Freescale Semiconductor
Application Note

Document Number: AN4182
Rev. 0, 08/2010

Different Display Configurations on

the 1.MX31 Linux PDK

by Multimedia Application Division
Freescal e Semiconductor, Inc.
Austin, TX

This application note provides the necessary information,
considerations, and procedures to add or adapt anew Liquid
Crystal Display (LCD) panel to the Board Support Package
(BSP) distribution for thei.M X31 Product Devel opment Kit
(PDK). The application note describes the general LCD
panel information and generalities of the display controller
module. Theapplication note al so describesthe devel opment
process to adapt anew LCD panel to the BSP, considering
that the framework driver structure is aready provided by
the operating system.

NOTE

This application note assumes
that thereader isfamiliar with
the Linux Target Image
Builder (LTIB) and Linux
device driver development
concepts.

1 Introduction

The i.MX31, which isamultimedia processor, supports
several typesof displays. Thedisplay devicesare handled by
aspecial module called the Image Processing Unit (1PU).

© 2010 Freescale Semiconductor, Inc. All rights reserved.

IS L A

Contents

freescale"

semiconductor

Introduction

The IPU module handles other graphic interfacesthat include camerasand 2D graphics accelerators. These
arethe IPU submodul es that are connected by a private DMA interface (IDMA) and is used by the IPU to
transfer data among the modules and between the IPU and external memory.

Figure 1 shows the functional diagram of the IPU module.

o
@ Pixel 3 *

o:j& > | camera | camera | Memory
Interface Processing Interface

v
Image

Enhancement |, IDMA

& Conversion

@ l Memory
== Display Display _

q>

N Interface Processing |
The process of selecting an LCD for a mobile device involves several conflicts with respect to the
requirements. Some of these conflicts are as follows:

» Large amount of data, implying high rate of datatransfer and processing that requires significant
resources

* Flexibility to support various use cases
» Size, cost, and power consumption

Video
Sources

Displays

Figure 1. IPU Functional Diagram

Freescale provides reference designsfor thei.MX family where the functionalities of the LCD devicesare
demonstrated. However, developers find many reasons to replace the display in their products. Features
such as screen size, resolution, weight, power consumption, and price are important in a commercial
multimedia product. Also, many LCD displays become obsolete quickly and is difficult to find the same
LCD panel that isincluded in the reference design. This application note is intended only for the dumb
displays and displaysthat do not have the sharp synchronousinterface. However, the application note also
provides useful information about the smart displays.

NOTE

Do not confuse sharp LCDs with sharp interface. There are plenty of sharp
panels that do not use sharp interface.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

2 Freescale Semiconductor

LCD Generalities

2 LCD Generalities

This section describes the principles of the LCD devices.

2.1 LCD Basics

LCDs are electronic devices that contain array of pixels. These pixels can be either color or monochrome
and are created with a special material that changes the light characteristics that passes through them.
These devices are not able to emit light, and therefore, the backlight unit is also shipped with the panel to
create afull functional display device.

2.1.1 Resolution

In this application note, the term resolution refersto the number of pixelsinan LCD array. The resolution
has two dimensions—horizontal and vertical. Table 1 lists the most common video resolution standards
available in the market.

Table 1. Video Resolution Standards

Video Name Description (ng(ctjatIZ) (E?)igerst) Aspect Ratio
CGA Color Graphics Adapter 320 200 8:5
QVGA Quarter VGA 320 240 4:3
VGA Video Graphics Array 640 480 4:3
NTSC National Television System Committee — — —
PAL Phase Alternating Line (TV) — — 4:3
WVGA Wide VGA 800 600 5:3
SVGA Super VGA 800 600 4:3

NOTE

The maximum resol ution supported by the i.MX31 processor is SVGA.
Therefore, resolutions greater than SVGA are not included in Table 1.

Theresolutions mentioned in Table 1 refer to the landscape orientation of the LCD panels. Inthe landscape
orientation, the horizontal pixels are more than the vertical pixels. However, portrait orientated LCD

panels are aso available in the market with the same standard resol ution where the horizontal and vertical
sizesareinverted. Therefore, the portrait LCD panels have more vertical pixelsthan the horizontal pixels.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 3

V¥ ¢
i

LCD Generalities

Figure 2 shows the portrait and landscape orientations in an LCD panel.

:
& - P
- o
> v =
P

&
freescale® freesca!e

Enabled

Figure 2. Portrait and Landscape Orientations

It isimportant to select a proper orientation for an LCD panel as both the electronic and optical features
are optimized for the applications that use native orientation for the panel. Besides the optical
characteristics, the dumb displays include an embedded L CD controller that draws the pixels from left to
right and top to bottom. To show images or videos on the LCD panel using a non-native orientation, the
display contents are processed to store theimage in abuffer. Theimageisrewritten in away that the LCD
controller expects the pixel information to be sent. This operation is called rotation and the i.MX31
processor includes hardware to perform this operation.

NOTE

It is recommended to select an LCD panel that uses native orientation to
avoid additional image processing.

Figure 3 shows the non-native portrait and landscape orientationsin an LCD panel.

<
4
o
&
abled

@,
-
P
freescale*

free_scafe'*

Figure 3. Non-native Portrait and Landscape Orientations

NOTE

In anon-native orientation, the rotation can be 90°, 180°, or 270°. Also, the
frame should be rotated before sending to the display.

2.1.2 Size

Thesize of an LCD panel is measured diagonally ininches. Since the size directly impactsthe pixel width,
it is common to assume that the size of aVVGA (640 x 480) panel to be larger than a QV GA (320 x 240)
panel asthe VGA panel has greater number of pixels compared to QVGA. However, thisis not always
true. LCD manufacturing processes allow the size and resolution to be independent variables. It isdifficult
to determine the size of apanel fromits resolution alone. Large screenstend to consume more power than
the smaller ones and affect the size and weight of the final product. Also, higher resolutions on smaller
LCD panels can complicate the visibility of on-screen objects for the final user. Therefore, based on the

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

IPU-SDC Generalities

information available in the data sheet, it is difficult to determine if a particular LCD panel fitsthe
application. It isrecommended to view the LCD in any other reference design or demo before selecting an
LCD panel for any application.

2.1.3 Color Spaces

A color space isaway to represent colors. There are two main color spaces—RGB (RGB444, RGB565,
RGB666, RGB888, and RGBAS8888) and YUV (YUV 4:4:4, YUV 4:2:2, and YUV 4:2:0). Thei.MX31
processor supports working with both the color spaces. However, the display panels can receive data only
by using the RGB interface.

2.2 LCD Types
This section describes the different types of LCD displays.

2.2.1 Synchronous Panel (Dumb Display)

The dumb displays or synchronous displays are panels that require microprocessor to send data
continually. In these panels, screen refresh is performed by sending the compl ete frame data continuousdly.
In general, the smart displays are more expensive than the dumb displays, and thisis one of the reasons
for the common usage of synchronous panelsin afinal product. Thisapplication notefocuseson Thin Film
Transistor (TFT) LCD panels that belongs to a special group of synchronous panels.

2.2.2 Asynchronous Panel (Smart Display)

The advantage of smart displaysisthat thei.MX 31 processor isrequired to send the display dataonly when
the image is changed. In these panels, the images can be sent at any time and the screen refresh is handled
by the embedded smart LCD display controller.

3 |IPU-SDC Generalities

This section describes the IPU Synchronous Display Controller (SDC) generalities.

3.1 LCD Interfaces

This section describes the various LCD interfaces with examples.

3.1.1 Synchronous Display Interface

Thei.MX31 SDC can be configured to handle four different types of devices—TFT monochrome, TFT
color, YUV progressive, and YUV interlaced. However, this application note is focused only on the

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 5

V¥ ¢
i

IPU-SDC Generalities

synchronous TFT color interface. Thei.MX31 processor provides a 22-line interface for the TFT color
device and is described in Table 2.

Table 2. Synchronous Display Interface Signals

Signal IPU Signal Description
HSYNC DISPB_D3_HSYNC horizontal synchronization
VSYNC DISPB_D3_VSYNC vertical synchronization
DRDY DISPB_D3 _DRDY data enable or data ready
PIXCLK DISPB_D3_CLK pixel clock
Red Data[5:0] DISPB_DATA[17:12] pixel red component
Green Data[5:0] DISPB_DATA[11:6] pixel green component
Blue Data[5:0] DISPB_DATA[5:0] pixel blue component

The signals and interfaces in the synchronous display system are as follows:

HSYNC

VSYNC

DRDY

PIXCLK

RGB data

Horizontal Synchronization (HSYNC) signal isalso known as FPLINE or
LP. Thissignal indicates the end of aline and the following valid pixels
are part of the next line.

Vertical Synchronization (V SYNC) signal is aso known as FPFFRAME,
FLM, SPS, or TV. Active state of this signal indicates the end of the
current frame. The LCD display should then restart the line index to zero
to draw the next valid datain the first line of the panel.

The active state of the Data Ready (DRDY) or Data Enable (DE) signd
indicates the LCD device that the datain the RGB busisvalid and should
be latched using the Pixel Clock (PIXCLK) signal. When the DE signal is
active, a pixel corresponding to the color described in the RGB busis
drawn with every PIXCLK pulse. This signal always has the value of the
screen width.

