
1 Introduction
The MPC56xx family is a series of 32-bit microcontrollers
based on the Power Architecture® BookE and designed
specifically for embedded automotive applications.

This family contains a variety of low-power features
including:

• Dynamic power management of core and peripherals
• Software-controlled clock gating of peripherals
• Multiple power domains to minimize leakage in low-

power modes

This document discusses the low-power features in detail and
how to use them effectively in an application to minimize the
overall power used by the device. Some information out of the
MPC5607BRM : MPC5607B Microcontroller–Reference
Manual and AN2865: Qorivva Simple Cookbook, available on
http://www.freescale.com is repeated for completeness and
ease of navigation. The MPC560xB microcontroller is used in
examples but in general, the features apply to other devices
with the Mode Entry module.

NOTE
Some MCUs implementing the Mode Entry
modules do not have all low-power modes
incorporated.

NXP Semiconductors Document Number: AN4240

Application Note Rev. 1, 10/2017

Creating Low Power Applications
Using the Mode Entry Module
Configuring Qorriva Microcontrollers to Minimize
Power Consumption

by: Chris Platt, Armin Winter, Carl Culshaw, and Steve Mihalik
Automotive and Industrial Solutions Group

Contents

1 Introduction.............................. 1

2 The power problem... 2

3 Low-Power feature summary.................................. 2

4 Clock description........................ 3

5 Power control unit... 4

6 Mode Entry (ME) module.......................................6

7 Pins during low-power modes........... 20

8 Low-Power mode entry................... 21

9 Low-power wake-up features............. 26

10 Low-power mode exit..39

11 Current consumption....................48

12 Common mistakes... 49

13 Appendix: Debugging with low-power
mode..49

http://www.freescale.com
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus:MPC56XX?utm_medium=AN-2021

2 The power problem
There are two compnents that make up the total current consumed by a microcontroller, namely dynamic and static.

2.1 Dynamic current
This is the main current prevalent during normal operating conditions. The mechanism responsible for this current is
basically due to charging and discharging the gates of the millions of MOS transistors that switch on and off as the device
operates. The switching currents adhere to the equation:

Thus, as technology advances and transistors become smaller, the gates become smaller resulting in lower gate capacitance.
The lower capacitance means lower switching currents and hence an overall reduced dynamic run current.

The other side of the equation implies that increasing switching speeds (dv/dt) lead to an increased dynamic current.

The reduced current due to lower capacitance wins out over the increased current due to faster switching leading to a lower
overall dynamic power. Unfortunately, as applications become more complex and demanding, the performance requirements
and hence frequencies are increasing, leading to an overall increase in dynamic power.

2.2 Static current
This current is present when the transistors of the device are not switching and are hence in a static state. The main
mechanism causing this current is leakage due to the finite resistance that exists between power and ground if power is
applied to a CMOS circuit.

This leakage current is highly dependent on the threshold voltage of the transistor. As advances in technology lead to ever
smaller device sizes, supply voltage levels are scaled lower. To improve circuit speed, the threshold voltages are also
decreased, resulting in an exponential increase in sub-threshold leakage current. In summary, as technology shrinks the
device size, even though dynamic power trends lower, the required increase in performance means that any savings made by
technology are neutralized by the increased frequencies. So, overall power is trending upward.

Couple this fact with a large increase in static leakage inherent due to smaller device sizes. So, the overall dynamic power
increases with the static current becoming a larger component of the overall current.

3 Low-Power feature summary
Because the low-power requirements are showing an upward trend, the MPC56xxB/C/D and several other Qorivva family
members have a number of features that are specifically designed to minimize power consumption. This is achieved by
influencing both the dynamic as well as the static constituent parts of power consumption.

Table 1. Low-power mode feature assignment

Low-power feature Static power consumption Dynamic power consumption

Clock management X

The ability to stop clocks on a per
module basis

X

Table continues on the next page...

The power problem

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

2 NXP Semiconductors

Table 1. Low-power mode feature assignment (continued)

Optimized clock tree design X

Ability to divide down the system clock to
peripherals

X

Ability to gate off or divide down the
clock to the core

X

Onboard clocking X

Part can self-clock without a FMPLL X

16 MHz internal oscillator X

128 kHz internal oscillator X

Power gating X

Removing power to large areas of silicon X

Active well biasing (in Stop mode) X

Dual core (available on some
derivatives)

X

Able to run at lower speed to achieve the
same throughput

X

4 Clock description

Clock description

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 3

Power consumption is directly linked to clock signal switching, that is, the power consumption increases if more gates are
switching. Within the MPC56xxB family, several methods are employed to avoid “wasting” power in clock edges:

• Clock freeze
• CPU activity can be temporarily halted, for example, while waiting for an analog-to-digital conversion (ADC) to

complete. This is implemented using WAIT instruction, or STOP and HALT modes.
• Peripheral bus division

• Using dividers in the Clock Generation module, can reduce clock rates, for example, in ADC and communication
ports. All the modules don’t need to run at full system speed; the clocks can be slowed down in each module to
save power.

• Clock Gating
• Applied wherever possible and at the entry to each sub-module (peripheral). Switch off the clocks to any unused

module to save power. This is implemented using peripheral configurations in the Mode Entry module.

The MPC56xxB clock structure allows system clock selection and dividing clocks to most of the peripherals.

Table 2. Clock source behavior
summary

Clock source Start-up time Power consumption Check errors

FIRC:

16 MHz internal RC
oscillator

.

Low (< 1 µs) Medium (< 50 µA) Low (> 10%)

SIRC:

128 kHz internal
RC oscillator

Low (< 1 µs) Low (<1 µA) Low (> 10%)

SXOSC:

32 kHz external
crystal oscillator

.

High (ms) Low (<10 µA) High (< 1%)

FXOSC:

4–16 MHz external
crystal oscillator

.

High (ms) High (>100 µA) High (< 1%)

FMPLL High (ms) High (>1 mA) High (< 1%)

5 Power control unit
The purpose of the power control unit (PCU) is to reduce overall device power consumption. The MCU peripherals are
allocated to various power domains. The PCU allows users to remove or apply power to a power domain (PD) depending on
the operating mode.

Hardware is used to control switching power on and off to primary power domains (PD0 and PD1) based on the mode being
entered to conserve current. When a domain is powered off, then all initialization and other data is lost for registers and
memory in that domain. Unlike power domains PD0 and PD1, power for PD2 is configurable by software writing to the
PCU_PCONF2 register.

Power control unit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

4 NXP Semiconductors

Going to STANDBY mode cuts power to the core, most of the peripherals, mode entry configurations, clocks, and so on.
Therefore, registers in PD0 and PD1 need to be reinitialized when exiting the STANDBY mode, but not for other modes such
as STOP mode.

5.1 Power domain control
• Power domains are controlled on a device mode basis.
• For each mode, software can configure whether certain power domains are connected to the supply voltage during the

power-up state, or disconnected during the power-down state.
• Maximum power saving is reached by entering the STANDBY mode.
• On each mode change request, the MC_PCU evaluates the power domain settings in the power domain configuration

registers and initiates a power-down or a power-up sequence for each individual power domain.
• The power-up/down sequences are handled by finite state machines to ensure a smooth and safe transition from one

power state to the other.
• Exit from STANDBY mode can be made only via a system wake-up event as all power domains other than PD0 are in

the power-down state.

Figure 1. MPC5604/3/2B/C PCU block diagram

Table 3. MPC5604/3/2B/C PCU setup

Power Domain Contains State

PD0 Minimal circuitry for low power, including
first 8 KB SRAM, WKPU Unit, CAN
Sampler, RTC, API, etc.

Always ON

Table continues on the next page...

Power control unit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 5

Table 3. MPC5604/3/2B/C PCU setup (continued)

Power Domain Contains State

PD1 The rest of the device except SRAM STANDBY: OFF

Other Modes: ON

PD2 SRAM other than the first 8 KB SRAM Configurable for each mode

All memories which are not powered down during STANDBY mode automatically enter a power saving state. No software
configuration is required to enable this power-saving state.

NOTE
PCU setup of other derivatives might contain an additional power domain with a slightly
different configuration. See the reference manual of the corresponding device of the
MPC56xx family, available on http://www.freescale.com.

6 Mode Entry (ME) module

6.1 Overview
The Mode Entry (ME) module controls the device mode and mode transition sequences in all functional states. It also
contains configuration, control and status registers accessible for the application. By supporting a variety of modes, it
accommodates different application needs. Each mode is configurable and can be setup to achieve an optimum between
power management and system performance requirements.

Modes can be preconfigured during device initialization and mode changes are triggered by a simple software (SW)
sequence. Therefore, it offers a centralized and easy way to switch between modes depending on application needs.

An additional low-power mode configuration example is given within application note AN2865: Qorivva Simple Cookbook,
which is available for download from http://www.freescale.com.

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

6 NXP Semiconductors

http://www.freescale.com
http://www.freescale.com

Figure 2. Mode diagram

6.2 Low-power modes

6.2.1 HALT mode
HALT mode is a reduced activity, low-power mode intended for moderate periods of lower processing activity, such as
during a slow serial communication like LIN frame transmission or reception. In this mode, the core system clocks are
stopped but user-selected peripheral (LINFlex) tasks can continue to run. It can be configured to provide more efficient
power management features such as switch-off FMPLL, flash memory, and main regulator, at the cost of longer wake-up
latency. The system returns to RUN mode as soon as an event or interrupt is pending.

The key features of HALT mode are as follows:
• The core is stopped but system clock can remain the same as in RUN mode.
• Flash can be put in low-power mode.
• Peripherals can continue to run at normal or reduced frequency.
• This mode is useful to reduce device consumption during a slow serial communication such as LIN frame transmission

or reception.

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 7

• Analog device components such as phase-locked loop (PLL), analog-to-digital converter (ADC), and potentially the
main voltage regulator, can be stopped.

• PLL can be configured to be on or off (default is off).

