0x2; // enable channel 0

 // configure ATOM0 channel 7 output
 GTM_ATOM_0.CH7_RDADDR.R = 0x051; // get data from PSM channel0
 GTM_ATOM_0.CH7_RDADDR.R = 0xA; // ATOM channel 7 in SOMP, ARU enabled

 GTM_ATOM_0.AGC_GLB_CTRL.R = 0x80000000; // enable update for shadow registers
 GTM_ATOM_0.AGC_OUTEN_STAT.R = 0x8000; // enable channel 7 output
 GTM_ATOM_0.AGC_ENDIS_STAT.R = 0x8000; // enable channel 7

 // configure TBU
 init_tbu();

 // configure TIM0 channel 0
 GTM_TIM_0.CH0_IRQ_EN.R = 0x1; // enable NEWVAL IRQ
 GTM_TIM_0.CH0_CTRL.R = 0x00004005; // configure and enable channel

 // configure DPLL
 init_dpll();
}

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 41

void IRQ_GTM_TIM0_CH0 (void)
{
 // disable NOTIFY bit
 GTM_TIM_0.CH0_IRQ_NOTIFY.R = 0x1;
 // save actual time stamp
 actTS = GTM_TIM_0.CH0_GPR0.R;
 // tooth starts with falling edge
 if (!(actTS & 0x01000000)) { // falling edge detected
 // save old time stamp and tooth characteristic
 oldTS = newTS;
 oldDiff = diffTS;
 // determine new time stamp
 newTS = actTS & 0xFFFFFF;
 // gap detection after second valid edge
 iter++;
 if (iter > 1) {
 diffTS = newTS - oldTS;
 // gap characteristic for two missing tooth
 if (oldDiff >= 2*diffTS) {
 // synchronize DPLL
 if (dut_is_rm)
 GTM_DPLL.APT_2C.R = (57+3)*4; // use first gap + 3 tooth
 else
 GTM_DPLL.APT_2C.R = (57+2)*4; // use first gap + 3 tooth
 // enable DPLL sub_inc1c generation
 GTM_DPLL.CTRL_1.R = 0x80020032;
 // disable TIM0 channel 0 NEWVAL interrupt
 GTM_TIM_0.CH0_IRQ_EN.R = 0x0;
 } // gap detected
 } // second valid edge
 } // falling edge
}

void IRQ_GTM_DPLL_CH18 (void)
{
 unsigned int actTS;

 // check DPLL TRIGGER lock1 is set
 GTM_DPLL.IRQ_NOTIFY.R = 0x00040000; // reset IRQ NOTIFY bit
 actTS = GTM_DPLL.STATUS.R; // use actTS as tmp variable
 actTS &= 0x40000000;
 if (!actTS)
 cout << "ERROR: DPLL not locked yet!" << endl;
}

Appendix A GTM module definition and revision information
The GTM module contains a register that documents the exact revision of the GTM that is instantiated on a device. The
format of the register is shown in the following table.

Table A-1. GTM Revision (GTM_REV)

O
ffs

et
 0

x0
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DEV_CODE2 DEV_CODE1 DEV_CODE0 MAJOR

W

Reset * *
1

*
1

*
1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MINOR NO STEP

W

Reset *
1

*
1

*
1

Example 9: Using the DPLL for a Simple Micro Tick Function

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

42 Freescale Semiconductor, Inc.

1. Reset value is implementation specific. See Table 3

Table A-2. GTM_REV Field Descriptions

Field Description

DEV_CODE2 Most significant byte of the Development Code

DEV_CODE1 Second byte of the Development Code

DEV_CODE1 Least significant byte of the Development Code

MAJOR Major revision of the GTM

MINOR Minor revision of the GTM

NO NO is the delivery number (version)

STEP GTM-IP step number

The following table shows the expected revision values for the different production devices in the MPC57xx family. The
development code is a 3 digit (decimal encoded) identifier for the features supported by the GTM-IP. Please refer to the
GTMINT chapter of the device reference manual for the correct values for the device and mask set that is being used.