The polarity of the PIXCLK signal specifiesif the RGB datais placed on
the bus during the rising or falling edges. Based on the polarities, the
operations are performed in the following ways:

» High polarity indicates that the datais written on the RGB bus during
the falling edges and data is latched into the LCD panel during the
rising edges. Thisisvalid only when the DE signal isactive.

» Low polarity indicates that the data is written on the RGB bus during
therising edges and datais latched into the LCD panel during the
falling edges. Thisisvalid only when the DE signd is active.

The RGB datais transferred to the display through the display interface.
Though the i.MX 31 processor can internally use different types of bits per
pixel, such as RGB565, RGB666, RGB888, and RGBA8888, the display
interfaceislimited to 18 lines. Therefore, any image or video that contains
pixels more than 18 bits (RGB666) cannot be sent to the display. During

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

IPU-SDC Generalities

the RGB to RGB conversion, theless significant bitsareremoved fromthe
pixel and the remaining bits are directly sent to the display interface.

NOTE

Dithering or filtering actions are not performed in this process.

Extrasignals

SPI interface

There are also other signals that are included in the panel interface. These
signals are not part of the display datainterface but are required for afull
functional module. For example, it is common that some panels require a
reset signal and initialization commands. These commands are sent by a
serial interface, such as 12C or Serial Peripheral Interface (SP1). Also, the
embedded touch panel and backlight unit are shipped aong with the
module.

Some L CD displays require an initialization routine through a serial
interface that can be 3-wire, 4-wire, or 5-wire. A seria interface
(SD_D_CLK,LCS1,SD D 10,and SD_D_1) inthei.MX31IPU isnot
used to send serial commands to the LCDs. Thisinterface is not intended
for agenera purpose usage and is used only by the IPU when two or more
asynchronous displays are configured to use the seria interface.

3.1.2 Examples of Synchronous Display Interfaces

This section describes afew synchronous display interfaces.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

IPU-SDC Generalities

3.1.2.1 i.MX31 PDK Epson L4F00242T03 2.7" VGA LCD Interface
Figure 4 shows the interface between the i.M X 31 processor and Epson L4F00242T03 VGA panel.

DISPB_DATA[17:12] RO-R5
DISPB_DATA[11:6] GO-G5 RGB666 480
DISPB_DATA[5:0] BO-B5
RGB666
DISPB_D3_VSYNC VSYNC
DISPB_D3_HSYNC HSYNC
DISPB_D3_CLK PCLK
DISPB_D3_DRDY DE EPSON
L4F00242T03 640
MCIMX31
DISPB_D1_CS(GPIO) XRESET
CSPI1_MOSI DIN
CSPI1 SPI
CSPI1_SS2 XCs
CSPI1_SCLK SCLK
Backlight Touch Panel
LED A LED_K YUl XR| YD| XL
Contrast DISPB_CONTRAST Power
B ooster for
Backlight
CSPI //
MC13783
12S // ATLAS

Figure 4. Interface between i.MX31 and Epson L4F00242T03 VGA Panel

The LCD pandl is shipped with the i.M X31 PDK, and the panel requiresthe HSYNC, VSYNC, DE, and
PIXCLK signals and complete RGB datainterface (DISPB_DATA[17:0]). Also, areset signal and seria
interface (SPI) are required for sending the initialization routine commands. The backlight unit is
controlled by using a Pulse Width Modulated (PWM) signal (contrast signal) that is generated by the
i.MX31 processor, and the touch panel interface is handled by the MC13783 Atlas™ chip.

Every panel hasits own interface and requirements, but this exampleillustrates a typical synchronous
panel interface. Therefore, consider the possibility shown in Figure 4 as the base for the panel interface.
Theideaof baseinterfaceis useful when there are many panelsthat do not use the compl ete interface. For
example, some of the panels do not require the HSYNC, VSYNC, reset, or serial initialization routine to
handle the display signals. These panels use only the DRDY, PIXCLK, and RGB data and expect the

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

8 Freescale Semiconductor

IPU-SDC Generalities

microprocessor to accomplish with the waveforms as there is no way for the LCD panel to handle a
different interface.

The only disadvantage with thisinterface is that the panel does not provide a backlight power booster and
requires an external chip (MAX8595ZETA+T) to amplify the contrast signal.

3.1.2.2 i.MX31 PDK Chunghwa CLAAQ70VCO01 7" WVGA LCD Interface
Figure 4 shows the interface between the i.M X 31 and Chunghwa CLAA070VC01 WV GA panel.

DISPB_DATA[17:12] RO-R5

DISPB_DATA[LL:6] G0-G5 | RGB666 800
DISPB_DATA[5:0] BO-B5
RGB666
CHUNGHWA
DISPB_D3_CLK DCLK CLAAO70VCO1 480
MCIMX31 DISPB_D3_DRDY DE

DISPB_CONTRAST ADJ
Contrast Brightness control for LED B/L

Figure 5. Interface between i.MX31 and Chunghwa CLAAO070VC01 VWGA Panel

Figure 5 showsasimpledisplay interface wherethe HSYNC and VSY NC signalsare not used. Therefore,
the DISPB_D3 VSYNC and DISPB_D3 HSYNC pins can be used for other purposes. Also, as the SPI
interface is not required, it can be used as a chip select (CSPI1_SS2) for the other devices. Additionaly,
the power booster for the backlight unit isincluded in the module, which means that the contrast signal is
directly connected to the display connector.

Apart from these advantages, the WV GA panel has the following disadvantages:

» The display module does not include atouch panel. Therefore, an external LCD panel should be
added to the display module.

* The LCD module does not have areset signal or SPI interface. Therefore, the display cannot be
turned OFF. Thisfeature isimportant particularly for mobile deviceswhere power consumption is
anissue. Therefore, external circuits are required to control the energy consumption of the LCD.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 9

IPU-SDC Generalities

Based on these observations, the complete LCD circuit with the external panel and power control circuitry
isshown in Figure 6.

DISPB_DATA[17:12] RO-R5

DISPB_DATA[11:6] G0-G5 RGB666 800
DISPB_DATA[5:0] BO-B5
RGB666
DISPB_D3_CLK DCLK 480
DISPB_D3_DRDY DE
MCIMX31 External Touch Panel
DISPB_CONTRAST ADJ
Contrast Brightness control for LED B/L VCC
YO| XO| Y1 X1
CSPI //
MC13783
25 // ATLAS
DISPB_D1_CS(GPD) Power Enable MOSFET

Figure 6. Interface between i.MX31 and Chunghwa CLAA070VC01V WVGA Panel with Touch Panel and
Power Control Circuitry

NOTE
These examples are helpful for selecting an LCD pandl.

3.2 Synchronous Display Timing and Signals

This section focuses on the timing and signal waveforms and describes how to configure themin the LCD
panel and i.MX31 display interface. Thefirst step to select an LCD moduleisto refer to the corresponding
L CD module data sheet. The data sheet shows the pin interfaces, initialization routines, and timing charts
for the RGB and serial interfacesif required. An abridged version of the data sheet is also available where
al thisinformationis not included. It is advisable to use the fully documented data sheet. Though thereis
not much difference between the preliminary and final versions, it is always better to use the final version.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

10 Freescale Semiconductor

IPU-SDC Generalities

3.2.1 Timing Concepts

Some important concepts and considerations, which form the base for the LCD interface timing, are given

in Table 3.

Table 3. Timing Concepts

Parameter

Description

Horizontal Back Porch (HBP)

Number of PIXCLK cycles between the HSYNC signal and first valid pixel data

Horizontal Front Porch (HFP)

Number of PIXCLK cycles between the last valid pixel data in the line and the next
HSYNC pulse

Vertical Back Porch (VBP)

Number of lines (HSYNC pulses) between the asserted VSYNC signal and the next valid
line

Vertical Front Porch (VFP)

Number of lines (HSYNC pulses) between the last valid line of the frame and the next
VSYNC pulse

VSYNC pulse width

Number of lines (HSYNC pulses) between the last valid line of the frame and the next
VSYNC pulse

HSYNC pulse width

Number of PIXCLK pulses when the HSYNC signal is active

Active frame width

Is the horizontal resolution, which is the number of pixels in a line. For a WVGA display
of resolution, 800H x 480V, the frame width is equal to 800 pixels.

Active frame height

Is equal to the vertical resolution of the LCD. For a WVGA display of resolution,
800H x 480V, the value of the frame height is 480 lines.

Screen width

For the i.MX31 processor, screen width is the number of pixel clock periods between the
last HSYNC and new HSYNC. This value not only includes the valid pixels but also the
HBP and HFP. Note that this value is not equal to the horizontal resolution of the LCD
panel (numbers of pixels in one line). Equation 1 gives the formula to calculate the screen
width.

SCREEN_WIDTH = ACTIVE_FRAME_WIDTH + HBP + HFP Egn. 1

Screen height

For the i.MX31 processor, screen height is the number of rows between the last VSYNC
pulse and new VSYNC pulse. This value includes all the valid lines, VBP, and VFP.
Equation 2 gives the formula to calculate the screen height.

SCREEN_HEIGHT = ACTIVE_FRAME_HEIGHT + VBP + VFP Eqn. 2

VSYNC polarity

Is the value held by the VSYNC signal to indicate the beginning of a new frame. The
VSYNC polarity can be active low or active high.