6.2.2 WAIT instruction
The MPC56xx e200 CPUs support a WAIT instruction. Executing this WAIT instruction has a similar effect as entering
HALT mode. By executing the WAIT instruction, only the CPU clock gets stopped, whereas in HALT mode, the core
platform clock gets stopped which causes additional functionality like System Timer Module (STM), Crossbar Switch
(XBAR), and other modules, to be halted. As a consequence, current consumption after executing the WAIT instruction is
higher compared to HALT mode.

This is the only low-power mode not configured and entered by the ME module. With only four system clock cycles, a very
short wake-up latency is supported.

6.2.3 STOP mode
STOP mode maintains power to the entire device allowing the retention of all on-chip registers and memory, and providing a
faster recovery low-power mode than STANDBY mode which offers the lowest power consumption. There is no need to
reconfigure the device before executing code. The clocks to the core and peripherals are halted and can be optionally stopped
at the expense of a slower startup time. FMPLL is always disabled during STOP mode. During STOP mode exit, the FIRC is
used to clock the part until the target clock is available.

STOP is entered from RUN mode only. Wake-up from STOP mode is triggered by an external event or by the internal
periodic wake-up, if enabled.

The key features of STOP mode are as follows:
• The core provides additional low-power features beyond HALT.
• Active clock gating is used to segment the device.
• External oscillator is stopped, but can be allowed to run to support fast startup at the expense of added power.
• The entire device is powered and RAM is retained.
• RTC and API can continue to run.
• PLL is always off.
• It has the option to support fast and slow IRC.
• System clock can be disabled.
• PLL is always disabled.
• System clock is only FIRC upon immediate STOP mode exit until the target clock is ready.

6.2.4 STANDBY mode
STANDBY mode halts the clock to the entire device and turns off the power to the majority of the chip to offer the lowest
possible power consumption.

The device can be woken up from STANDBY mode by any of the external wake-up pins, a reset, or from a periodic wake-up
using a low-power oscillator. If required, it is possible to enable the internal 16 MHz or 128 kHz RC oscillator or external 32
kHz oscillator (not available on all derivatives). In STANDBY mode, the contents of the cores, on-chip peripheral registers
and potentially some of the volatile memory are not held.

Depending on the user configuration, either 32 KB, or 8 KB of SRAM are retained (MPC5604B). A fast wake-up using the
on-chip 16 MHz internal RC oscillator allows rapid execution from RAM on exit from low-power modes. This oscillator
supports low-speed code execution and clocking of peripherals through selection as the system clock, and it can be used as
the FMPLL input clock source to provide fast startup without the external oscillator delay.

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

8 NXP Semiconductors

In low-power modes, the internal 16 MHz RC oscillator also supports the operation of ADCs. External wake-up pins are
available for wake-up, and a fast startup internal voltage regulator provides a rapid exit from low-power modes.

The key features of STANDBY mode are:
• This mode consumes the lowest possible power.
• Most functions (digital and analog) of the device are not powered.
• Remains only the back-up logic. For example, RTC/API, preserves wake-up inputs, part of SRAM.
• On STANDBY exit, the processor uses the RESET vector or a SRAM Vector, if enabled.
• Wake-up from selected I/O or API/RTC
• WISR register in the WKPU can be used to verify the wake-up source.
• Data saved prior to mode entry can be recovered on exit from the mode, if needed.
• Selectable size of RAM supported: 8 KB or all RAM
• Optionally enabled low-speed IRC

6.3 Low-Power Peripheral Configuration registers
Each peripheral can be associated with a particular clock gating policy. The policy is determined by two groups of peripheral
configuration registers:

• ME_RUN_PC0:7 for RUN modes
• ME_LP_PC0:7 for low-power modes

Clocks to peripherals are gated off unless enabled for that mode.

Figure 3. Low-Power Peripheral Configuration registers (ME_LP_PC0…7)

Along these registers, a selection of eight low-power mode configurations for peripherals can be defined. There is an
equivalent register set (ME_RUN_PC0…7) for run modes available.

Table 4. Low-Power Peripheral Configuration registers (ME_LP_PC0…7) field descriptions

Field Description

STANDBY Peripheral control during STANDBY

0 Peripheral is frozen with clock gated.
1 Peripheral is active.

STOP Peripheral control during STOP

Table continues on the next page...

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 9

Table 4. Low-Power Peripheral Configuration registers (ME_LP_PC0…7) field descriptions
(continued)

Field Description

0 Peripheral is frozen with clock gated.
1 Peripheral is active.

HALT Peripheral control during HALT

0 Peripheral is frozen with clock gated.
1 Peripheral is active.

6.4 Peripheral Control register
For each on-chip peripheral, a Peripheral Control (ME_PCTLx) register exists to control clock gating for the particular
peripheral.

These registers select one of the 8 RUN peripheral configurations for run (RUN_CFG), and one of 8 low power peripheral
configurations (LP_CFG). Additionally, there is an option to enable/disable freezing the clock during debugging (DBG_F)
for each peripheral.

Figure 4. Peripheral Control registers (ME_PCTL0…143)

Table 5. Peripheral Control registers (ME_PCTL0…143) field descriptions

Field Description

DBG_F Peripheral Control in Debug Mode — This field controls the
state of peripheral in Debug mode.

0 Peripheral state depends on RUN_CFG/LP_CFG bits
and the device mode.
1 Peripheral is frozen if not already frozen in device
modes.

NOTE: This feature is useful to freeze the peripheral state
while entering Debug mode. For example, this may
be used to prevent a reference timer from running
while making a debug access.

LP_CFG Peripheral Configuration Select for Non-RUN modes—This
field associates a configuration as defined in the
ME_LP_PC0…7 registers to the peripheral.

000 Selects ME_LP_PC0 configuration
001 Selects ME_LP_PC1 configuration

Table continues on the next page...

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

10 NXP Semiconductors

Table 5. Peripheral Control registers (ME_PCTL0…143) field descriptions (continued)

Field Description

010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PC5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG Peripheral Configuration Select for RUN modes—This field
associates a configuration as defined in the ME_RUN_PC0…
7 registers to the peripheral.

000 Selects ME_RUN_PC0 configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

6.5 Peripheral Status register
This set of read-only registers provides the status of the peripherals.

Figure 5. Peripheral Status registers (ME_PS0…3)

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 11

Table 6. Field description

Field Description

S_<periph> Peripheral Status —This field specifies the current status of
the peripherals in the system. If no peripheral is mapped on a
particular position, the corresponding bit is always read as 0.

0 Peripheral is frozen.
1 Peripheral is active.

6.6 Mode Enable register
Before entering, all the modes are enabled using the Mode Enable (ME_ME) register. An interrupt is generated if attempt is
made to enter a disabled mode.

This register allows to disable modes not required for a given application. RESET, SAFE, DRUN and RUN0 modes are
always enabled.

Figure 6. Mode Enable (ME_ME) register

Table 7. Mode Enable (ME_ME) register field descriptions

Field Description

STANDBY STANDBY mode enable

0 STANDBY mode is disabled.
1 STANDBY mode is enabled.

STOP STOP mode enable

0 STOP mode is disabled.
1 STOP mode is enabled.

HALT HALT mode enable

Table continues on the next page...

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

12 NXP Semiconductors

Table 7. Mode Enable (ME_ME) register field descriptions (continued)

Field Description

0 HALT mode is disabled.
1 HALT mode is enabled.

RUN3 RUN3 mode enable

0 RUN3 mode is disabled.
1 RUN3 mode is enabled.

RUN2 RUN2 mode enable

0 RUN2 mode is disabled.
1 RUN2 mode is enabled.

RUN1 RUN1 mode enable

0 RUN1 mode is disabled.
1 RUN1 mode is enabled.

RUN0 RUN0 mode enable

0 RUN0 mode is disabled.
1 RUN0 mode is enabled.

DRUN DRUN mode enable

0 DRUN mode is disabled.
1 DRUN mode is enabled.

SAFE SAFE mode enable

0 SAFE mode is disabled.
1 SAFE mode is enabled.

TEST TEST mode enable

0 TEST mode is disabled.
1 TEST mode is enabled.

RESET RESET mode enable

0 RESET mode is disabled.
1 RESET mode is enabled.

6.7 Software (SW) and Hardware (HW) mode transitions
Software handled transition involves the following steps:

• A transition is requested by writing a key protected sequence in the ME_MCTL register.
• ME_MCTL needs to be written twice:

• 1st write: TARGET_MODE + KEY
• 2nd write: TARGET_MODE + INVERTED KEY

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 13

The S_MTRANS field within the Global Status (ME_GS) register, or ME_GS[S_MTRANS] indicates that a mode change
transition is in progress. This field is cleared when the transition is complete.

/* Enter HALT Mode */
 ME.MCTL.R = ((vuint32_t)HALT_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)HALT_MODE<<28) | 0x0000A50F; /* Mode & Key */
 while (ME.GS.B.S_MTRANS) {} /* Wait HALT mode transition to complete */
 /* For series production code, a SW */
 /* timeout is recommended */

The I_MTC field within the Interrupt Status Register (ME_IS), or ME_IS[I_MTC] also indicates a completed mode
transition between DRUN/RUNx modes. ME_IS[I_MTC] is not set in case of transition to low-power modes excluding
execution of WAIT instruction.

• Mode Entry configures the modules according to the ME_xxx_MC register of the target mode
• Mode transition does not complete until modules are ready, including

• OSC, if turned on, completes OSC specified timeout.
• PLL, if turned on, is locked.

• The status bit/interrupt signals the completion of transition.

NOTE
Modification of a ME_xxx_MC register (even the current one) is taken into account on
next mode “xxx” entry.

Hardware triggered transition involves:
• Exit from low-power mode
• SAFE transition caused by HW failure
• RESET transition caused by HW failure

6.8 Mode Global Status register
This register contains the global mode status.

It is recommended that software poll ME_GS[S_MTRANS] after requesting a transition to HALT, STOP, or STANDBY.