Table A-3. Device family definitions

Device GTM Module DEV_CODE[2:0] MAJOR MINOR NO STEP

MPC5746M GTM103 103 1 5 5 A1

MPC5777M GTM104 104 1 5 5 A1

A.1 Block diagram
The following diagram shows the submodules and how they are linked within the GTM. The number of each of the modules
is variable from 0 to 12. Simple output channels are 16 bits wide whereas the input and complex output channels are 24 bits
wide. The MCU’s CPU can be run with a slow clock in low-end powertrain applications giving low power dissipation and
low electronic emissions energy (EME). It supports the reduction of data traffic between CPU and GTM due to dedicated
hardware FIFOs, programmable cores, DMA integration, and engine position hardware. The ARU central routing unit
manages all internal data movement between submodules. For a complete list of the GTM variants' support on Freescale
devices, see GTM module definition and revision information in Appendix A.

Block diagram

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 43

AEIMux
(bus interface)

ICM
(Interrupt Concentrator Module)

TBU & CMU
(Timebases)

MON
(monitoring unit)

DPLL & MAP
(Angle clock for powertrain)

TIM
(24-bit timer input channels)

SPE
(Sensor Pattern Evaluation)

TOM
(16-bit timer output channels)

CMP
(output compare unit)

ATOM
(24-bit timer output channels)

PSM
(Parameter Storage Module)

BRC
(Broadcast module)

MCS
(Multi-Channel Sequencer)

[programmable core(s)]

GTM
(Generic Timer Module)

A
dv

an
ce

d
R

ou
te

r
U

ni
t

A
R

U

Figure A-1. Block diagram

The GTM module can be scaled up or down depending on the system requirements for timers. To date, there are 2 available
configurations of the GTM.

• GTM103—mid sized GTM on MPC5746M
• GTM104—large GTM on MPC5777M

The GTM module integration is specific to the MCU. For example, in the case of the MPC5746M, the first device available
in the family, the GTM logic operates on a double speed peripheral bus (Slow Crossbar) at up to 100 MHz while the timing is
based on the device Peripheral Clock, up to 80MHz. All interrupts go to the interrupt controller with approximately 80% also
connected to the DMA Controller. Interrupt clearing, resetting, and ECC of the local RAM memories are all specific to the
MCU and not a part of the GTM module.

A.2 GTM submodule descriptions
The table below shows a basic summary of the different submodules of the GTM.

Table A-4. GTM submodule descriptions

Submodule Full name Description

AEIMUX AEI Interface Generic bus interface for the GTM module. A bridge is
required from the AEI to the MCU bus interface.

Table continues on the next page...

GTM submodule descriptions

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

44 Freescale Semiconductor, Inc.

Table A-4. GTM submodule descriptions (continued)

Submodule Full name Description

AFD AEI to FIFO Data Interface Provides a data interface between the AEI bus and the FIFO
submodule.

ARU Advanced Routing Unit Provides a mechanism for routing streams of data between
data sources and transfer it to a destination. This is the heart
of the GTM subsystem.

ATOM ARU connected Timer Output Module Capable of generating complex output signals through its
interconnectivity with the ARU to other modules in the GTM
subsystem.

BRC Broadcast Module Allows data streams to be duplicated and sent to multiple
destinations.

CMP Output Compare Module Provides an XOR of duplicate outputs to provide an indication
of differences for safety type applications.

CMU Clock Management Unit Generates all of the clocks and counters for the GTM
subsystem. It contains a Configurable Clock Generation Unit
(CFGU), a Fixed Clock Generation Unit (FXU), and a External
Clock Generation Unit (EGU).

DPLL Digital Phase Lock Loop Provides the capability to multiply frequencies to provide a
higher precision of position or value information. It performs
calculations based on TRIGGER and STATE inputs from the
MAP submodule to predict the duration of the current
increment, generate pulses for up to two position counters,
synchronise the actual position and predict position and time
events without any CPU intervention. It can also seamlessly
switch between modes under CPU control.

F2A FIFO to ARU Interface Provides the interface between the ARU and the FIFO.

FIFO First in First Out Buffer Provides a storage unit between the AFD and the ARU.

GTMDI GTM Debug Interface Provides an advanced, real-time development interface for
the GTM, based on the IEEE-ISTO 5001-2011 Nexus
standard. It provides both run control and trace capabilities.

GTMINT GTM Integration Module Provides a device specific wrapper around the GTM to handle
specific MCU hardware interfaces including the module
configuration control, AEI control, and interrupts.

ICM Interrupt Concentrator Module Gathers the GTM submodule interrupts into interrupt groups
to provide a smaller number of interrupts to the host CPU of
the microcontroller.