HSYNC polarity

Is the value held by the HSYNC signal to indicate the beginning of a new line. The HSYNC
polarity can be active low or active high.

3.2.2 Timing Charts

The following charts are reviewed to clarify the timing issuesin an LCD interface:

» Vertical timing chart
» Horizontal timing chart

e Pixel clock chart

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

11

IPU-SDC Generalities

Additionally, if the display uses aserial interface, refer to another chart that describes the serial interface
and reset. Thisinformation should be extracted from the data sheet when a support for anew LCD panel
isadded. Thisis described with the following example. Consider aVVGA (480H x 680V) LCD panel that
uses the EPSON L4F00242T03 panel interface, which is shown in Figure 4. This means that the display
uses the RGB666, VSYNC, HSYNC, DE, pixd clock, and also requires areset signal and serial interface.

3.2.2.1 Vertical Timing Charts
This section describes the VGA and WV GA vertical timing charts.

VGA Vertical Timing Chart
Figure 7 shows the vertical timing chart for a hypothetic synchronous VGA display (480H x 680V).

SCREEN HEIGHT = 640 + VBP + VFP

I~ g

VSYNC width
VSYNC polarity = LOW ACTIVE

— - .

Data Enable polarity= POSITIVE

DE

F- VBP (Lines) | —— VFP (Lines) —%
RIN[5:0]

GIN[5:0]
BN[5:0]

Line Line Line Line Line Line Line Line Line
1 2 3 4 636 637 638 639 640

\@¢—— ACTIVE FRAME HEIGHT =6 40—}
Figure 7. VGA Vertical Timing Chart

The vertical timing chart is analyzed in the following three stages:

» Thebeginning of aframeisindicated by the VSYNC signal (in this case, when the VSY NC signal
goeslow). The VSYNC period involves a complete frame cycle. During this period, all the pixels
and linesin the frame are sent to the panel. When the VSY NC signal goeslow (asthe VSYNC
signal is activelow), the HSY NC signal immediately marks the beginning of the first line (in this
case, the HSY NC signal goeslow). However, to maintain the LCD timing, the first few lines are
designated for the VBP. During the VBP, the DE signal is not present and the panel ignores the
pixel datain the busin all these lines.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

12 Freescale Semiconductor

IPU-SDC Generalities

» After the VBP, the DE signal appearsin the boundaries of the HSYNC period (refer to
Section 3.2.2.2, “Horizontal Timing Charts,” for more information regarding the DE signal during
the line cycle). Consequently, the DE signal appears during all the valid lines (with a vertical
resolution of 640). During thistime (ACTIVE FRAME HEIGHT), the LCD panel latchesthe RGB
data on all the lines and draws them to the screen.

» During the VFP, extralines (HSY NC cycles) appears. In this stage, the DE signal remainsinactive
and the panel discards any information in the RGB bus. The frame ends when the next VSYNC
signal is asserted (goes low).

Table 4 gives the range of the timing featuresthat is similar to the one provided the data sheet.
Table 4. VGA Vertical Timing

Parameter Symbol Minimum Typical Maximum Unit
Screen Height or Vertical Cycle VP — 665 — Line
VSYNC Pulse Width VSW 5 10 15 Line
Vertical Back Porch VBP 5 10 15 Line
Vertical Front Porch VFP 5 5 5 Line
Active Frame Height VDISP — 640 — Line
Vertical Refresh Rate FV — 60 — Hertz

From Figure 7, the following features are verified:

* TheVSYNC polarity is active low, which means that the vertical synchronizationisnormally in
the high state and goes low to indicate the beginning of a new frame.

* TheVSYNC pulsewidth (VSW) hascertain flexibility. Therefore, thetiming can be set using more
than onevalue. It isrecommended to use thetypical valuesor values closeto them. Inthisexample,
the typical value istaken as 10 lines.

 TheVBPand VFP values are measured in lines as in HSYNC pulses. In this example, VBP is 10
linesand VFPis 5 lines width.

* TheVSYNC width isincluded in the VBP stage, which means that the VBP starts when the
VSYNC signal is asserted and not when the VSYNC signal returns to normal state.

Using these values, the screen height or vertical cycle (VP) is calculated as 665 lines. In some cases, the
value of theVBP and VFP arenot givenin lines, but in nanoseconds (ns) or milliseconds (ms). Inthiscase,
additional calculations should be performed to find the number of lines required to accomplish the
corresponding timings.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 13

IPU-SDC Generalities

WVGA Vertical Timing Chart

If an LCD panel, such as the hypothetical WV GA (800H x 480V), is used as described in Figure 5 and
Figure 6, which does not use the HSYNC and VSY NC signals, the waveforms are analyzed in another
perspective as shown in Figure 8.

F— SCREEN HEIGHT (VP) =480+ VBK — ———pp|

—Jp ACTIVE SCREEN HEIGHT (VDISP) = 480 q¢—

—— VBK ——p —— VBK ——p

DE

GIN[5: 0] L

BN[5:0] Line Line Line Line Line Line Line Line Line
480 1 2 3 477 478 479 480 1

DCLK

Figure 8. WVGA Vertical Timing Chart

Table 5 gives the range of the timing features used in Figure 8.
Table 5. WVGA Vertical Timing

Parameter Symbol Minimum Typical Maximum Unit
Screen Height or Vertical Cycle | VP 490 500 520 Line
Vertical Blank VBK 10 20 40 Line
Active Screen Height VDISP 480 480 480 Line
Vertical Refresh Rate FV 55 60 65 Hz

In this cases, the VSYNC width, VSY NC polarity, VBP, and VFP are not exposed in the chart. Even if the
VSYNC signal is not used, these values are required to configure the i.MX31 display interface. These
waveforms are used to understand the vertical cycle behavior. For the i.MX31 processor, the sequence
remainsthe same. That is, the vertical cycle startswith the VSYNC signal, then comes the VBP, followed
by the active frame areaand the VFP appears until the VSYNC signal isasserted again. Thetip to find the
VSYNC width, VBP, and VFP is based on the fact that these events happen during the vertical blank
period.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

14 Freescale Semiconductor

IPU-SDC Generalities

Figure 9 shows the WV GA vertical timing chart with the imaginary VSYNC signal.

SCREEN HEIGHT (VP) =480+ VBP +VFP 3

VBP F_
J‘\ Imaginary VSYNC polarity = ACTIVE LOW

—

—>

VBP F_

J Imaginary VSYNC width

Imaginary
VSYNC

VFP —

VFP

<_VBK_’ ‘_VBK_’

DE

GIN[5: 0]

BN[5:0] Line Line Line Line
480 1 2 3

Line Line Line Line Line
477 478 479 480 1

DCLK

Figure 9. WVGA Vertical Timing Chart with Imaginary VSYNC Signal

The VSYNC signal may not be mapped to any pin. Thissignal is used only as the base to calculate the
VFP and VBP. Asthe VSYNC signal is not used, the signal can be set as active low or active high.
However, it isrecommend to set the VSY NC signal as activelow. Though the VSY NC width isnot astrict
criterion, in these cases, the VSY NC width istaken as one line length (VSW = 1).

To find the VBP and VFPR, the Vertical Blank (VBK) period is split into two parts—the first part isfor the
VFP before the VSYNC signal is asserted and the other part is for the VBP. The sum of these two values
should fitinthe VBK period. Though the VBK period can be splitin any ratio, it is suggested to leave the
imaginary VSYNC in the middle of the blank period, which means that the VBP and VFP values should
be equal or aimost equal.

Using this example, and considering that VBK is 20 lines (typical), the VBP and VFP values should be
equal to 10 lines. Based on this information, the vertical timings are given in Table 6.

Table 6. WVGA Vertical Timing and Porches

Parameter Symbol Minimum Typical Maximum Unit
Screen Height or Vertical Cycle |VP 490 500 520 Line
VSYNC Pulse Width VSW 1 1 1 Line
Vertical Back Porch VBP 1 10 40 Line
Vertical Front Porch VFP 0 10 39 Line
Vertical Blank VBK 10 20 40 Line

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

15

IPU-SDC Generalities

Table 6. WVGA Vertical Timing and Porches (continued)

Parameter Symbol Minimum Typical Maximum Unit
Active frame height VDISP 480 480 480 Line
Vertical refresh rate FV 55 60 65 Hz

3.2.2.2 Horizontal Timing Charts
This section describes the VGA and WV GA horizontal timing charts.

VGA Horizontal Timing Chart

The data sheet a so includes another chart that describes the line period and is shown in Figure 10.

< SCREEN WIDTH (Horizontal cycle) = 480 + HBP + HFP

ol
HSYNC width
HSYNC polarity = LOW ACTVE

— — \
HSYNC
Data Enable polarity = POSITIVE
DE ~a
PXCLK
F— HBP (Lines) - \¢— HFP (Lines) —%
RIN[5:0]
GIN[5:0]
BN[5:0]
Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel
1 2 3 4 476 477 478 479 480

Figure 10. VGA Horizontal Timing Chart

This chart is analyzed in the following three stages:

* Theline cycle beginswhen the HSY NC signal is asserted (in this case, when the signal goes low).
Then, the HBP stage appears. During thistime, the DE signal remains inactive.