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

14 NXP Semiconductors

Figure 7. Global Status (ME_GS) register

Table 8. Field description of ME_GS register

Field Description

S_CURREN T_MODE Current Device Mode Status

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 Reserved
1010 STOP
1011 Reserved
1100 Reserved
1101 STANDBY
1110 Reserved
1111 Reserved

S_MTRANS Mode Transition Status

0 Mode transition process is not active.
1 Mode transition is ongoing.

S_DC Device Current Consumption Status

0 Device consumption is low enough to allow powering
down of main voltage regulator.
1 Device consumption requires main voltage regulator

Table continues on the next page...

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 15

Table 8. Field description of ME_GS register (continued)

Field Description

to remain powered regardless of mode
configuration.

S_PDO Output Power-Down Status—This field specifies output
power-down status of I/Os. This field is asserted whenever
outputs of pads are forced to high-impedance state or the
pads power sequence driver is switched off.

0 No automatic safe-gating of I/Os used and pads
power sequence driver is enabled.
1 In SAFE/TEST modes, outputs of pads are forced to
high-impedance state and pads power sequence driver
is disabled. The levels of inputs are unchanged. In
STOP mode, only pad power sequence driver is
disabled but the state of the output is kept unchanged.
In STANDBY mode, the power sequence driver and all
pads except those mapped on wake-up lines are not
powered and are therefore in high-impedance state.
Wake-up lines configuration remains unchanged.

S_MVR Main Voltage Regulator Status

0 Main voltage regulator is not ready.
1 Main voltage regulator is ready for use.

S_DFLA Data Flash Availability Status

00 Data flash is not available.
01 Data flash is in power-down mode.
10 Data flash is in low-power mode.
11 Data flash is in normal mode and available for use.

S_CFLA Code Flash Availability Status

00 Code flash is not available.
01 Code flash is in power-down mode.
10 Code flash is in low-power mode.
11 Code flash is in normal mode and available for use.

S_FMPLL Frequency-Modulated Phase-Locked Loop Status

0 Frequency-modulated phase locked loop is not
stable.
1 Frequency-modulated phase locked loop is providing
a stable clock.

S_FXOSC Fast External Crystal Oscillator (4–16 MHz) status

0 Fast external crystal oscillator (4–16 MHz) is not
stable
1 Fast external crystal oscillator (4–16 MHz) is
providing a stable clock

S_FIRC Fast Internal RC Oscillator (16 MHz) Status

Table continues on the next page...

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

16 NXP Semiconductors

Table 8. Field description of ME_GS register (continued)

Field Description

0 Fast internal RC oscillator (16 MHz) is not stable.
1 Fast internal RC oscillator (16 MHz) is providing a
stable clock.

S_SYSCLK System Clock Switch Status — This field specifies the system
clock currently used by the system.

0000 16 MHz internal RC oscillator

0001 div. 16 MHz internal RC oscillator
0010 4–16 MHz external crystal oscillator
0011 div. external crystal oscillator
0100 Frequency-modulated phase-locked loop
0101 Reserved
0110 Reserved
0111 Reserved
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 System clock is disabled.

6.9 Mode Control register
This register is used to trigger software-controlled mode changes. In order to change modes, the target mode must be written
to the register with the KEY. The next command must be another write to the register with the same mode and the
INVERTED KEY.

Figure 8. Mode Control (ME_MCTL) register

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 17

Table 9. Mode Control (ME_MCTL) register field descriptions

Field Description

TARGET_MODE Target Device Mode

This field provides the target device mode to be
entered by software programming. The mechanism to
enter into any mode by software requires the write
operation twice: first time with key, and second time
with inverted key. This field is automatically updated by
hardware while entering SAFE on hardware request.
Also, while exiting from the HALT and STOP modes on
hardware exit events, this field is updated with the
appropriate RUN0…3 mode value.

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 Reserved
1010 STOP
1011 Reserved
1100 Reserved
1101 STANDBY
1110 Reserved
1111 Reserved

KEY Control Key

This field enables write access to this register. Any
write access to the register with a value different from
the keys is ignored. Read access will always return the
inverted key.

KEY: 0101101011110000 (0x5AF0)
INVERTED KEY: 1010010100001111 (0xA50F)

6.10 Mode Entry module summary
Mode transition allows:

• Enabling/disabling system clock sources
• Selecting appropriate system clock
• Gating clocks to peripherals
• Dividing peripheral clocks on a set basis, as per the requirement

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

18 NXP Semiconductors

Figure 9. ME resource control overview

Mode Entry (ME) module

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 19

Figure 10. ME system clock source overview

NOTE
If the user steps through the code that writes to a peripheral register but the debugger
shows the register unchanged, the clock for that peripheral in that particular RUN mode
may not have been enabled.

7 Pins during low-power modes

7.1 STANDBY mode
In STANDBY Mode, pins other than wake-up inputs with enabled pull resistors are always in high-impedance state. External
voltages in the range of 0–5 V do not generate additional current consumption. It is important to remember that all pins must
have a pullup/pulldown either internally with WPU or externally.

Unconnected GPIOs do have a weak internal pull active, preventing the pin from floating in STANDBY.

Pins during low-power modes

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

20 NXP Semiconductors

NOTE
The statements given above regarding STANDBY do not apply to wake-up pins. For
wake-up pins, the internal pull selection needs to be aligned to the external voltages to
avoid additional current consumption.

In summary, all wake-up pads, including those not bonded out to pins, must be correctly configured to achieve low-power
usage in STANDBY mode. GPIOs without wake-up capability do not need special configuration for STANDBY mode.

Pins having both the wake-up and analog functionality such as PB[10], PD[0:1] on MPC5607/6/5B/C and MPC5602/1D, or
PB[10] on MPC5604/3/2B/C, must be driven either high-level or low-level (possibly using the internal pullup) during
STANDBY.

In case these pins are connected to external component providing analog signal, it is important to check this external analog
signal is either lower than 0.2*VDD_HV or higher than 0.8*VDD_HV not to incur extra consumption.

The TDO pad has been moved into the STANDBY domain (PD0) in order to allow low-power debug handshaking in
STANDBY mode. However, no pullup resistor is active on the TDO pad while in STANDBY mode. At this time the pad is
configured as an input. When no debugger is connected, the TDO pad is floating causing additional current consumption.

To avoid the extra consumption, TDO must be connected. An external pullup resistor in the range of 47–100 kΩ must be
added between the TDO pin and VDD. If the TDO pin is used as application pin and a pullup cannot be used, then a
pulldown resistor with the same value must be used between TDO pin and GND instead.

On MPC5604/3/2/B/C, wake-up line functionality on PB[8], PB[9] is not available in STANDBY mode. These pads are not
supplied with ultra low-power regulator, but are driven from main regulator which is switched off in STANDBY mode.

7.2 STOP mode
During STOP mode, status of pins will be kept unchanged. In this case, the internal pull selection needs to be aligned to the
external voltages to avoid additional current consumption in STOP mode.

Leaving input pins floating will cause the pin voltage to float to any voltage depending upon leakages to ground and the
supply. Noise will cause the CMOS inverter or gate to which the input is connected to go into an indefinite and high-power
dissipation mode, with both N- and P-channel outputs conducting.

Based on this effect, external noise can cause the input stage to switch states at high-frequency (oscillations). Switching from
one state to the other will add additional current consumption to the static leakage current. Also, an increased level of noise
gets injected to the microcontroller.

8 Low-Power mode entry
Low-power mode entry is controlled by software requests only.

CAUTION
The ME module will not allow low-power mode entry, if it detects a pending wake-up
event or pending interrupt request. While examining for a pending interrupt request, the
ME module ignores the MSR[EE] state and peripheral's interrupt priorities in the
interrupt controller (INTC). The ME module effectively looks at peripheral flags and
their associated interrupt enable bit state.

Low-Power mode entry

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 21

The following table lists various RUN modes from which the low-power modes can be entered.

Table 10. Low-power mode entry

WAIT STOP HALT STANDBY

Software request from
DRUN

Yes No No Yes

Software request from
RUN0...3

Yes Yes Yes Yes

Note
HPREG can be turned off in STOP and HALT mode entry by monitoring S_DC bit via
the MC_ME mode transition. However, this bit can only be used during this transition.
Using it in any other condition will have unexpected behavior. This is only applicable for
MPC5604B and MPC5607B devices.

8.1 HALT mode entry
HALT mode can be requested by SW from RUN0…3 modes.

For example:

void HALT_Mode_Entry(void)
{
 /* Enter HALT Mode */
 ME.MCTL.R = 0x80005AF0; /* Mode & Key */
 ME.MCTL.R = 0x8000A50F; /* Mode & Key */
 while (ME.GS.B.S_MTRANS) {} /* Wait HALT mode transition to complete */
}

On MPC560xB/C/D derivatives, main VREG is not disabled during STOP or HALT mode:
• If RUN[0..3] mode selects FXOSC to be running.
• The target mode selects FXOSC as system clock.

If STOP or HALT is configured with:
• ME_[mode]_MC.MVRON = 0
• ME_[mode]_MC.FIRCON = 0, and
• ME_[mode]_MC.SYSCLK = 0010/0011, the main VREG will nevertheless remain enabled during the STOP mode if

the previous RUN[0..3] mode is configured with ME_RUN[0..3]_MC.FXOSCON = 1. This will result in higher power
consumption than expected.

Before entering STOP or HALT mode with the following configuration:
• ME_[mode]_MC.MVRON = 0
• ME_[mode]_MC.FIRCON = 0
• ME_[mode]_MC.SYSCLK = 0010/0011, ensure the RUN[0..3] mode switches off FXOSC and

ME_RUN[0..3]_MC.FXOSCON = 0 before attempting to enter the low-power mode.