MAP TIM0 Input Mapping Module Generates two input signals (TRIGGER and STATE) for the
DPLL submodule. The TIM can also be used as an input to
the MAP submodule to provide additional filtering capabilities.

MCFG Memory Configuration Module Provides an infrastructure to organize physical memory
blocks and maps them to the instances of the MCS
submodules. This submodule is not normally shown on Block
Diagrams as it is so closely tied to the MCS RAM.

MCS Multi-Channel Sequencer A generic data processing module that is connected to the
ARU. It allows "programs" to be written to calculate complex
output sequences that depend on Time Base values and
ATOM signals. Other types of applications can also be
handled by the MCS such as extending the operation of the
TIM submodules, or using data from the host CPU to control
GTM functions.

Table continues on the next page...

GTM submodule descriptions

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 45

Table A-4. GTM submodule descriptions (continued)

Submodule Full name Description

MON Monitoring Unit Another submodule primarily for safety applications. It
provides a mechanism to supervise common circuitry and
resources by monitoring output channels using an MCS
channel and a TIM to check for errors.

PSM Parameter Storage module Consists of the AEI-to-FIFO interface (AFD), the FIFO-to-ARU
(F2A), and the FIFO itself.

SPE Sensor Pattern Evaluation Module Can be used to evaluate the three hall sensor inputs and
together with the TOM to support driving a Brush-less DC
motor.

TBU Timer Base Unit Provides a common time base that can be used throughout
the GTM subsystem. The TBU is organized by channels. The
number of channels is implementation specific.

TIM Timer Input Module Provides for filtering and capture of input signals. It allows
several characteristics of the input to be measured, including
the time stamping of rising and falling edges, as well as the
number of edges since an enable.

TOM Timer Output Module Provides independent channels for generating simple Pulse
Width Modulated signals.

A.3 GTM configurations
The table below shows the configurations of GTM modules that currently defined for use on different microcontrollers.

Table A-5. GTM configurations

GTM resource GTM103 GTM104

MCS 4 6

TIM 4 6

TOM 3 5

ATOM 5 9

DPLL 1 1

DPLL RAM1a 96 × 24 bits 128 × 24 bits

DPLL RAM1b 384 × 24 bits 384 × 24 bits

DPLL RAM2 2048 × 24 bits 4096 × 24 bits

MCS RAM0 4KB 4KB

MCS RAM1 2KB 2KB

FIFO RAM 1024 × 29 bits 1024 × 29 bits

CMU 1 1

ARU 1 (120 slots) 1

BRC 1 1

PSM 1 2

Table continues on the next page...

GTM configurations

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

46 Freescale Semiconductor, Inc.

Table A-5. GTM configurations (continued)

GTM resource GTM103 GTM104

TBU 3 ch 3 ch

MAP 1 1

ICM 1 1

SPE 2 4

CMP 1 1

MON 1 1

Appendix B SIUL2 Configuration Examples
The SIUL2 supports mapping of module IP functions to physical pins. For example, if a user needs to support I2C
communication in the application, the SIUL2 multiplexers must be programmed to connect I2C Serial Clock (SCL) and I2C
Serial Data (SDA) to the appropriate pins of the device.

In order to configure the MPC57xx SIUL2 multiplexers, the user programs MSCR registers for input and output mapping.
MSCR_IO registers define MCU function to pad output. MSCR_MUX registers define pad inputs to MCU function. The user
executes the following three steps to configure pad input and output definition:

1. Configure pad (input buffer, output buffer, pull-up, open-drain, LVDS, etc.)
2. Configure the output signal source for the pad output (MSCR_IO registers)
3. Configure the input signal source for each pad input (MSCR_MUX registers)

The figure below illustrates the pad configuration options:

Figure B-1. Generic structure for I/O pad configuration

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 47

B.1 GTM I/O function to MPC57xx port mapping
The following three tables can be used to find the GTM input or output pin on the various MPC57xx ports.