* The horizontal active area (active frame width) begins when the DE (which is active high) signal
is asserted. When the DE signal is active, the panel |atches the RGB data placed in the bus and
draws anew pixel on the screen for every PIXCLK pulse.

» The DE width isaways equal to the horizontal resolution of the panel, (in this case, the DE width
is 480 pixels length) and the active area ends when the DE signal is deasserted. After the active
area, the HFP occurs and all the pixelsin the line are drawn. The line cycle ends when the new
HSYNC pulse is asserted.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

16 Freescale Semiconductor

The horizontal timings are given in Table 7.

Table 7. VGA Horizontal Timing

IPU-SDC Generalities

Parameter Symbol Minimum Typical Maximum Unit
Screen Width or Horizontal cycle HP 495 601 741 PIXCLK
HSYNC pulse width HSW 5 20 75 PIXCLK
Horizontal back Porch HBP 5 60 75 PIXCLK
Horizontal front porch HFP 5 41 75 PIXCLK
Active Frame Width HDISP — 480 111 PIXCLK

WVGA Horizontal Timing Chart

The WV GA horizontal timing chart and table in the data sheet are similar to the WV GA (800 H x 480 V)
example shown in Figure 11 and Table 8, respectively.

%_ SCREEN HEIGHT (VP) =800+ HBK =~

DE

¢—— HBK —p

GIN[5:0]

BN[S:0] pixel

—— HBK —p)

Pixel Pixel Pixel

PixelPixel PixelPixel

Pixel

800 1 2 3 797 798 799 800
DCLK
Figure 11. WVGA Horizontal Timing Chart
Table 8. WVGA Horizontal Timing
Parameter Symbol Minimum Typical Maximum Unit

Screen Width or Horizontal Cycle |HP 850 900 950 PIXCLK
Horizontal Blank Period HBK 50 100 150 PIXCLK
Active Frame Width HDISP 800 800 800 PIXCLK

The values of the HBP, HFP, and HSY NC width are calculated using the same procedure used in the
Section, “WVGA Vertica Timing Chart.”

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

17

IPU-SDC Generalities

The horizontal timing diagram with the imaginary HSYNC signal is shown in Figure 12.

“——— SCREEN HEIGHT (VP) = 800 + HBP + HFP ——>

HBP F_

Imaginary HSYNC /VJ J

HSYNC Polarity = ACTIVE LOW

—

HBP F_

—p HP |¢—

4—— HBK —p 4—— HBK —p

DE

ceo | [RSSEERR] | | ([[[| [OOSR |
GIN[5:0]

BIN[5:0] pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel
800 1 2 3 797 798 799 800 1
DCLK
Figure 12. WVGA Horizontal Timing Chart with Imaginary HSYNC Signal
Table 9 gives the range of the timing features used in Figure 12.
Table 9. WVGA Horizontal Timing and Porches
Parameter Symbol Minimum Typical Maximum Unit
Screen width or Horizontal cycle HP 850 900 950 PIXCLK
HSYNC pulse width HSW 1 1 1 PIXCLK
Horizontal back porch HBP 1 50 150 PIXCLK
Horizontal front porch HFP 0 50 149 PIXCLK
Horizontal blank period HBK 50 100 150 PIXCLK
Active frame width HDISP 800 800 800 PIXCLK

3.2.2.3 Pixel Clock Timing Charts
This section describes the VGA and WV GA pixel clock timing charts.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

18 Freescale Semiconductor

IPU-SDC Generalities

VGA Pixel Clock Timing Chart

The waveform characteristics and table for the VGA pixel clock in the data sheet are smilar to Figure 13
and Table 10, respectively.

RIN[5:0]
GIN[5:0] Invalid Data Pixel 1 Pixel 2 Pixel 3

BIN[5:0]

Figure 13. VGA Pixel Clock Timing Chart

Table 10. VGA Pixel Clock Timing

Parameter Symbol Minimum Typical Maximum Unit

Pixel clock frequency PCLK — 24 — MHz

An important feature regarding the pixel clock (DCLK) is to understand when the LCD panel latches the
RGB data. This characteristic isimportant because the i.M X31 processor must prepare the data one edge
before the LCD latches the data into the bus. In this case, the data is latched by the LCD panel in DCLK
rising edges. Therefore, thei.MX31 processor should be configured to write the RGB datainto the bus
during the DCLK falling edge. In this manner, the data is made ready and stable for the panel to read the
data

The clock polarity isset inthe DI_DISP_SIG_POL i.MX31 register, which is located under the

D3 _CLK_POL hitfield. Figure 13 showsthetypical inverse clock polarity. Also, the user should be aware
that the maximal display clock rate cannot be greater than aquarter of the high speed processing clock rate.
For example, the HSP_CLK signal inthei.MX31 PDK BSPis 133 MHz. Therefore, the maximum pixel
clock is 133 MHz + 4 = 33.25 MHz. However, most of the LCD displayswork at a frequency lesser than
the typical value.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 19

|
y

'
A

IPU-SDC Generalities

WVGA Pixel Clock Timing Chart

The waveform characteristics and tablefor the WV GA pixel clock inthe data sheet issimilar to Figure 14
and Table 11, respectively:

DCLK

DE

RIN[5:0]
GIN[5:Q] Invalid Data Pixel 1 Pixel 2 Pixel 3
BN[5:0]

Figure 14. WVGA Pixel Clock Timing Chart

Table 11. WVGA Pixel Clock Timing

Parameter Symbol Minimum Typical Maximum Unit

Pixel clock frequency PCLK 25 27 32 MHz

In contrast to the VGA panel, the WV GA latches the RGB in the falling edges of the DCLK signal.
Therefore, thei.M X 31 processor should be configured to writethe RGB datainto the bus during the DCLK
rising edge. In this manner, the datais made ready and stable for the panel to read the data. Note that the
waveform characteristics in Figure 14 shows the straight clock polarity.

Data Polarity

Data polarity is the value of the signalsin the RGB bus that the LCD recognizes as active. This can be
described with an example where thei.M X 31 processor triesto draw ared pixel (only the red component)
by using an RGB565 interface with the following data polarity:

» |If the LCD uses straight polarity, the value in the bus becomes 0xF8000, which means that all the
RGB bits are high and the rest of the bits are low.

* If the LCD usesinverse data polarity, the value in the bus becomes 0x07FF, which means that the
red bits are low and all other bits are high.

Both the values, OxF8000 and OxO7FF, represent the red color, and the difference in the values is caused
by the data polarity in the LCD panel. Thisfeatureis configured usingthe D3_DATA_POL hit fieldinthe
DI_DISP_SIG_POL i.MX31 register.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

20 Freescale Semiconductor

IPU-SDC Generalities

3.2.3 Custom LCD Timing
This section describes the VGA and WV GA custom LCD timings.

3.2.3.1 VGA Custom LCD Timing
This section describes the reset signal and serial command interface.

Reset

Many LCD panelsinclude an LCD controller that requires an external system reset. If the LCD mentions
the usage of thissignal, then the user should find the timing regarding this pul se.

The reset signal and its timing are shown in Figure 15 and Table 12, respectively.

—Pp TRR —

< TRW > v

XRESET /
viL
N\ /]
Figure 15. Reset Signal
Table 12. Reset Signal Timings
Parameter Symbol Minimum Typical Maximum Unit
Reset width TRW 15 — — ns
Reset rising time TRR — — 10 ns

From Figure 15, it can be observed that the reset signal isactive low. This means that reset signal is high
during normal operations. The reset signal should below for at least 15 nsfor it to be considered asavalid
reset. Also, therise time of the reset signal isrestricted to 10 ns. Generally, the reset pin is controlled by
the General Purpose Input Output (GPIO) in the i.M X31 processor.

NOTE

It isrecommended not to use the RC circuit to generate the reset signal asit
restricts the rise time of the signal to 10 ns.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 21

wr
PRt

IPU-SDC Generalities

Serial Command Interface
If the LCD panel hasaserial command interface, achart similar to Figure 16 isincluded in the data sheet.

xcs | |_| I
<t L

DIN

A0 C7 C6 C5 C4 C3 C Cl1 cCoO AO P7 P6 P5 P4 P3 P2 P1L PO

— D | — COmmand >l—s | Paramete! m—1

> [

Figure 16. SPI Command Interface Signals

This application note does not review al the serial interfaces of an LCD. The protocols and data formats
aredescribed in the data sheet, and the user should have knowledge about the synchronous serial interfaces
to program the serial interface settings. For more information, refer to the Configurable Serial Periphera
Interface (CSPI) chapter in the MCIMX31 and MCIMX31L Applications Processors Reference Manual
(MCIX31RM)

3.2.3.2 WVGA Custom LCD Timing
There are no custom signals regarding the panel interface as the WV GA panel does not require any reset
or initialization.

3.3 LCD Panels Supported by i.MX31

The i.MX31 processor can support up to four displays ssmultaneoudly. Table 13 lists the various types of
displays that are handled by the display controllers.