8.2 STOP mode entry
STOP mode can be requested by SW from RUN0…3 modes.

For example:

Low-Power mode entry

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

22 NXP Semiconductors

void STOP_Mode_Entry(void)
{
 /* Enter STOP Mode */
 ME.MCTL.R = 0xA0005AF0; /* Mode & Key */
 ME.MCTL.R = 0xA000A50F; /* Mode & Key */
 while (ME.GS.B.S_MTRANS) {} /* Wait STOP mode transition to complete */

8.2.1 Mode Entry STOP Mode Configuration register
NOTE

There is only one STOP mode, but most of the SRAM can be configured to either have
its power maintained or not. STOP0 is a term often used to indicate STOP mode with
most of the SRAM unpowered.

The STOP Mode Configuration (ME_STOP_MC) register configures system behavior during STOP mode.

Byte and half-word write accesses are not allowed to this register.

Figure 11. STOP Mode Configuration (ME_STOP_MC) register

Table 11. Field description of ME_STOP_MC

Field Description

PDO I/O Output Power-Down Control—This field controls the output power-
down of I/Os.

0 No automatic safe-gating of I/Os used and pads power
sequence driver is enabled.
1 In SAFE/TEST modes, outputs of pads are forced to high-
impedance state and pads power sequence driver is disabled.
The levels of inputs are unchanged. In STOP mode, only pad
power sequence driver is disabled but the state of the output is
kept unchanged. In STANDBY mode, power sequence driver and
all pads except those mapped on wake-up lines are not powered
and therefore are in high-impedance state. Wake-up line
configuration remains unchanged.

Table continues on the next page...

Low-Power mode entry

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 23

Table 11. Field description of ME_STOP_MC (continued)

Field Description

MVRON Main Voltage Regulator Control—This field specifies whether main
voltage regulator is switched off or not while entering this mode.

0 Main voltage regulator is switched off.
1 Main voltage regulator is switched on.

DFLAON Data Flash Power-Down Control—This field specifies the operating mode
of the data flash after entering this mode.

00 Reserved
01 Data flash is in power-down mode.
10 Data flash is in low-power mode.
11 Data flash is in normal mode.

CFLAON Code Flash Power-Down Control—This field specifies the operating mode
of the program flash after entering this mode.

00 Reserved
01 Code flash is in power-down mode.
10 Code flash is in low-power mode.
11 Code flash is in normal mode.

FMPLLON Frequency-Modulated Phase Locked Loop Control

0 Frequency-modulated phase-locked loop is switched off.
1 Frequency-modulated phase-locked loop is switched on.

FXOSCON Fast External Crystal Oscillator (4–16 MHz) control

0 Fast external crystal oscillator (4–16 MHz) is switched off.
1 Fast external crystal oscillator (4–16 MHz) is switched on.

FIRCON Fast Internal RC Oscillator (16 MHz) Control

0 Fast internal RC oscillator (16 MHz) is switched off.
1 Fast internal RC oscillator (16 MHz) is switched on.

SYSCLK System Clock Switch Control—This field specifies the system
clock to be used by the system.

0000 16 MHz internal RC oscillator
0001 div. 16 MHz internal RC oscillator
0010 4–16 MHz external crystal oscillator
0011 div. external crystal oscillator
0100 Frequency-modulated phase-locked loop
0101 Reserved
0110 Reserved
0111 Reserved
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved

Low-Power mode entry

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

24 NXP Semiconductors

Table 11. Field description of ME_STOP_MC

Field Description

1110 Reserved
1111 System clock is disabled.

Lowest possible STOP power consumption is achieved by following sequence:

void STOP_Mode_Entry(void)
{
ME_STOP_MC.B.PDO=1; /* Pad power sequence driver disabled, */
 /* but state of the output is kept */
ME_STOP_MC.B.MVRON=0; /* Main Voltage regulator is off */ ME_STOP_MC.B.DFLAON=1; /*
Data flash is in power-down mode */
ME_STOP_MC.B.CFLAON=1; /* Code flash is in power-down mode */
ME_STOP_MC.B.FMPLLON=0; /* FMPLL off (default status during STOP) */
ME_STOP_MC.B.FIRCON=0; /* Fast internal RC oscillator off */
ME_STOP_MC.B.FXOSCON=0 /* Fast external crystal oscillator off */
ME_STOP_MC.B.SYSCLK=0xF; /* System clock is disabled */
ADC_0.MCR.B.PWDN = 1; /* Power donw analog part of ADC0 */
 /* MPC5607B/C: saving ~ 2.8mA in STOP */
ADC_1.MCR.B.PWDN = 1; /* Power down analog part of the ADC1 */
 /* MPC5607B saving ~ 1.9mA in STOP */
 /* Please note, not all MPC56xxB derivates */
 /* support two ADC modules. Also the */
 /* amount of current might vary as */
 /* different derivates support a different */
 /* amount of ADC channels. Status of MDIS, */
 /* FREEZE, HALT bits of digital */
 /* peripherals have no impact on STOP */
 /* power consumption */
 /* For all peripherals not needed during */
 /* STOP a Low- Power Peripheral */
 /* Configuration Register (ME_LP_PC0…7) */
 /* with STOP = 0 should be assigned to */
 /* the corresponding Peripheral Control */
 /* Registers (ME_PCTLx). */
/* Enter STOP Mode */
ME.MCTL.R = ((vuint32_t)STOP_MODE<<28) | 0x00005AF0; /* Mode & Key */
ME.MCTL.R = ((vuint32_t)STOP_MODE<<28) | 0x0000A50F; /* Mode & Key */
while (ME.GS.B.S_MTRANS){}/* Wait STOP mode transition to complete */
}

On MPC560xB/C/D derivatives, main VREG is not disabled during STOP or HALT mode if RUN[0..3] mode selects
FXOSC to be running and target mode selects FXOSC as system clock. If STOP or HALT is configured with:

• ME_[mode]_MC.MVRON = 0
• ME_[mode]_MC.FIRCON = 0
• ME_[mode]_MC.SYSCLK = 0010/0011, the main VREG will nevertheless remain enabled during the STOP mode if

the previous RUN[0..3] mode is configured with ME_RUN[0..3]_MC.FXOSCON = 1. This will result in higher power
consumption than expected.

Before entering STOP or HALT mode with the following configuration:
• ME_[mode]_MC.MVRON = 0
• ME_[mode]_MC.FIRCON = 0
• ME_[mode]_MC.SYSCLK = 0010/0011, ensure the RUN[0..3] mode switches off FXOSC and

ME_RUN[0..3]_MC.FXOSCON = 0, before attempting to low-power mode transition.

8.3 STANDBY mode entry
STANDBY mode can be requested by SW from DRUN and RUN[0...3] modes.

Low-Power mode entry

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 25

The lowest power consumption in STANDBY can be achieved by the following sequence:

void STANDBY_Mode_Entry(void)
{
 /* Configure STANDBY0 Mode for lowest consumption (only WUP Unit ON) */
 /* Please note, WKPU (Wakeup Unit) is always enabled */
 /* To generate an interrupt event triggered by a wakeup line, it is */
 /* necessary to enable WKPU */
 CAN_0.MCR.B.FRZ = 1;/* Errata e9140PS: */
 CAN_1.MCR.B.FRZ = 1;/* STANDBY can not be entered if the FlexCAN */
 CAN_2.MCR.B.FRZ = 1;/* peripheral is active. If any FlexCAN module */
 CAN_3.MCR.B.FRZ = 1; /* is enabled at the MC_ME (ME_RUN_PCx/ME_PCTLx) */
 CAN_4.MCR.B.FRZ = 1; /* and enabled at the FlexCAN module, */
 CAN_5.MCR.B.FRZ = 1; /* (MCR.B.MDIS=0) STANDBY0 mode will not be */
 /* entered, and the device will remain in DRUN or */
 /* RUNx mode. */
 /* Workaround: The FlexCAN module must be frozen */
 /* by setting FLEXCANx_MCR[FRZ]=1 in DRUN or */
 /* RUNx mode before entering STANDBY mode. */
 ME.STANDBY0.B.PDO=1;/* Pad power sequence driver disabled, but state */
 /* of the output is kept */
 ME.STANDBY0.B.MVRON=0;/* Main Voltage regulator is off */
 ME.STANDBY0.B.DFLAON=1; /* Data flash is in power-down mode */
 ME.STANDBY0.B.CFLAON=1;/* Code flash is in power-down mode */
 ME.STANDBY0.B.OSCON=0;/* Fast external crystal oscillator (4-16 MHz) off */
 ME.STANDBY0.B.PLLON=0;/* FMPLL is off (default status during STOP0) */
 ME.STANDBY0.B.SYSCLK=0xF; /* System clock disabled BEFORE RC switching off */
 ME.STANDBY0.B.RCON=0;/* Fast internal RC oscillator (16 MHz) off */
 /* Enter STANDBY Mode */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x0000A50F; /* Mode & Key */
 while(1){} /* Wait STANDBY mode transition to complete – use timeout */
}

NOTE
• All peripherals need to be configured as off within the ME_PCTLx registers prior

to the STANDBY mode entry, otherwise, a reset gets generated on wake-up and the
wake-up source is not visible within the WKPU_WISR register.

• Do not deactivate system clock prescaler in CGM_SC_DCx register prior to
STANDBY mode entry, otherwise, the system will not be able to exit STANDBY.

9 Low-power wake-up features
There are two mechanisms that can be used for wake up from low-power modes.

• Input pin transition or RTC/API enabled using the WKPU (STANDBY, STOP modes only)
• Peripheral interrupts (HALT, STOP modes only)

The WKPU offers external wake-up/interrupt support through:
• 3 system interrupt vectors for up to 18 interrupt sources for MPC5602/3/4B/C/D
• 3 system interrupt vectors for up to 18 interrupt sources for MPC5602/3/4B/C/D
• 4 system interrupt vectors for up to 24 interrupt sources for MPC5605/6/7B/C/D
• Analog glitch filter per each wake-up line
• Independent interrupt mask
• Edge detection
• Configurable system wake-up triggering from all interrupt sources
• Configurable pullup

The WKPU offers non-maskable interrupt support through:
• Edge detection

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

26 NXP Semiconductors

• One NMI source with bypassable glitch filter
• Independent interrupt destination: non-maskable interrupt, critical interrupt, or machine check request

On-chip wakeup support is provided through:
• Two wake-up sources (RTC and API)
• Wake-up status mapped to same register as external wake-up/interrupt status

Figure 12. Wake-up unit (WKPU)

NOTE
The WKPU remains powered during low-power modes.