Table B-1. GTM TIM to MPC57xx port

Submodule Channel GTM103 GTM104 Port MCSR Alt MCSR for
IBE

SSS value

TIM0 CH0 X X PF1 512 81 03

CH1 X X PG0 513 96 02

CH2 X X PH6 514 118 05

CH3 X X PI9 515 137 02

CH4 X X PI13 516 141 02

CH5 X X PI12 517 140 02

CH6 X X PI11 518 139 02

CH7 X X PI10 519 138 02

TIM1 CH0 X X PH10 520 122 08

CH1 X X PF0 521 80 03

CH2 X X PH1 522 113 07

CH3 X X PD10 523 58 03

CH4 X X PJ1 524 145 04

CH5 X X PJ2 525 146 04

CH6 X X PH14 526 126 07

CH7 X X PJ4 527 116 03

TIM2 CH0 X X PM5 528 197 07

CH1 X X PL9 529 185 07

CH2 X X PL10 530 185 07

CH3 X X PL11 531 185 09

CH4 X X PL12 532 185 08

CH5 X X PL13 533 185 09

CH6 X X PM3 534 195 07

CH7 X X PM0 535 192 08

TIM3 CH0 X X PM3 537 199 06

CH1 X X PM7 537 199 06

CH2 X X PJ13 538 157 06

CH3 X X PJ12 539 156 07

CH4 X X PJ15 540 159 07

CH5 X X PJ14 541 158 07

CH6 X X PL14 542 190 08

CH7 X X PL15 543 191 08

TIM41 CH0 X PM8 544 200 0A

Table continues on the next page...

GTM I/O function to MPC57xx port mapping

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

48 Freescale Semiconductor, Inc.

Table B-1. GTM TIM to MPC57xx port (continued)

Submodule Channel GTM103 GTM104 Port MCSR Alt MCSR for
IBE

SSS value

CH1 X PM7 545 199 0A

CH2 X PL1 546 177 08

CH3 X PL0 547 176 08

CH4 X PK15 548 175 08

CH5 X PL4 549 180 08

CH6 X PL3 550 179 08

CH7 X PM0 551 192 09

TIM51 CH0 X PX1 552 322 07

CH1 X PL15 553 191 09

CH2 X PX2 554 240 05

CH3 X PQ8 555 232 06

CH4 X PQ9 556 233 06

CH5 X PL6 557 182 08

CH6 X PQ7 558 231 07

CH7 X PL7 559 183 07

1. TIM4 and TIM5 cannot be made available on the MPC5777M device at the same time as all the other submodules due to
pin count restrictions.

NOTE
Not all outputs are available on all package options.

Table B-2. GTM TOM to MPC57xx port

Submodule Channel GTM103 GTM104 Port MCSR SSS

TOM0 CH0 X X PB9 25 08

CH1 X X PB10 26 08

CH2 X X PB8 24 08

CH3 X X PA10 10 08

CH4 X X PA8 8 08

CH5 X X PA9 9 08

CH6 X X PD2 50 08

CH7 X X PD1 49 08

CH8 X X PC2 34 08

CH9 X X PC0 32 08

CH10 X X PC9 41 08

CH11 X X PC8 40 08

CH12 X X PC7 39 08

CH13 X X PC6 38 08

CH14 X X PC5 37 08

CH15 X X PC4 36 08

Table continues on the next page...

GTM I/O function to MPC57xx port mapping

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 49

Table B-2. GTM TOM to MPC57xx port (continued)

Submodule Channel GTM103 GTM104 Port MCSR SSS

TOM1 CH0 X X PC3 35 09

CH1 X X PC1 33 09

CH2 X X PD9 57 09

CH3 X X PA2 2 08

CH4 X X PA1 1 08

CH5 X X PA12 12 08

CH6 X X PA13 13 08

CH7 X X PA0 0 08

CH8 X X PD14 62 09

CH9 X X PD15 63 09

CH10 X X PL14 190 08

CH11 X X PH11 123 08

CH12 X X PA3 3 08

CH13 X X PD8 56 08

CH14 X X PE7 71 08

CH15 X X PD4 52 08

TOM2 CH0 X X PF13 93 09

CH1 X X PM4 196 08

CH2 X X PC15 47 09

CH3 X X PF11 91 09

CH4 X X PC13 45 09

CH5 X X PC12 44 09

CH6 X X PC11 43 09

CH7 X X PC10 42 09

CH8 X X PD5 53 09

CH9 X X PE8 72 09

CH10 X X PE9 73 09

CH11 X X PF2 82 09

CH12 X X PH15 127 09

CH13 X X PE6 70 09

CH14 X X PF6 86 09

CH15 X X PF7 87 09

TOM31 CH0 X PN5 213 08

CH1 X PN7 215 08

CH2 X PN15 223 08

CH3 X PL5 181 09

CH4 X PL6 182 09

CH5 X PN6 214 08

CH6 X PN9 217 08

Table continues on the next page...