Table 13. Displays Supported by i.MX31

Display Display Type Interface

DISPO Asynchronous Parallel interface only

DISP1 Asynchronous Serial and parallel interface

DISP2 Asynchronous Serial and parallel interface

DISP3 Synchronous RGB interface (HSYNC, VSYNC, PIXCLK, up to RGB666)

Only one of the LCD display controllersin the i.MX31 processor is synchronous (dumb display).
Therefore, the application note focuses on the DISP3 controller. The DISP3 RGB interface is multiplexed
with all the other asynchronous parallel interfaces. This means that the data cannot be sent to the

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

22 Freescale Semiconductor

Display Configuration in Linux

synchronous display (DISP3) and another parallel device at the same time. Instead, thei.MX 31 processor
sends data to the asynchronous panel (smart display) when the synchronous interface is inactive (during
HFP, HBP, VFP, and VBP). Thisisthe reason for the frame rate in smart displays gets affected when
multiple displays are attached to the i.MX31 processor.

The synchronous LCD interface in the i.MX31 processor is flexible and handles various types of LCD
devices with the following characteristics:

» Synchronous display (dumb display)
* RGB interface (RGB666 maximum)
* Resolution not greater than SVGA

» Utilizes at least the DE and pixel clock signalsto latch the RGB data (some LCDs require the
HSYNC and VSY NC signals, which are also supported by the i.MX31 processor)

* Pixel clock frequency lower than 33.25 MHz

Also, thei.M X31 processor can handle dump displays with the sharp interface. However, this support is
limited to certain model s only. For more information regarding thetiming restrictions, refer to the Interface
to Sharp HR-TFT Panels section in the MCIMX31 and MCIMX31L Multimedia Applications Processors
(MCIMX31_5).

4 Display Configuration in Linux

The following sections describe how to add anew panel to the operating system. Thisincludesthe general
display infrastructure in Linux, implementation of the display infrastructureinthei.M X family, and afew
examples.

4.1 Linux Framebuffer Overview

This section describes the basic concepts and structures used in the Linux framebuffer.

4.1.1 Definition and Concept

Framebuffer concept is related to the graphics display video controller. Framebuffer can be viewed as a
memory buffer for the video controller that containsa full frame of data. This frame of data becomesthe
information, which is shown on the display. Theinformation provided to the frame consists of color values
for each pixel.

In Linux, the framebuffer isimplemented as a char device. An accurate definition for the Linux
framebuffer implementation is provided by Geert Uytterhoeven in the kernel package document,
—../linux-2.6.xx/Documentation/fb/framebuffer, and isasfollows:

The framebuffer device provides an abstraction for the graphics driver. It represents the framebuffer of
some video hardware and allows application software to access the graphic hardware through a
well-defined interface. Therefore, the software is not required to know anything about the low-level
interfaces.

The framebuffer infrastructure is easy to use and provides freedom for the user applications to access the
video memory directly (by usingthemmap () function). Astheframebuffer isimplemented asachar device,

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 23

Display Configuration in Linux

the user applications can interface with the device by using the common system calls such as open (),
read (), write (), ioctl (), and so on (these functions are part of the file operation interface that every char
device should have). Themmap () function mapsfiles or devicesinto the program memory. In this case, the
video buffer areais resource mapped. Therefore, with the usage of the mmap () function, the function gets
access to the user space memory, which is equivaent to the hardware video framebuffer. As aresult, the
user gets a pointer to the framebuffer memory and the changes can be made directly in this memory that
gets reflected on the display. A similar procedure can be done using the write () and seek () operations.
However, the operations performed by these functions are time consuming asthey arerequired to be called
several timesto perform or cover a determined area in the framebuffer. These operations include change
in a particular section of the framebuffer, change in the display area, and so on.

4.1.2 Linux Framebuffer Structures

The framebuffer in Linux providesaset of structuresthat are employed for user-space applications. These
are the most important elements that should be considered when a new panel driver is developed.

The most important data structures in the Linux framebuffer are described as follows:

NOTE

For more information and full definition of each structure, refer to the
.../include/linux/fb.h file.

* struct fb_fix screeninfo—CONtainsfixed parametersfor the graphics card and its controller. An
example of asimilar parameter iSunsigned long smem start (USed at start of the framebuffer
memory). This structure can be used in the user applications.

Some of the other important parameters that are used in the structure are as follows:

— _ u32 smem len—Trefersto the length of the framebuffer memory
— _ u32 type—Tefersto the pixel format

* struct fb var_screeninfo—CONtains variables or alterable parameters for the graphics
card/controller. These parameters refer to the features such as resolution and number of bits per
pixel (__u32 vits per pixel) that are configured by the user. These parameters also contain
structures that define the length and bit offset for each colors (for example, struct fb_bitfield).
The fb_var screeninfo Structure can be used in the user applications.

Some of the other important parameters that are used in the structure are as follows:

— _ u32 xres—Visibleresolution along the x axis
— _ u32 yres—Visibleresolution along they axis
— _ u32 xoffset—Offset from virtual to visible resolution along the x axis

* struct fb bitfielda—contains the detailed information of each color in apixel (blue, green, and
red). Thefields of this structureinclude w32 offset (refersto beginning of the bit field),
_u32 length (refersto the length of the bit field), and the most significant bit flag. The
fb_var screeninfo Structure contains one structure for each color (red, green, and blue).

The tb bitfield Structureisasfollows:

struct fb bitfield {
__u32 offset;/* beginning of bitfieldx/
__u32 length;/* length of bitfield*/

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

24 Freescale Semiconductor

Display Configuration in Linux

__u32 msb_right; /* != 0 : Most significant bit is */

/* right */
}i
An example for the structure fields that contains the detailed information of each color in a pixel
isasfollows:
Consider acasein aconfiguration where the mode is RGB888 with a pixel width of 3 bytes. Then,
the structure parameters takes the following values:

red.length= 8 Jred.offset= 24
green.length= 8 ' green.offset =
blue.length= 8 ' blue.offset = 8

struct fb ops—Ccontains function pointersto the framebuffer operations. These operations are
from the basic or common driver functions such as the open and rel ease function operations that
are oriented to the parameter settingsor ioct1 () calls. Some of these functions are as follows:

— int (*fb open) (struct fb info *info, int user)—O0Opensthe fb device and passesthe
fb_info Structure pointer as the argument
— int (*fb set par) (struct fb info *info)—SetSthe video mode and other parameters

according to the contents of the var (fb_var screeninfo) €eement, which islocated in the
fb_info Structure pointer. This structure pointer is passed as an argument in this function

— int (*fb blank) (int blank, struct fb_info *info)—oOperatesto blank the display by using
the £b_info Structure pointer as an argument

16

— int (*fb_ioctl) (struct fb_info *info, unsigned int cmd,unsigned long arg)———pEonrnﬂS
the input/output operations such as sending request for the structure values or configuring
structure values by passing the fo_info Structure pointer as the argument

— int (*fb mmap (struct fb info *info, struct vm area struct *vma)——exexlﬂesthelTwnap
instructions by passing the £b_info Structure and virtual memory area structure pointers as the
arguments

struct fb videomode—iS USed when the user requires to add support for a new panel. Various
information about the new panel such as the name, resolution, pixel clock, synchronization
timings, and margins are referred in this structure. For more information about this structure, refer
to Section 4.3.1.2, “Panel Configuration.”

The fb_videomode Structureisasfollows:

struct fb videomode {
const char *name;/* optional */
u32 refresh;/* optional */
u32 xres;

u32 yres;

u32 pixclock;

u32 left margin;

u32 right margin;

u32 upper margin;

u32 lower margin;

u32 hsync_len;

u32 vsync_len;

u32 sync;

u32 vmode;

u32 flag;

}i

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 25

|
y

'
A

Display Configuration in Linux

* struct fb_info—IiSthe most important structure in the framebuffer framework. The
fb_fix_screeninfo, fb_var screeninfo, fb_bitfield, fb_ops, @Nd fb_videomode Structuresare
declared in this structure. Many structures and elements such as pointers to devices, event queue,
or monitor specifications are declared in this structure. The structure also contains structures that
are enabled depending on the conditional building such as if the support for backlight is enabled.
When aframebuffer driver getsregistered to the kernel, the framebuffer driver usesa pointer to the

structures that contain information (into several different structures) about the specific hardware
panel, which isin use. This structure is visible only to the kernel and is as follows:

struct fb_info {

struct fb var screeninfo var;/* Current var */
struct fb fix screeninfo fix;/* Current fix */
struct fb monspecs monspecs;/* Current Monitor specs */
struct work struct queue;/* Framebuffer event queue */

struct fb cmap cmap; /* Current cmap */
struct fb videomode *mode;/* current mode */

struct fb_ops *fbops;
struct device *device; /* This is the parent */
struct device *dev; /* This is this fb device */

Important points about the framebuffer framework are as follows:
» The framebuffer deviceis similar to the /dev/men char device (or /dev/fb* char device) when the

deviceisused in auser-space. In this case, the file operations performed in any char device (open,
read, write, aNd mmap) can be performed in the framebuffer device.

* A good example for aframebuffer driver isthe virtual framebuffer that is located in the
../drivers/video/vtb.c file. Thisimplementation requires some actions that should be followed
for the development of any framebuffer driver. These actions are as follows:

— Filling the fix and var structuresinthe rb_info Structure that istargeted to the panel in use.

— Filling the file operation structures and the driver information for the £»_info Structure. This
action initializes the hardware and memory area and registers the framebuffer driver using a
pointer tothe fb_info Structure.