Each WKPU pin:
• Can issue only a wake-up, or an interrupt, or both
• Can be sensitive on rising, falling or both edges
• Has an analog glitch filter, which can be separately enabled
• Has an internal pullup

9.1 Low-power interrupts
The following points must be noted when using interrupts as a wake-up mechanism from low-power modes.

• MSE[EE] status does not affect low-power wake-up interrupts.
• The INTC values do not affect low-power wake-up.
• Only a peripheral's Flag and Interrupt Enable bit are required to notify the ME module to exit STOP or HALT modes.
• If using an interrupt to wake-up from STOP mode, a system clock must be configured in STOP mode. (SYSCLK

cannot be 1111)

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 27

9.2 MPC56xxB/C/D wake-up line interrupts

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

28 NXP Semiconductors

Figure 13. MPC56xxB/C/D wake-up line interrupts

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 29

Figure 14. Overview packages versus wake-up pins

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

30 NXP Semiconductors

Figure 15. MPC5607B wake-up

NOTE
Small packages do not contain all ports.

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 31

9.3 Wakeup registers
Name Symbol Description

Wakeup/Interrupt Status Flag Register WISR Flags event as defined by WIREER and
WIFEER

Wakeup/Interrupt Rising-Edge Event
Enable Register

WIREER Enables rising-edge event

Wakeup/ Interrupt Falling-Edge Event
Enable Register

WIFEER Enables rising-edge event

Interrupt Request Enable Register IRER Enables flags to cause interrupt request

Wakeup/Interrupt Filter Enable Register WIFER Enables analog glitch filter on external
pad input (filter glitch < 40 ns, passes

signals > 1000 ns)

Wakeup/Interrupt Pullup Enable Register WIPUER Enables pullup on external pad (use for
all pads to minimize leakage)

NMI Configuration Register NCR Configuration settings for NMI

NMI Status Flag Register NSR Holds NMI Status flags

9.4 Low-power timer wake-ups
Often a system may have to restart on a regular basis. This may involve the maintenance of an external system that needs a
regular check, or service.

For such use cases, an energy-efficient solution can be realized using the Real Time Counter (RTC) / Autonomous Periodic
Interrupt (API) feature which has been implemented on the MPC56xx family.

The RTC is a free-running counter used for timekeeping applications.

• Generates interrupt independent of RUN or low-power mode
• First generates a wake-up for low-power exit, and then interrupt, if required
• Continues counting through resets except for power-up reset
• Three selectable counter clock sources with optional prescalers

• SIRC (128 kHz)
• SXOSC (32 kHz)
• FIRC (16 MHz)

• API provides regular timeouts for wake-up / interrupt.
• Compares lower 10 bits of RTC to 10-bit compare value
• At match, automatically adds programmed value for next compare
• RTC provides longer timeout for wake-up / interrupt
• Compares 12 bits above API to 12-bit compare value

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

32 NXP Semiconductors

Figure 16. RTC / API block diagram

NOTE
32 kHz SXOSC option is not supported on all derivates.

As can be seen in Figure 16, the RTC clock source is selectable from the 16 MHz FIRC, 32 kHz SIRC, or 32 kHz SXOSC.
RTC and API share a common 32-bit, free-running counter.

Table 13 , which has originally been published in the application note AN2865: Qorivva Simple Cookbook, shows RTC/API
timeouts based on different clock source and divider settings.

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 33

Table 13. RTC/API timeouts

Clock
source

div512

RTC_RT
CC

[div512]

div 32
RTC_RTC
C [div 32]

RTC
Counter

Input
Clock

Frequenc
y

RTC
Counter

Inout
Clock

Period (1⁄
(RTC

Counter
Input
Clock
Freq.))

Min. API
Timeout
(1 x RTC
Counter

input
clock

period)

Max. API
Timeout

((210 - 1) x
RTC

Counter
input
clock
period

Min. RTC
Timeout

(210 x
RTC

Counter
input
clock

period)

Max. RTC
Timeout

((222 - 1) x
RTC

Counter
input
clock

period)

RTC
Rollover
Timeout

(232 x
RTC

Counter
input
clock

period)

128 kHz
SIRC1 with
SIRCDIV=

0

0 0 128 kHz ~ 7.8 µs ~ 7.8 µs ~ 8 ms ~ 8 ms ~ 31 s ~ 8.9 h

0 1 4 kHz 250 µs 250 µs ~ 256 ms 256 ms ~ 17 min ~ 12 d

1 0 250 Hz 4 ms 4 ms ~ 4.09 s ~ 4.10 s ~ 4.4 h ~ 6.3 mo.

1 1 7.8125 Hz 128 ms 128 ms ~131 s ~ 131 s ~ 6 d ~ 17 yr.

16 MHz
FIRC2 (125

x SIRC)

0 0 16 MHz 62.5 ns 62.5 ns ~ 64 µs 64 µs 0.25 s ~ 4.3 min

0 1 500 kHz 2 µs 2 µs ~ 2 ms 2.048 ms 8 s ~ 2.8 h

1 0 31.25 kHz 32 µs 32 µs ~ 33 ms ~ 33 ms ~ 2.1 min ~ 1.5 d

1 1 ~977 Hz 1.024 ms 1.024 ms ~ 1048 s ~ 1049 s ~ 1.1 h ~ 1.6 mo.

32 kHz
SXOSC3 or

128 kHz

SIRC/41

0 0 32 kHz 31.25 µs 31.25 µs ~32 ms 32 ms ~ 2.1 min ~ 1.5 d

0 1 1 kHz 1 ms 1 ms 1.023 s 1.024 s ~ 1.1 h ~ 1.6 mo.

1 0 62.5 Hz 16 ms 16 ms ~ 16 s ~ 16 s ~ 18 h ~ 2.1 yr.

1 1 ~2 Hz 512 ms 512 ms ~ 524 s ~524 s ~ 24 d ~ 67 yr.

FXOSC4 0 0 8 MHz 125 ns 125 ns ~ 128 s ~ 128 s 0.5 s ~ 8.6 min

0 1 250 kHz 4 µs 4 µs ~ 4.1 ms ~ 4.1 ms 16 s ~ 4.6 h

1 0 15.625 kHz 64 µs 64 µs ~ 65 ms 66 ms ~ 4.3 min ~ 3 d

1 1 ~ 488 Hz 2.048 ms 2.048 ms ~ 2.1 s ~ 2.1 s ~ 2.3 h ~ 3.2 mo.

1. SIRC is divided by 4 to 32 kHz using reset default value in CGM_SIRC_CTL[SIRCDIV] for MPC56xxB, or
GGM_LPRC_CTL[LPRCDIV] for MPC56xxS

2. FIRC is divided by 1 using reset default value in CGM_RC_CTL[RCDIV] for MPC56xxB, MPC56xxS
3. 32 kHz SXOSC not available in STANDBY mode
4. FXOSC as RTC/API option avaialble only in MPC56xxS. Also, not available in STANDBY mode

In choosing to use the RTC or the API, the user needs to trade off the length of time the timer may have to wait before wake-
up against resolution.

NOTE
Although an API timeout will consistently trigger at identical periods, the first API
timeout can't be predicted. Since there is internal synchronization of clocks occurring
when APIVAL is written, an additional time in the region of two clock cycles will occur.
This depends on the clocks being used and the divider values. Whilst it is not
determinable in advance, it will always be a consistent amount and would not vary in an
application once set.

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

34 NXP Semiconductors

Figure 17. RTC Control (RTCC) register

NOTE
The RTC needs to be disabled by setting CNTEN = 0 prior to any update of the
RTCVAL field.

Table 14. RTCC field descriptions

Field Description

CNTEN Counter Enable

CNTEN enables the RTC counter. Setting CNTEN to
1’b0 has the effect of asynchronously resetting
(synchronous reset negation) all the RTC and API
logic. This allows for the RTC configuration and clock
source selection to be updated without causing
synchronization issues.

1 Counter enabled
0 Counter disabled

RTCIE RTC Interrupt Enable

The RTCIE field enables interrupts requests to the
system if RTCF is asserted.
1 RTC interrupts enabled
0 RTC interrupts disabled

FRZEN Freeze Enable

The counter freezes on entering the Debug mode on
the last valid count value if FRZEN is set. After coming
out of the Debug mode, the counter starts from the
frozen value.

0 Counter does not freeze in Debug mode.
1 Counter freezes in Debug mode.

ROVREN Counter Roll Over Wakeup/Interrupt Enable

ROVREN enables wake-up and interrupt requests
when the RTC has rolled over from

Table continues on the next page...

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 35

Table 14. RTCC field descriptions (continued)

Field Description

0xFFFF_FFFF to 0x0000_0000. RTCIE must also be
set in order to generate an interrupt from a counter
rollover.

1 RTC rollover wake-up/interrupt is enabled.
0 RTC rollover wake-up/interrupt is disabled.

4:15

RTCVAL[0:11]

RTC Compare Value

The bits of this field are compared to bits 10–21 of the
RTC counter and if these match, RTCF is set. RTCVAL
can be updated when the counter is running.

APIEN Autonomous Periodic Interrupt Enable

 APIEN enables the autonomous periodic interrupt
function.

1 API enabled
0 API disabled

APIIE API Interrupt Enable

The APIIE field enables interrupts requests to the
system if APIF is asserted.

1 API interrupts are enabled.
0 API interrupts are disabled.

18:19

CLKSEL[0:1]

Clock Select

This field selects the clock source for the RTC.
CLKSEL may only be updated when CNTEN is 0.
The user must ensure that oscillator is enabled before
selecting it as a clock source for RTC.