GTM I/O function to MPC57xx port mapping

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

50 Freescale Semiconductor, Inc.

Table B-2. GTM TOM to MPC57xx port (continued)

Submodule Channel GTM103 GTM104 Port MCSR SSS

CH7 X PN13 221 08

CH8 X PN8 216 08

CH9 X PN10 218 08

CH10 X PN14 222 08

CH11 X PQ0 224 08

CH12 X PQ1 225 08

CH13 X PQ2 226 08

CH14 X PN2 210 08

CH15 X PN4 212 08

TOM41 CH0 X PN5 213 09

CH1 X PN7 215 09

CH2 X PN15 223 09

CH3 X PN11 219 09

CH4 X PN12 220 09

CH5 X PN6 214 09

CH6 X PN9 217 09

CH7 X PL2 178 09

CH8 X PQ3 227 09

CH9 X PQ6 230 09

CH10 X PQ5 229 09

CH11 X PQ4 228 09

CH12 X PQ1 225 09

CH13 X PQ7 231 09

CH14 X PN1 209 09

CH15 X PN3 211 09

1. TOM3 and TOM4 cannot be made available on the MPC5777M device at the same time as all the other submodules due
to pin count restrictions.

NOTE
Not all outputs are available on all package options.

NOTE
TOM0_CH4 and TOM0_CH5 on ports A8 and A9 are muxed with the JTAG TDI and
TDO functions and are not visible on the MPC57xx motherboard port headers. They can
only be observed on the daughtercard.

Table B-3. GTM ATOM to MPC57xx port

Submodule Channel GTM103 GTM104 Port MCSR SSS value

ATOM0 CH0 X X PF10 90 0A

CH1 X X PD7 55 0A

CH2 X X PD6 54 0A

Table continues on the next page...

GTM I/O function to MPC57xx port mapping

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 51

Table B-3. GTM ATOM to MPC57xx port (continued)

Submodule Channel GTM103 GTM104 Port MCSR SSS value

CH3 X X PA14 14 0A

CH4 X X PA11 11 0A

CH5 X X PA15 15 0A

CH6 X X PD13 61 0A

CH7 X X PE3 67 0A

ATOM1 CH0 X X PG15 111 0A

CH1 X X PF4 84 0B

CH2 X X PE0 64 0B

CH3 X X PE1 65 0B

CH4 X X PE2 66 0B

CH5 X X PD12 60 0B

CH6 X X PF8 88 0B

CH7 X X PH5 117 0B

ATOM2 CH0 X X PD0 48 0A

CH1 X X PJ3 147 0A

CH2 X X PH9 121 0A

CH3 X X PH8 120 0A

CH4 X X PH7 119 0A

CH5 X X PI15 143 0A

CH6 X X PJ8 152 08

CH7 X X PJ6 150 08

ATOM3 CH0 X X PE4 68 0B

CH1 X X PE12 76 0B

CH2 X X PI8 136 0B

CH3 X X PC14 46 0B

CH4 X X PB11 27 0B

CH5 X X PD3 51 0B

CH6 X X PG13 109 0B

CH7 X X PG14 110 0B

ATOM4 CH0 X X PH3 115 0B

CH1 X X PE11 75 0B

CH2 X X PE10 74 0B

CH3 X X PH2 114 0B

CH4 X X PF12 92 0B

CH5 X X PH12 124 0B

CH6 X X PF14 94 0B

CH7 X X PE5 69 0B

ATOM51 CH0 X PQ5 239 0A

CH1 X PM11 203 0A

Table continues on the next page...

GTM I/O function to MPC57xx port mapping

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

52 Freescale Semiconductor, Inc.

Table B-3. GTM ATOM to MPC57xx port (continued)

Submodule Channel GTM103 GTM104 Port MCSR SSS value

CH2 X PM12 204 0A

CH3 X PN11 219 0A

CH4 X PN12 220 0A

CH5 X PM1 193 09

CH6 X PX0 321 0A

CH7 X PQ13 237 0A

ATOM61 CH0 X PJ7 151 09

CH1 X PQ14 238 0A

CH2 X PL14 190 09

CH3 X PQ5 229 0A

CH4 X PQ10 228 0A

CH5 X PL10 234 0A

CH6 X PN13 186 09

CH7 X PL12 221 0A

ATOM71 CH0 X PL12 188 09

CH1 X PM11 203 0B

CH2 X PM12 204 0B

CH3 X PM14 206 0B

CH4 X PM15 207 0B

CH5 X PN0 208 0B

CH6 X PN1 209 0A

CH7 X PN3 211 0A

ATOM81 CH0 X PN8 216 0B

CH1 X PN10 218 0B

CH2 X PN14 222 0B

CH3 X PQ0 224 0B

CH4 X PQ1 225 0B

CH5 X PQ2 226 0B

CH6 X PN2 210 0B

CH7 X PN4 212 0B

1. ATOM5, ATOM6, ATOM6 and ATOM8 cannot be made available on the MPC5777M device at the same time as all the
other submodules due to pin count restrictions.