4.2 Linux Framebuffer for i.MX

This section accounts the implementation side that describes the framebuffer main file
(../arivers/video/fbmenm.c) and all thei.MX framebuffer implementation sources. These implementation
sources provide information about the most important functions, structures, and a general flow chart for
the initialization process.

The LCD driver and framebuffer implementation in thei.MX family uses the framebuffer framework for
the hardware accessibility. Once the LCD driver isloaded (the LCD driver is selected in the kernel
configuration screen for the graphics support while the kernel is configured), the hardware can be accessed

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

26 Freescale Semiconductor

Display Configuration in Linux

using the specia node, b+, (which islike any other char device—refer to Section 4.1.2, “Linux
Framebuffer Structures,”) that islocated in the /aev directory. This directory residesin the downloadable
Linux image.

The usage of the /dev/fp+ node as an access mechanism alows some of theioctl functions to interact,
set, or get information from the device. Therefore, creation of a software abstraction layer helps the user
to operate without the low-level knowledge.

The ioct1 function performs the following operations:
* Requestsinformation such as name, organization, addresses, and length
* Requests and changes the variable information about the hardware such as geometry, depth, color,
and timing
» Obtains and sets the color map parts

Thei.MX framebuffer implementation interacts with the generic framebuffer driver and is described in
Section 4.2.1, “Initialization Process.” This section provides a general description of the initialization
process with a descriptive flow chart that shows the different stages of the framebuffer implementation.

42.1 Initialization Process

This section describes the initialization flow for an LCD panel, which includes graphics element reviews
for the framebuffer implementation. This section a so describesfilesthat are important for the framebuffer
implementation.

The framebuffer initialization process contains several steps where specific functions for resource

initialization and hardware probing or testing are called. Most of thefilesthat take an important part in the
framebuffer startup should beinitialized and passed through the binding process. Therefore, functions such
as init () and probe () are constantly described since these take an most part of the initialization startup.

The steps for the framebuffer initialization are as follows:

1. Kernel startup—the framebuffer initialization process, which is performed in the mx3 3stack.c
file, startswhen the kernel callsthe functions associated with the board configuration (in this case,
withthei.MX31 3-Stack board). Themxc_voard init () functiondoestheinitialization of the most
important systems on the board. Among these systems, the framebuffer is started by registering a
platform device.

2. Framebuffer initialization—is performed in the tbmen. c file, and the framebuffer driver
initialization is donein this phase. However, the framebuffer driver is not attached to a specific
platform in this phase. The framebuffer driver starts the resources and important structures (most
of the structures are described in Section 4.1.2, “Linux Framebuffer Structures,”) using the
fomem_init function (that registers the device).

3. IPU initialization—is performed in the ipu_common.c file. In this stage, the IPU modules are set
up that includes the following:

— Registration of the IPU modules as a device in the system
— Initial configuration of the IPU modules and processes dedicated to attend the IPU tasks, such
as the cameraand LCD event handling

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 27

|
y

'
A

Display Configuration in Linux

4.

i.MX framebuffer initialization—is performed in the mxcfo. c file. Inthis phase, the next software
layer, which isrelated to the framebuffer implementation in thei.MX family, isinitialized and
tested with all the components of that layer. Thisinitialization process as well as most of the
activities performed by the framebuffer calls to the IPU functions. The initialization process
includes the registration of the framebuffer for the i.MX as a platform driver. However, most of
the processis covered by the probe function where the framebuffer gets registered among the
other resource settings. The framebuffer probe function executes the tests related to the IPU, such
asinitializing modes for the SDC module, executing testsfor 1ru_1ro, enabling channels,
disabling channels, and registering the framebuffer.

For new LCD panels, a specific panel driver, which issimilar to the mxcto. c file, ismadeandis
described as follows:

Specific panel driver (nxc_claa wvga.c Of mxc_epson vga.c)— T hedriver for thei.M X platform
can be seen asageneric driver that worksfor several panels(seethemxc modedn. c file). Asthe new
panel hasadifferent interface, aspecific driver should be madefor thistype. In this case, the driver
should be similar to the mxctb . ¢ file. However, the new driver should be more specific. Therefore,
the usage of theinitiaization and probe functions are similar in this new driver. However, this
driver does not replace the mxcfo. ¢ file, but iscomplementary to thisfile. Therefore, to enable the
panel for the proper functionality, both the drivers should be enabled.

VideodLinux (v4l) initialization—is performed in the mxc_va12_output.c file. At thispoint, all
the elements to set up the framebuffer and display are set. However, to use the video, an extra step
isrequired. The packages that contain the generic drivers follow the v4l2 standard. This driver
can be used for signal capturing aswell as for the output. The driver isloaded after setting up the
framebuffer and IPU. The output driver makes use of the IPU post-processing functions for its
usage. Thisdriver also contains the initialization and probe routines.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

28

Freescale Semiconductor

Display Configuration in Linux

Figure 17 shows theinitialization flow chart for an LCD panel.

| Eemel

!

Board

F

mz3 3stack.c = mzxc_init lcd || m=3 3stack.c = mzc_init fb

Feneric Framebuffer
Initialization

fbmem c = fbmem_init

v

IPTT Instralization

o ipu commeon.c =¥ ipu_init = ipu_probe

!

tpu_device.c = register ipu device

1. WK Framebuffer
Tnitialization

r

mzcfb o = mzcfb init = mzc_probe

.

IPTT channel disablefenable = IPTT
IR Testing —* Framebuffer Eegister

Panel Specific

»| mxc_xEmc = myEc_xxx init = mEc_=Zxx probe

Initialization ¢
IPTT channel disablefenable = IPTT
IEQ Testing
Va2 Output » ipu commeon.c =¥ ipu_init = ipu_probe
Initializaticn

Figure 17. Initialization Flow Chart

4.2.2 Files and Important Elements
This section describes the files mentioned in Section 4.1.1, “Definition and Concept,” and Section 4.2.1,

“Initialization Process,” and the files that provide important information about the framebuffer

infrastructure. These files are as follows:

° /arch/arm/mach-mx3/mx3 3stack.c.

Thisfile containstheinitialization and set up routinesfor thei.MX 31 3-Stack board. Theseroutines

arecalled at the time of the kernel startup. The most important routine in thisfileis
mxc_board_init. Thisroutine calls several module specific routines, which includes the

mxc_init_fb routinethat registersaplatform device for theframebuffer. |nformation such asname,
DMA mask, and some platform data (a char variable of type, panel) are provided to this routine.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

29

Display Configuration in Linux

Themxc board init routineis set among the clock, GPIO modules, Power Management IC
(PMIC), and soon. Also, thereisasmall LCD structureinitializationinthemxc_init_1ca function.
This registers the platform device structure for the LCD.

Themx3 3stack.c fileisasfollows:

#if defined (CONFIG FB MXC_SYNC PANEL) || defined(CONFIG FB MXC SYNC PANEL MODULE)
static const char fb default mode[] = "Epson-VGA";

/* mxc lcd driver */

static struct platform device mxc fb device =

.name = "mxc_sdc_fb",

.id = o,

.dev = {
.release = mxc_nop release,
.platform data = &fb default mode,
.coherent dma mask = OxFFFFFFFF,
b

}i

static void mxc _init fb (void)

{

(void)platform device register (&mxc fb device) ;

}

static struct platform device lcd dev =
.name = "lcd claa",
id = 0,
dev = {
.release = mxc_nop release,
.platform data = (void*)&lcd data,

b
}i

static void mxc init lcd(void)

{

platform device register(&lcd dev) ;
}
Figure 18 shows the flow chart of the mx3 3stack.c file.

Board Initiali zation mx3_3stack.c > mxc_board_init

mx3_3stack.c > mxc_init_fb

Device Registration for the framebuffer and
lcd

mx3_3stack.c > mxc_init_fb

Figure 18. mx3_3stack Flow Chart

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

30 Freescale Semiconductor

Display Configuration in Linux

° /drivers/video/fbmem.c.

This fileincludes the following:
— Framebuffer subsystem initialization for the Linux
— All thefile operations (fops) that are common for a char device

— mmap () Memory map function that iswidely used in this case (not always used in regular char
devices)

— Panel framebuffer driver routines for the registered and unregistered framebuffer devices
— Functions related to the display of logos

Important functions and structuresin the fomen. c file are described as follows:

— Module definition and registering functions:

struct fb info *registered fb[FB MAX] _read_mostly—iSthEQ'Obé\' fb_info Structure
for the framebuffer system

int num registered fb __ read mostly—iSan int variable and holdsthe quantity of
framebuffers that are registered in the system

static int _ init fbmem init (void)—initializes the framebuffer subsystem as achar
driver that is passed asa parameter into the fops table. These parameters are passed with the
pointers to each fops function. This function also creates a class for the graphics.

static void _ exit fbmem exit (void)—terminatesthe char driver and deletesthe graphics
class

int register framebuffer(struct fb info *fb info) —registers the framebuffer device
by using the rb_info Structure as the argument

int unregister framebuffer (struct fb info *fb info) —unregi stersthe framebuffer
device by using the fb_info Structure as the argument

— fops:

file operations fb fops—iSastructure that contains the fopsfor the framebuffer
subsystem, whichisimplemented asachar driver. The common read, write, open, and ioct1
operations are declared in this structure. The mmap operation is also an important member
in this structure.