00 SXOSC
01 SIRC
10 FIRC
11 Reserved

DIV512EN Divide by 512 Enable

DIV512EN enables the 512 clock divider. DIV512EN
may only be updated when CNTEN is 0.

0 Divide by 512 is disabled.
1 Divide by 512 is enabled.

DIV32EN Divide by 32 Enable

DIV32EN enables the 32 clock divider. DIV32EN may
only be updated when CNTEN is 0.

0 Divide by 32 is disabled.
1 Divide by 32 is enabled.

22:31

APIVAL[0:9]

API Compare Value

The bits of this field are compared with bits 22–31 of
the RTC counter, and if match occurs, an

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

36 NXP Semiconductors

Table 14. RTCC field descriptions

Field Description

interrupt/wake-up request is asserted. APIVAL may
only be updated when APIEN is 0, or API function is
undefined.

NOTE: API functionality starts only when APIVAL is
nonzero. The first API interrupt takes two more
cycles because of synchronization of APIVAL to the
RTC clock. After that, interrupts are periodic in
nature. The minimum supported value of APIVAL is
4.

There are separate fields within the RTCC register to control the operation and parameters for the RTC and API systems. The
clock source select bits and initial values are all assignable as is the rollover enable for the RTC and the individual enable bits
for the counters. Bits are available to enable interrupts for each of the mechanisms as well as for the divider options.

As a reference clock is always required to feed the RTC/API counter to enable wake-ups, it needs to be ensured that the
selected clock source for the RTC module is running while in LPM. For LPM periodic wake-up applications, it is
recommended to use the Slow Internal RC Oscillator (SIRC). This is because it offers the lowest possible power
consumption. However, the SIRC has a tolerance of ±10%. For conditions and details, see the latest data sheet of the device
being used, available on http://www.freescale.com.

By default, the SIRC is enabled in all RUN and low-power modes except STANDBY mode. To enable SIRC in STANDBY,
the Low Power RC Control Register (SIRC_CTL) needs to be configured accordingly by setting SIRC control in STANDBY
mode to 1, or SIRC_CTL[SIRCON_STDBY] = 1.

The next lowest power option is using the 32 kHz external oscillator facility available on some MPC56xxB derivatives.

The 16 MHz IRC is the most accurate internal clock available (<5%), consuming a higher current but featuring a fast startup
time of typical 1.1 µs. This capability allows registers, and modules, to be configured while waiting for the external crystal to
stabilize. Alternatively, it supports rapid code execution during short run cycles, enabling the device to return to an LPM
much more quickly.

To wake the device from LPM via RTC/API, the external wake-up within the Wakeup Request Enable Register
(WKPU_WRER) as well as the rising-edge of WUP0 within Wakeup/Interrupt Rising-Edge Event Enable Register
(WKPU_WIREER) needs to be enabled. The RTC/API generates only wake-up events when configured to the rising-edge.

The software example given below shows a possible RTC initialization:

void Init_RTC_Wakeup(void)
{ /* RTC WakeUp line Mgm - WKUP0 */
 WKUP.WRER.R = 0x42;; /* Enable WUP0 */
 WKUP.WIREER.R = 0x42; /* Enable Rising Edge of WUP0 */
 WKUP.WISR.R = 0xFFFFF;
 CGM.LPRC_CTL.R = 0x301;;
 RTC.RTCC.R = 0;
 RTC.RTCC.R = 0xA01B1000;
 WKUP.WISR.R = 2;
 Configure_RUN1_Mode();
 /* Enter in RUN1 Mode */
 ME.MCTL.R = ((vuint32_t)RUN1_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)RUN1_MODE<<28) | 0x0000A50F; /* Mode & Key */
 while (ME.IS.B.MTC != 1) {} /* Wait Until transition completed */
 ME.IS.B.MTC = 1; /* Clear bit */
}

To realize a periodic wake-up scenario, the following sequence could be used after the RTC wake-up/ timeout occurred.

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 37

http://www.freescale.com

if(RTC.RTCS.B.RTCF == 1)
{
 RTC.RTCC.R =0;
 RTC.RTCC.R =0xA01B1000;
 RTC.RTCS.B.RTCF =1;
 WKUP.WISR.R = 0x00000002;
} /* Now, RTC is setup again to allow the next low power mode entry */

9.5 External pin wake-up
The WKPU has several signal inputs that can be used as external interrupt sources in normal RUN mode or as system wake-
up sources in all power-down modes.

These external signal inputs include one signal input that can be used as a non-maskable interrupt source in normal RUN,
HALT or STOP modes or a system wake-up source in STOP or STANDBY modes. On MPC5607B/C, there is NMI pin
configuration limitation in STANDBY mode. The NMI pin cannot be configured to generate non-maskable interrupt event to
the core (WKPU_NCR[NDSS] = 00), if the following STANDBY mode is to be used:

• NMI pin enabled for wake-up event
• Exit sequence boot from RAM
• Code flash module power-down on STANDBY exit sequence

With the configuration given above, the following scenario may occur:
• System is in standby.
• NMI event is triggered on PA[1].
• System wakes up z0 core power domain.
• z0 core reset is released and NMI event is sampled by core on the first clock-edge. The z0 core attempts to fetch code at

0x10 address (IVPR is not yet initialized by application) and receives an exception since the flash is not available.

If NMI is configured as wake-up source, WKPU_NCR[NDSS] must be configured as 11. This will ensure no NMI event is
triggered on the core but system wake-up is triggered. After STANDBY exit, core will boot and configure its IVOR/IVPR. It
may then reconfigure WKPU_NCR:DSS to the appropriate configuration for enabling NMI/CI/MCP.

NOTE
The user must be aware that the wake-up pins are enabled in all the modes, therefore, the
wake-up pins must be correctly terminated to ensure minimal current consumption. Any
unused wake-up signal input must be terminated using an external pullup or pulldown, or
by internal pullup enabled at WKUP_WIPUER. Also, care has to be taken on packages
where the wake-up signal inputs are not bonded. For these packages, the user must ensure
the internal pullups are enabled for the signals which are not bonded.

void Init_Wake_Up_Inputs(void)
{
 SIU.PCR[64].R = 0x103; /* Switch 1 wake-up input - PE[0] =
WKUP[6] */
 WKUP.WIPUER.R = 0x0003ffff; /* Enable pullups on all
18 wakeup pins */
 WKUP.WISR.R = 0x00000008; /* Clear WKUP[6]flag */
 WKUP.WRER.R = 0x00000008; /* Enable WKUP[6]for
wakeup event */
 WKUP.WIREER.R = 0x00000008; /* Enable Rising Edge of
WKUP[6] */
 /*WKUP.WIFEER.R = 0x00000008; /* Enable Falling Edge of
WKUP[6] */
 WKUP.WIFER.R = 0x00000008; /* Enable Filter of
WKUP[6] */
}

Low-power wake-up features

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

38 NXP Semiconductors

9.6 Wake-up source determination
In order to allow software to determine the wake-up source at one location, on-chip wake-ups are reported along with
external wake-ups in the WISR register. Enabling and clearing of these wake-ups are done via the on-chip wake-up source’s
own registers. Each external interrupt supports an individual flag which is held in the flag register (WISR). This register is a
clear-by-write-1 register type, preventing inadvertent overwriting of other flags in the same register.

9.7 Wake-up interrupt filter
The Wakeup/Interrupt Filter Enable Register (WKPU_WIFER) is used to enable an analog filter on the corresponding
interrupt pads to filter out glitches on the inputs. The number of wake-ups/interrupts supporting this feature is documented in
the relevant reference manual of the specific device of the MPC56xx family, available on http://www.freescale.com, as it
varies across different devices of the MPC56xx family.

NOTE
There is no analog filter for the RTC/API interrupts.

.

10 Low-power mode exit
Exit from low-power modes is caused by:

• System reset into DRUN mode
• Hardware failure into SAFE mode
• Predefined interrupt event
• Predefined wake-up event

Table 15. Low-Power mode exit

WAIT HALT STOP STANDBY

Into DRUN via system
reset

Yes Yes Yes Yes

Into SAFE on HW
failure

Yes Yes Yes No

Into RUN0...3 via
interrupt

Yes Yes Yes No

Into RUN0...3 via
wakeup

No No Yes No

Into DRUN via wakeup No No No Yes

10.1 Restart after WAIT instruction
Once the WAIT instruction has been executed, the system supports very short restart latency of less than four system clocks.
If enabled, asynchronous interrupts which cause the idle mode entered by WAIT instruction to be exited are critical input,
external input, and machine check. Non-maskable interrupts also cause the waiting state to be exited.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 39

http://www.freescale.com

10.2 HALT mode exit
The system can exit from the HALT mode by:

• Interrupt
• Pin transition
• RTC/API timeout

10.3 STOP mode exit
Upon exit from STOP mode by pin transition, RTC/API event, or interrupt, only FIRC can be the system clock.

On MPC5607/6/5B/C and MPC5604/3/2B/C, a software timer (SWT) interrupt does not cause STOP mode exit. While in
STOP mode, if the SWT is configured to generate an interrupt and the system clock is disabled (ME_STOP_MC[SYSCLK]
= 0xF), a SWT interrupt event will not trigger an exit from STOP mode.

Other internal or external wake-up events such as RTC, API, or WKPU pins, are not affected and will trigger a STOP exit
independent of the ME_STOP_MC[SYSCLK] configuration.

If a SWT interrupt is to be used to wake the device during STOP mode, software may not disable the system clock
(ME_STOP_MC[SYSCLK] = 0xF).

In RUNx mode after STOP mode exit, the system RAM can be accessed before it is ready. This is valid only for
MPC5604/3/2B/C and if ME_STOP_MC[FXOSC] is enabled, ME_STOP_MC[FIRC] is disabled, ME_RUNx_MC[FIRC] is
enabled and ME_RUNx_MC[SYSCLK] = FXOSC or FXOSC_DIV.