NOTE
Not all outputs are available on all package options.

NOTE
ATOM0_CH1, ATOM0_CH2, and ATOM0_CH3 on Ports A14, D6, and D7 are muxed
with the SIPI RXP, TXN, and TXP functions and are not visible on the MPC57xx
motherboard port headers. They can only be observed on the daughtercard.

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 53

Appendix C Include the MCS ASM Binary in a Greenhills MULTI Project
The HighTec MCS assembler can create a raw binary file of the machine code for the written GTM MCSx assembly code.
This can be included in to the chip's I/O processor project through build and link options.

Create the sections .raw and .mymcsrawdata in the I/O processor linker file. For example:

.raw : {} > . /* GTM MCS binaries */

.mcs0rawdata : {mcs0_qom.bin(.raw)} > . /* MCS0 binaries */

By creating a label for this section in the linker, the I/O processor can find the raw data to be copied. For example:

__MCS0_ADDR = ADDR(.mcs0rawdata);

This section will be excluded from the build by default. This can be changed by modifying the build options for the I/O
processor project as shown below.

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

54 Freescale Semiconductor, Inc.

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

Freescale Semiconductor, Inc. 55

Appendix D GTM References
For more information on the GTM, see the additional documents listed in the following table.

Document Title Availability Specific references

MPC5746MRM/
MPC5777MRM

MPC5746M/MPC5777M
Reference Manual

www.freescale.com "GTM103 Integration Module"
chapter

"GTM Development Interface"
chapter

"GTM subsystem
configuration" sub-sections

GTM103RM/GTM104RM GTM Reference Manual www.freescale.com —

GTM103/104 Appendix B GTM Specification Appendix
B

www.freescale.com —

Appendix E Revision History

Major Revision Minor Revision Description Date

1 n/a Initial public release 8/2013

2 n/a Updated code snippets to match the latest
header file release format with GTM submodules
included in the main chip header file, and
updated SIUL2 section to match latest revision of
devices and reference manuals

4/2014

MPC57xxM Generic Timer Module (GTM) Quick Start Guide, Rev 2, 4/2014

56 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2014 Freescale Semiconductor, Inc.

Document Number AN4351
Revision 2, 4/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	GTM Overview
	Example 1: Configuring the Microcontroller to use the GTM
	Description
	Implementation
	Code

	Example 2: Enabling the GTM
	Description
	Implementation
	Code

	Example 3: Initializing the GTM
	Description
	Implementation
	Code

	Example 4: Simple PWM
	Description
	Implementation
	Code

	Example 5: Synchronizing the TOM and the ATOM Submodules
	Description
	Implementation
	Code

	Example 6: Pulse Period Accumulate
	Description
	Implementation
	Code

	Example 7: Writing, Compiling, and Programming MCS Code
	Description
	Implementation
	Code

	Example 8: Queued Output Match (QOM)
	Description
	ARU function description
	TIM function description
	MCS function description
	ATOM function description
	F2A function description

	Implementation
	TIM trigger capture implementation
	MCS function implementation
	ATOM function implementation
	F2A function implementation

	Code
	TIM trigger capture code
	MCS code
	ATOM code
	F2A code

	Example 9: Using the DPLL for a Simple Micro Tick Function
	Description
	Implementation
	DPLL micro tick implementation
	Synchronization and lock
	Tooth signal creation on MPC57xx to run the example on the bench

	Code

	Appendix A: GTM module definition and revision information
	Block diagram
	GTM submodule descriptions
	GTM configurations

	Appendix B: SIUL2 Configuration Examples
	GTM I/O function to MPC57xx port mapping

	Appendix C: Include the MCS ASM Binary in a Greenhills MULTI Project
	Appendix D: GTM References
	Appendix E: Revision History