The file operations fb_fops Structureisasfollows:

static const struct file operations fb_fops =
.owner = THIS MODULE,
.read = fb_read,
.write = fb_write,
.ioctl = fb_ioctl,

#ifdef CONFIG_COMPAT

.compat_ioctl = fb_compat_ ioctl,

#endif
.mmap = fb mmap,
.open = fb_open,
.release = fb _release,

#ifdef HAVE ARCH FB UNMAPPED AREA
.get_unmapped area = get fb unmapped area,

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 31

Display Configuration in Linux

#tendif

#ifdef CONFIG FB DEFERRED IO
.fsync = fb_deferred io fsync,
#endif
Vi
— static int fb ioctl (struct inode *inode, struct file *file, unsigned int
cmd, unsigned long arg)—isaregular ioctl function for the char devices. In this function,
the command to be executed is passed as an argument and acts depending on the selected
case. The cases—rB10GET vscreEnTNFO aNd FBIOGET FscreeNINFo—are USed to get the
information about the variable or fixed valuesin the £b_information Structure.

— static int fb mmap(struct file *file, struct vm area struct * vma)—ISafunction
that performs the mmap implementation for the framebuffer char driver

Figure 19 shows the flow chart of the fbmen.c file.

Generic o fbmemc = fbmem init
Framebuffer
Initialization A

fthmem c —=* feps operations

fops and registrations
operations upon demand

Figure 19. fomem Flow Chart

The IPU files are as follows:
® drivers/mxc/ipu/ipu_common.c.

Thisfile contains the common software routines—channel, buffer, and Interrupt Request (IRQ)
management—that are required for the IPU functionality. The file aso contains the

platform driver Structure that isimplemented for the IPU and the init and exit functions for the
module.

Important functions and structuresin the ipu_common.c fileare asfollows:
— Module definition and registering functions:

— platform driver mxcipu driver—ISastructure that contains the power management
pointers to the routines that are used for testing the platform driver behavior in low-power
modes. The platform driver mxcipu driver Structure isasfollows:

static struct platform driver mxcipu driver =
.driver = ({
.name = "mxc_ipu",
}
.probe = ipu probe,
.suspend = ipu suspend,
.resume = ipu_resume,
}i
— int32 t _ init ipu gen init (void)—iStheinitiaization routine for the IPU platform
driver. Thisroutine registers the mxcipu_driver Structure.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

32 Freescale Semiconductor

Display Configuration in Linux

— static void exit ipu gen uninit (void) —istheexit routinefor the IPU platform driver.
This routine frees the IPU IRQs and unregisters the mxcipu_driver Structure.

— static int ipu probe(struct platform device *pdev)—iSthe probe function for the
mxcipu_driver Structure and thefunctionis called when theregistration is performed. This
function sets the IRQ request and clocksfor the IPU and also registersthe IPU device (see
the ipu_device.c file for more information)

— Common IPU functions:

— ipu request irg—Tregistersaninterrupt handler for the specified interrupt line. This
interrupt lineisdefined inthe ipu irq 1ine enumeration that islocated in the ipu.n file.

— ipu disable irg—disablesthe interrupt for the specified interrupt line.
— ipu enable irg—enablestheinterrupt for the specified interrupt line.

— ipu init channel buffer—initializes abuffer for thelogica 1PU channel. The function
parameters include the physical addresses for the buffers, such as the buffer type, logical
channel 1D, width and height in pixels, and so on.

— ipu select buffer—Setsthe channel buffersasready. The parametersfor thisfunction are
thelogical channel 1D and buffer type.

— ipu init channel—initializeslogical IPU channel. The function parameters include the
logical channel 1D and aunion, along with the channel initialization parameters (the channel
initialization parameter, ipu channel params_t, isincluded in the ipu.h flle)

— ipu uninit_channel—uUninitializesthe logical 1PU channel.

— ipu link_channels—Iinkstwo channelstogether for automatic frame synchronization. This
function has two parameters—the source logical channel 1D and destination logical channel
ID. The source channel output is linked to the destination channel input.

— ipu unlink channels—uUnlinksthe two channelsthat is set up for the automatic frame
synchronization and also disables the automatic frame synchronization.

— ipu enable channel—enablesthelogical channel corresponding to the channel 1D, which
is sent as the input parameter.

— ipu disable channel—disablesthelogical channel corresponding to the channel ID, which
is sent as the input parameter.

Figure 20 shows the flow chart for the ipu common.c file.

IPT Initialization » ipu commonc =2

I

: : fpu_common. c —* ipu_probe
IPTT functions: widely i

called from framebufter

and w412 drivers ipu_device.c = register ipu device

Figure 20. ipu_common Flow Chart

® drivers/mxc/ipu/ipu device.c.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 33

Display Configuration in Linux

Thisfile contains structures and functions for the fops operations that are related to the mxc_ipu
device. Thefile also contains a generic interrupt handler for the IPU related IRQs.

Important functions and structuresin the ipu_device.c fileareasfollows:
— Registering and other important functions:

— int register ipu device()—TegiSterSmxc_ipu asachar device and providesthefopstable
and name. The function also creates a class in the device model structure. Thisfunctionis
called using the probe () function, which islocated in the ipu_common.c file.

— static irgreturn t mxc ipu generic handler (int irqg, void *dev id)—IS ageneric

handler for any IRQ that the IPU should process.
— fops:
— file operations mxc_ipu_fops—iSastructurethat contai nsthefopsfor themxc_ipu device.
The file operations mxc ipu fops Structureisasfollows:
static struct file operations mxc_ipu fops = {
.owner = THIS MODULE,
.open = mxc_ipu_ open,
.release = mxc_ipu release,
.ioctl = mxc_ipu ioctl
}i
— static int mxc_ipu ioctl (struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)—iStheioctl function for the mxc_ipu device. In thisfunction, the
commands are passed as arguments. Most of these commands—i1pu_ INIT CHANNEL,

IPU_LINK_CHANNELS, and SO on—are described in the ipu_common. c file,
Figure 21 showsthe ipu device.c flow chart.

IPU registration » ipu devicec = register_ipu device

!

ipu_device.c = mxc_ipu ioctl

IFTT
tocth | 3 ipu_commen c = IPT_INIT CHANNEL
upon
recquest
— ipu_commenc = I[P LINE CHAINIELS

—» ipu_commen c = IPTT EMABLE CHANMEL

L& ipu commen c = [P _EMNARBLE TRC

Figure 21. ipu_device Flow Chart

drivers/mxc/ipu/ipu_sdc.c.

This file contains routines that are related to the SDC module that is located in the IPU module.
The set of routinesrangesfrom sac_init totheroutinesthat are used for setting the alphablending
modes or color keysin the SDC plane.

drivers/mxc/ipu/ipu_ic.c.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

34

Freescale Semiconductor

Display Configuration in Linux

Thisfile contains routines that does the color conversion and resizes all the |PU submodul es.
® drivers/video/mxc/mxcfb modedb.c.

Thisfile contains an array of b videomode Structure declarations that are related to the MXC
framebuffer implementation. These structuresinclude the Sharp-VGA, NEC-VGA, TV out modes,
and so on. The datain each structure refers to the most important elements—resolution, size,
timing delays, and so on—that describe the panel. M ore information about the structure parameters
areavailablein the inciude/1inux/fb.nh file.

® drivers/video/mxc/mxcfb.c.

This driver contains the registering and initialization routines for the framebuffer implementation
that are oriented to the i.MX family. The mxctp.c fileinitializes the following:

— Most important structures that are related to the framebuffer

— Functions for registering the driver and setting up the framebuffer system for the normal
framebuffer data structures as well as for the overlay, if the overlay is enabled

Important functions and structures in the mxcfb.c file are asfollows:
— Module definition and registering functions:

— platform driver mxcfb_driver—this structureis created for the framebuffer driver
implementation. The structure consists of pointersto the functionsthat are related to power
management Callbacks, such aS probe and suspend. The platform driver mxcfb driver
structure is as follows:

static struct platform driver mxcfb driver = {

.driver = ({
.name = MXCFB_ NAME,

¥
.probe = mxcfb probe,
.suspend = mxcfb suspend,
.resume = mxcfb_ resume,

Vi
— mxcfb data—encapsulates the two fo_info Structures, in which one acts for the normal
framebuffer and the other for the overlay. Themxctb_data Structureaso includesflags. The
mxcfb data Structureisasfollows:

struct mxcfb data
struct fb info *fbi;
struct fb_info *fbi ovl;
volatile int32_t vsync_flag;
wait queue head t vsync wqg;
wait queue head t suspend wqg;
bool suspended;
int backlight level;

Vi

— int _ init mxcfb init (void)—iSthe entry function for the framebuffer. This function
registers the platform driver structure that contains callback functions for the power
management and shutdown conditions.