At the transition of STOP to RUNx, the RUNx mode can be entered before the system RAM is ready. If the application
software accesses the RAM during this time, the RAM value cannot be determined.

There are two workarounds possible:
• Do not disable the IRC, if the system clock source is not disabled.

The XOSC draws a lot more current than the IRC, so there should be no noticeable increase in the STOP mode power
consumption.

• Have the software check that the mode transition has completed via the ME_GS register before accessing the system
RAM.

10.4 STANDBY mode exit
When exiting STANDBY mode by pin transition or timer wake-up, there are two options for code execution depending on
the configuration of RGM_STDBYBOOT_FROM_BKP_RAM:

• System boots from flash on STANDBY exit (reset default)
• System boots from backup RAM on STANDBY exit

Configuring system boot from backup RAM has two advantages:
• Enables lower power consumption because the flash does not need to be fully powered. Booting from SRAM and

writing C code needs an initialization of the stack pointer and small data areas, which is part of a normal compiler
initialization on reset. However, a smaller code can be written in assembly and has a shorter boot sequence, if booting
from SRAM.

• Faster startup time because the flash does not need to be power sequenced.

The amount of power savings when booting from RAM and STANDBY wake-up varies by application.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

40 NXP Semiconductors

NOTE
On exit from STANDBY mode, most of the registers are reset as in a power-up reset.
Power domain 0 registers are not reset, including RGM registers, ME _DRUN_MC
register and PCU registers, RTC registers, CAN SAMPLER registers, and so on.

10.4.1 Boot from SRAM after STANDBY exit
The following things must be considered while booting from SRAM after STANDBY exit.

• Make sure the linker file supports code placement in SRAM.
• Allow “far calls” by selecting the corresponding compiler option.
• Once executing code out of SRAM after STANDBY exit, some CPU registers need to be initialized:

• r1: Initialize stack pointer
• r13: Initialize r13 to rw SDA base
• r2: Initialize r2 to ro SDA base
• r1: Terminate stack

• Call: SRAM_Boot_Function

void Enter_STANDBY_Exit_Into_SRAM(void)
{
 /* Configure GPIO[3] */
 SIU.PCR[3].R=0x0200;
 SIU.GPDO[3].B.PDO = 0;

 /* Configure GPIO[4] */
 SIU.PCR[4].R=0x0200;
 SIU.GPDO[4].B.PDO = 0;

 /*Configure WUP3 to exit from STANDBY */
 WKUP.WIPUER.R = 0x0003ffff; /* Enable pullups on all 18 wakeup pins (even if by
default they are already pulluped) */
 WKUP.WISR.R = 0x00000008; /* Clear WUP3 flag */
 WKUP.WRER.R = 0x00000008; /* Enable WUP3 for wakeup event */
 /*WKUP.WIREER.R = 0x00000008; /* Enable Rising Edge of WUP3 */
 WKUP.WIFEER.R = 0x00000008; /* Enable falling Edge of WUP3 */
 WKUP.WIFER.R = 0x00000008; /* Enable Filter of WUP3 */

 ME.RUNPC[1].R = 0x00000028;/* Peripherals enabled only in DRUN,RUN1 Mode */
 ME.LPPC[0].R = 0;/* Peripherals disabled in STOP/HALT/STANDBY Mode */
 ME.LPPC[1].R = 0x00002000;/* periphs enabled only in STANDBY Mode */
 /*ME.PCTL[72].R = 0x09;/* select the RUNPC1,LPPC1 for EMIOS0 */

 Configure_STANDBY0_Mode_SRAM_Exit();

 /* Enter in RUN1 Mode */
 ME.MCTL.R = ((vuint32_t)RUN1_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)RUN1_MODE<<28) | 0x0000A50F; /* Mode & Key */
while (ME.IS.B.MTC != 1) {} /* Wait Until transition completed */
 ME.IS.B.MTC = 1; /* Clear bit */

 /*Enter in STANDBY Mode */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x0000A50F; /* Mode & Key */

 /* Call function located in RAM */
}

#include "jdp.h"
//#include "test.h"
//#include "project.h"

//#define FLASH_PD

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 41

//#define FLASH_LP
//#define STDBY_RAM
#define EXIT_INTO_SRAM
#pragma ghs section rodata ".RAM.code"

//#pragma ghs section text = ".code"

void SRAM_Boot_Function(void)
{
#ifdef FOJDHSDF
 Disable_Watchdog();

 #ifdef FLASH_PD

 //Flash in Power Down
 ME.DRUN.B.CFLAON=1;
 ME.DRUN.B.DFLAON=1;

 //re-enter in DRUN mode to switch-off the flash
 ME.MCTL.R = 0x30005AF0; // Mode & Key
 ME.MCTL.R = 0x3000A50F; // Mode & Key
 while (ME.IS.B.MTC != 1) {} // Wait Until transition completed
 ME.IS.B.MTC = 1; // Clear bit

 while(SIU.GPDI[2].R); // wait pushing GPIO[38] to go ahead

 //enter in RUN0 mode to switch-on the flash
 ME.MCTL.R = 0x40005AF0; // Mode & Key
 ME.MCTL.R = 0x4000A50F; // Mode & Key
 while (ME.IS.B.MTC != 1) {} // Wait Until transition completed
 ME.IS.B.MTC = 1; // Clear bit

 #endif

 #ifdef FLASH_LP
 //Flash in Low Power in DRUN Mode
ME.DRUN.B.CFLAON=2;
 ME.DRUN.B.DFLAON=2;

 //re-enter in DRUN mode to update the config
 ME.MCTL.R = 0x30005AF0; // Mode & Key
 ME.MCTL.R = 0x3000A50F; // Mode & Key
 #endif

 #ifdef EXIT_INTO_SRAM
 //WakeUp Mgm - Wakeup_IRQ_0 - WKUP3
 //(GPIO2 - PA[2] - J16.2) configured as input by default

 //Configure WUP3 to exit from STANDBY
 WKUP.WRER.R = 0x00000008; //Enable WUP3 for wakeup event
 WKUP.WIREER.R = 0x00000008; //Enable Rising Edge of WUP3
 WKUP.WIFER.R = 0x00000008; //Enable Filter of WUP3

 //Configure GPIO[1]
 SIU.PCR[1].R=0x0200;
 SIU.GPDO[1].B.PDO = 0;

 //Flash in Low Power in DRUN Mode - Commented otherwise crash!
 //ME.DRUN.B.CFLAON=1;
 //ME.DRUN.B.DFLAON=1;

 //Exit from STANDBY Mode on backup RAM
 RGM.STDBY.B.BOOT=1;/* Exit from STANDBY Mode on backup RAM */
 RGM.STDBY.B.DRUND_FLA=0;/* Data Flash in Low Power Mode */
 RGM.STDBY.B.DRUNC_FLA=0;/* Data Flash in Low Power Mode */

 /* Enter STANDBY Mode from RUN1 Mode */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x00005AF0; /* Mode & Key */
 ME.MCTL.R = ((vuint32_t)STANDBY_MODE<<28) | 0x0000A50F; /* Mode & Key */

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

42 NXP Semiconductors

#endif
#endif
}

#pragma ghs section text=default

10.5 Wake-up timing
If the main regulator is also off in device low-power modes, then during the exit sequence, the flash is kept in its low-power
state and is switched on only when the Main Voltage Regulator Switch-On process has completed.

NOTE
All exit times quoted in the forthcoming sections are from single examples, and must be
regarded as typical room temperature values. The time duration may vary slightly from
device to device.

10.5.1 Restart after WAIT instruction
WAIT mode supports very short restart latency of less than four system clocks.

10.5.2 HALT mode

10.5.2.1 Halt mode configuration
The following table depicts an example of a typical HALT mode configuration.

Table 16. Typical HALT mode configuration

System
clock

8 KB RAM
option

32 KB RAM
option

CFLASH FMPLL FXOSC SIRC FIRC FIRC DIV

16 MHz Enabled Disabled Low Power Power Down Power Down OFF ON OFF

10.5.2.2 Typical HALT mode wake-up timing
The table below shows typical timing for HALT mode wake-up.

Table 17. Typical HALT mode wake-up timing

HW wake-Up
sequence

HW Wake-Up
Sequence1

CFLASH &
DFLASH

RESET exit

FXOSC startup FMPLL lock
time

ADC power-up

MPC56xx 12 µs 0.5 µs 0 µs See Note1 40 µs 1.5 µs

1. For this HALT wake-up example, the HW wake-up sequence contains the system initialization time.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 43

10.5.3 STOP mode

10.5.3.1 STOP mode configuration
The table below shows a typical STOP mode configuration.

Table 18. Typical STOP mode configuration

System
Clock

8 KB RAM
Option

32 KB RAM
option

CFLASH FMPLL FXOSC SIRC FIRC FIRC DIV

Disabled Enabled Disabled Power Down Power Down Power Down OFF OFF OFF

10.5.3.2 Typical STOP mode wake-up timing
In the following example for STOP mode exit, the HW wake-up sequence is essentially:

• The time taken for the ULPV (Ultra Low Power Regulator) to stabilize and IRC startup (10 µs)
• The main VREG stabilization time (12 µs)
• The time taken for the reset state machine to complete (20 µs)

The CFLASH and DFLASH exit times occur in parallel with the HW wake-up reset sequence, so the user can execute code
from flash after the 42 µs sequence.

The following table shows the typical STOP mode wake-up timing.

Table 19. Typical timing for STOP mode wake-up

HW wake-up
sequence

CFLASH &
DFLASH Low

Power exit

CFLASH &
DFLASH

RESET exit

FXOSC startup FMPLL lock
time

ADC power-up

MPC56xx 42 µs 34 µs 30 µs See Note1 40 µs 1.5 µs

1. For this STOP wake-up example, the HW wake-up sequence contains: ULPV stabilisation, FIRC Start-Up, main VREG
stabilisation and system initialization time.

The plot given in Figure 18 shows a measured exit from STOP mode. The blue line shows a wakeup pin transitioning to a
low state and triggering the wakeup sequence. The yellow line shows an output pin toggling high as caused by the first line of
code executed after STOP recovery.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

44 NXP Semiconductors

Figure 18. STOP mode exit

10.5.4 STANDBY mode

10.5.4.1 STANDBY mode configuration
The following table shows the example of a typical STANDBY mode configuration.

Table 20. STANDBY mode configuration

System
clock

8 KB RAM
option

32 KB RAM
option

CFLASH FMPLL FXOSC SIRC FIRC FIRC DIV

Disabled Enabled Disabled Power Down Power Down Power Down OFF OFF OFF

10.5.4.2 STANDBY mode typical wake-up timing
The following table shows the typical timing for STANDBY mode wake-up.

Table 21. Typical STANDBY mode wake-up timing

HW wake-up
sequence

CFLASH &
DFLASH low-

power exit

CFLASH &
DFLASH

RESET exit

FXOSC startup FMPLL lock
time

ADC power-Up

MPC56xx 787 µs 125 µs 125 µs See Note1 40 µs 1.5 µs

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 45

1. For this STANDBY wake-up example, the HW wake-up sequence contains: ULPV stabilisation, FIRC startup, main VREG
stabilisation and system initialization time.

The scope plot given in Figure 19 shows a device in STANDBY mode being wakened by a transition on a wake-up pin (blue
line). An output is programmed to toggle at the first available line of code. This will not actually be the first line of code.
Since the device was in STANDBY mode, all register content not in PD0 will have had power removed and thus, all register
content will have been lost. Therefore, the first lines of code will be the initialization code which sets up pins, and modes.

Figure 19. Exit from STANDBY

10.5.5 Wake-Up via RESET
The following figure shows the sequence of events after the internal voltage regulators have stabilized shown by the “power-
on RESET” line.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

46 NXP Semiconductors

Figure 20. Typical MPC5604B/C power-on RESET timing

The scope plot below shows the VDD supply going high (blue line) and the RESET pin going high 835 µs later.

Low-power mode exit

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 47

11 Current consumption

11.1 Measurements
From the MPC5604B Microcontroller Data Sheet, available at http://www.freescale.com, typical room temperature values for
MPC5604B are as follows:

RUN at 64 MHz = 51mA

HALT (128 kHz IRC running) = 8 mA

STOP (128 kHz IRC running) = 180 µA

STANDBY (128 kHz IRC Running 32 KB RAM ON) = 30 µA

STANDBY (128 kHz IRC Running 8 KB RAM ON) = 20 µA

NOTE
See the data sheet for the particular family member being used, available at http://
www.freescale.com for typical and maximum values. Always design systems based on
the worst case maximum current.

Current consumption

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

48 NXP Semiconductors

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

12 Common mistakes
When evaluating new hardware and software, it is not unusual for the users to find themselves unable to achieve the low-
power current in the Data Sheet of the particular device of MPC56xx family available at http://www.freescale.com and
measured on Freescale evaluation boards. Sometimes current even increases at low-temperature instead of the proper
behaviour of decreasing. The following checklist has been helpful for bringing up new hardware.

1. Ensure wakeup pins must have either internal or external pullups or pulldowns. If this is not the case, leakage will
increase current. Even if one pin has no internal or external pullups or pulldowns, leakage current will increase. Make a
list of all wake-up pins. Check the schematic to determine if an external pullup or pulldown exists. If not, enable weak
pullup for that wake-up input in WKPU_WIPUER.

a. Check WKPU_WIPUER bit positions. For example, WKUP0 in MPC5607B has register bit position 31, not 0.

NOTE
The only exception is that when a 32 kHz external oscillator is used, those pins
should not have these internal pullups enabled.

2. Double check wake-up pins have internal or external pullups or pulldowns.
a. Watch out for switched power to pullups/pulldowns. During low-power, wake-up inputs must be either below the

input low-voltage threshold or above the high-input threshold.
b. Examine effect of any voltage dividers to wake-up input voltage.
c. Make sure resistors on the schematic are populated to wake-up inputs.

3. Ensure TDO pin has pullup or pulldown for STANDBY mode.
4. Check the device errata for low-power items

a. For example, the document MPC5607B_1M03Y, Rev. 25 AUG 2011 errata e3242: PB[10], PD[0:1] pins
configuration during STANDBY mode. Summary: These pins have both wake-up and analog functionality. The
signal must be either than 0.2*VDD_HV or higher than 0.8*VDD_HV.

NOTE
Leaving the debugger connected during low-power will lead to increased
current consumption.

13 Appendix: Debugging with low-power mode
By default, low-power modes shut off as much power as possible, including power to the debugger connection. To prevent
the debugger from losing connection, and therefore, possibly asserting a reset, the Nexus Development Interface (NDI)
module contains features to maintain a debugger connection. Debuggers may or may not implement this feature.

The controls to maintain the debugger connection are in the Port Configuration Register (PCR) of the Nexus Development
Interface module. These registers are not memory-mapped, and are accessible only through the debugger. Appropriate
debugger scripts must be used to configure these settings.

To maintain a debugger connection, the debugger must set the following:

When exiting STANDBY mode by pin transition or timer wake-up, there are two options for code execution depending on
the configuration of RGM_STDBYBOOT_FROM_BKP_RAM:

• PCRLP_DBG_EN Low Power Debug Enable:

Enables debug functionality to support exit from any low-power mode. Debug functionality is immediately available
for breakpoints.

When enabled, low-power exit takes longer because the state machine adds steps to wait until after a handshake to the
debugger and the response of the debugger to the handshake is complete.

• PCRMCKO_EN MCKO Enable:

Common mistakes

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 49

http://www.freescale.com

Enables clock which will be used in debugger connection.

• PCRMCKO_DIV MCKO Division Factor:

Determines MCK0 relative to system clock frequency. Options are SYSCLK divided by 1 (default), 2, 4, or 8.

Table 22. Low-Power Sequence Summary

Debugger Software Hardware

1 Enables debug functionality for low
power mode exit by setting
NDI_PCR[LP_DBG_EN]=1, as per
user request

2 The user requests low-power mode
entry by writing to ME_MCTL

Device starts to enter low-power
mode, and sets
NDI_PCR[STOP_SYNC] = 1.1

3 Debugger senses the low-power
mode entry by detecting
NDI_PCR[STOP_SYNC] = 1

4 Debugger saves context, and
enables low-power entry to continue
by writing NDI_PCR[STOP_SYNC]
= 0

5 Device enters low-power mode.
SYSCLK is inactive. TDO is held
high.

6 Wake-up event occurs, either by
RTC/API or pin transition and sets
TDO low.

7 Debugger senses TDO low, so it
restores context and then sets
STOP_SYNC]=1

8 Device senses debugger
handshake of
NDI_PCR[STOP_SYNC] = 1,
releases TDO being held low, and
clears NDI_PCR[STOP_SYNC] = 0.

9 Software execution resumes

1. STOP_SYNC is NDI_PCR bit 8. This bit is also known as LP1_SYN in some devices.

NOTE
• Leaving the debugger connected during low-power will lead to increased current

consumption.
• Although STANDBY exit causes a reset, not all registers are reset as in a power-up

reset. Power domain 0 registers are not reset, including: RGM registers, ME
_DRUN_MC register and PCU registers, RTC registers, and CAN SAMPLER
registers.

• The 32 kHz slow external crystal oscillator is always ON by default, but can be
configured OFF in standby by setting the OSCON bit in the Slow External Crystal
Oscillator Control Register.

• Leaving the debugger connected during low power will lead to increased
current consumption.

Appendix: Debugging with low-power mode

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

50 NXP Semiconductors

• After STANDBY entry, the debugger loses connection to the target due to
power gating.

• After STANDBY exit, debugger resync takes longer as the MCU wake-up,
that is, the breakpoints won’t be recognized by the debugger, if placed close
to the beginning of the STANDBY exit code.

Appendix: Debugging with low-power mode

Creating Low Power Applications Using the Mode Entry Module, Rev. 1, 10/2017

NXP Semiconductors 51

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. All
rights reserved.

© 2012–2017 NXP B.V.

Document Number AN4240
Revision 1, 10/2017

http://www.nxp.com
http://www.nxp.com/support
http://nxp.com/SalesTermsandConditions

	Introduction
	The power problem
	Dynamic current
	Static current

	Low-Power feature summary
	Clock description
	Power control unit
	Power domain control

	Mode Entry (ME) module
	Overview
	Low-power modes
	HALT mode
	WAIT instruction
	STOP mode
	STANDBY mode

	Low-Power Peripheral Configuration registers
	Peripheral Control register
	Peripheral Status register
	Mode Enable register
	Software (SW) and Hardware (HW) mode transitions
	Mode Global Status register
	Mode Control register
	Mode Entry module summary

	Pins during low-power modes
	STANDBY mode
	STOP mode

	Low-Power mode entry
	HALT mode entry
	STOP mode entry
	Mode Entry STOP Mode Configuration register

	STANDBY mode entry

	Low-power wake-up features
	Low-power interrupts
	MPC56xxB/C/D wake-up line interrupts
	Wakeup registers
	Low-power timer wake-ups
	External pin wake-up
	Wake-up source determination
	Wake-up interrupt filter

	Low-power mode exit
	Restart after WAIT instruction
	HALT mode exit
	STOP mode exit
	STANDBY mode exit
	Boot from SRAM after STANDBY exit

	Wake-up timing
	Restart after WAIT instruction
	HALT mode
	Halt mode configuration
	Typical HALT mode wake-up timing

	STOP mode
	STOP mode configuration
	Typical STOP mode wake-up timing

	STANDBY mode
	STANDBY mode configuration
	STANDBY mode typical wake-up timing

	Wake-Up via RESET

	Current consumption
	Measurements

	Common mistakes
	Appendix: Debugging with low-power mode