— void mxcfb_exit (void)—IiStheexit function for the framebuffer. Thisfunction unmapsthe
video memory for the framebuffer structures, unregistersthe fo_info structure from the
framebuffer and overlay devices (these devices are unregistered), and unregisters the
platform driver structure for the framebuffer.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 35

Display Configuration in Linux

— static int mxcfb probe (struct platform device *pdev) —isafunction member of the
platform driver structure pointers. This probe function verifiesif the specified device
hardware exists and executes several processes such as framebuffer initialization, memory
allocation, and framebuffer registration (fo_info Structures for the normal and overlay
structures). Thisfunction also performsthe IPU initialization that involvestransparent color
key setting for the SDC graphic plane and foreground/background al pha blending modes.

— static struct fb info *mxcfb init fbinfo(struct device *dev, struct fb ops
xops)—Iisafunction that is called by the mxc_probe () function and performs functions that
include the memory alocation for the £»_info Structure and filling the fields related to this
structure with information such as color maps, bits per pixel, and so on.

— platform_set drvdata(pdev, smxcfb drv_data)—iSafunction that passes address, which
is obtained from the information in the mxcfo_drv_data Structure, to the platform device.

— fops:

— fb_ops mxcfb_ops—iSastructure that contains pointersto the functionsthat are used by the
framebuffer driver to perform functions such as rectangle filling, cursor definitions, and so
on. This structure is used for normal framebuffer implementation and is as follows:

static struct fb_ops mxcfb ops = {
.owner = THIS MODULE,
.fb_set_par = mxcfb set par,
.fb_check_var = mxcfb check var,
.fb_setcolreg = mxcfb_ setcolreg,
.fb pan display = mxcfb pan display,
.fb_ioctl = mxcfb ioctl,
.fb_fillrect = cfb fillrect,
.fb_copyarea = cfb copyarea,
.fb_imageblit = cfb imageblit,
.fb_blank = mxcfb blank,

}i

— fb_ops mxcfb_ovl ops—iSastructurethat contains pointersto thefunctionsthat are used by
the framebuffer driver to perform functions such asrectanglefilling, cursor definitions, and
so on. This structure is used for overlay framebuffer implementation and is asfollows:

static struct fb_ops mxcfb ovl ops = {
.owner = THIS MODULE,
.fb_set_par = mxcfb set par,
.fb_check_var = mxcfb_ check var,
.fb_setcolreg = mxcfb_ setcolreg,
.fb pan display = mxcfb pan display,
.fb_ioctl = mxcfb ioctl ovl,
.fb_mmap = mxcfb_mmap,
.fb_fillrect = cfb fillrect,
.fb_copyarea = cfb copyarea,
.fb_imageblit = cfb imageblit,
.fb_blank = mxcfb blank ovl,

}i

— static int mxcfb mmap (struct fb info *fbi, struct vm area struct *vma) —iSa

function that handles the mmap function for the M X C framebuffer.

— static int mxcfb ioctl ovl(struct fb info *fbi, unsigned int cmd, unsigned long

arg)—isafunction that handles theioctl commands for the framebuffer and is used for the

overlay framebuffer structure.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

36

Freescale Semiconductor

Display Configuration in Linux

— static int mxcfb_ioctl(struct fb_info *fbi, unsigned int cmd, unsigned long
arg) —isafunction that handles the ioctl commands for the framebuffer and is used for the
normal framebuffer structure.

— static int mxcfb_set par(struct fb_info *fbi)—iSafunction that setsthe parameter
(most of the parameters are from the videomode structure) to the processor registers by
callingthe ipu sdc_init panel () function. This function also changes the operating mode.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 37

|
y

'
A

Display Configuration in Linux

Figure 22 shows the flow chart for the mxcfb.c file.

1. W Framebuffer
Initialization

—»| mxcfbc = mezcth init

!

mzcth c = mucfh probe

- mxcfhc = mezctbh_init fhinfo

] ipu sdoc = pu sde set global apha

] ipu sdec 2 ipu sde set color key

| o mxcfhc = mecth set par

- 1pu common c 2 irg testing and request

o pu_rcommon c = initialization and channel enabling

ipu_commen ¢ = irg disabling irq and channel

!

'

ipu_commen c 2 initialization of channel

—™ pu sdcc =2 pu_sdc_init panel

Lo ipu common c = selection and channel enabling

| Eegistering framebuffer

—» mxcth c = mzcth init fhinfo for ovl

—» mzcfbh.c = mzcth set par

ipu_common. c =* irg testing and request

ipu_common. ¢ —* initialization and channel

ipu_common. c —* initialization of channel and buffer

—* Eegistering framebuffer ovl

—» mxcthc 2 platform set drvdata

Figure 22. mxcfb Flow Chart

drivers/media/video/mxc/output/mxc_v412 output.c.
Thisfile implements the v4|2 standard for the output devices that are targeted to thei.M X family.
This fileincludes the following:

— Common char driver infrastructure, which includestheinitialization routinefor thedriversthat
areregistered

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

38

Freescale Semiconductor

Display Configuration in Linux

— Probe function and standard fops that are related to the v4|2 implementation
— Functions that enable or disable the playback of video

Important functions and structures in the mxc_vaiz output.c file are asfollows:
— Module definition and registering functions:

— platform driver mxc_v4lzout driver—iSused for the v4l2 output driver. Thisstructure
contains pointersto functions that are related to power management, such asprobe, remove,
and soon. The platform driver Structureisasfollows:

static struct platform driver mxc v4l2out driver = {
.driver = {
.name = "MXC Video Output",

.probe = mxc_v4l2out_probe,
.remove = mxc_v4l2out_ remove,

}i
— platform device mxc_v4l2out device—ISUSed for the v4l2 output driver. Thisstructure
contains the name and ID of the device. The platform device Structureisasfollows:

static struct platform device mxc_v4l2out device = {
.name = "MXC Video Output",
.id = o,

i
— static int mxc v4lzout_init (void)—iSthe function that initializes the driver where the
registration of the platform driver and platform device is done.

— static void mxc v4l2out clean (void)—iSthe exit function for the driver where the
platform device, platform driver, and video device are unregistered.

— static int mxc _v4l2out probe (struct platform device *pdev)—istheprobefunction for
the v412 driver that contains the setup for the outputs and cropping commands and video
device register With video register device.

— Fops operations:

— file operations mxc_v4lzout_ fops—thisisthe fOpS structure for the mxc_va12 output.c
file that contains pointers to common functions, which includes open (), close (), ioctl (),
and the mmap implementation for the driver. The file_operations Structureisasfollows:

static struct file operations mxc_v4l2out fops = {
.owner = THIS MODULE,
.open = mxc_v4l2out open,
.release = mxc_v4l2out close,
.ioctl = mxc_v4l2out ioctl,
.mmap = mxc_v4l2out mmap,
.poll = mxc_v4l2out poll,

}i

— static int mxc_v4l2out mmap (struct file *file, struct vm_area_ struct *vma) —isthe
function that performs the mmap implementation for the v4I2 driver, which is a part of the
fops.

— static int mxc v4l2out do ioctl(struct inode *inode, struct file *file, unsigned
int ioctlnr, void *arg)—iS called by thevideo_usercopy() function (thisfunction is
called by the mxc va1z20ut_ioct1 function). Thisfunction performs the commands sent by
the application while performing some specific ioct1() cals.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 39

Display Configuration in Linux

— Other operations:

— static int mxc v4l2out streamon(vout data * vout)—iISthe function that initiatesthe
framebuffer or display playback and uses many calls and modifications directly to the IPU.
These calls refer to the usage of the IPU channels, such as selecting buffer initializing
channels, enabling IRQs, and so on.

— static int mxc _v4l2out streamoff (vout data * vout)—IiSthefunction that terminatesthe
framebuffer or display playback. Thisfunction uses the functionsimplemented in the lower
layer of the IPU configuration to un-initialize and unlink the channels and disable the I1PU
IRQs.

Figure 23 shows flow chart for the mxc_v412 output.c file.

V412 cutput » mxc_vilZ outputc = mxc_vdlZout_init
inttialization l

mzc_v412_outputc 2 mxc_wdlZout probe

4

W12 output mxc_v2 outputec = mxe vdZout do_ioctl
playback l

mzc_v42 outputc = mxc vdlZout streamon

| ipu commonc =2 pu_init channel

| ipu commonc = pu_init channel buffer

| ipu commonc = pu_ select buffer

L ipu_commonc = ipu_enable channel

o

mzec_vH2 outputc = mxc vdlZout streamoff

ipu_common c = ipu_disable_irg

ipu_commen c = ipu_disable channel

ipu_commoen c = ipu_uninit channel

Figure 23. mxc_v4l2_output Flow Chart

4.3 Panel Configurations

This section describes how to develop a system with anew LCD panel where the driver is not configured.
To develop this, anew driver should be implemented in the Linux kernel. The driver configuration should
be done by taking advantage of all the processor hardware designed for the respective tasks. For example,
the IPU can be used in such away to enhance the processor performance.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

40 Freescale Semiconductor

Display Configuration in Linux

43.1 Case—WVGA Panel

This section describes how to develop a system with anew WV GA panel where the driver is not
configured.

43.1.1 Panel Generalities
In this case, CLAAQ70VCO1 is used, whichisa 7" color TFT-LCD module and is composed of the
following:
* LCD panel
* DriverICs
» Control circuit
* LED backlight
The 7.0" screen of the CLAA070V C01 module, which iscomposed of 800 x 480 pixel elementsin astripe

arrangement, produces a high resolution image. The module has a 262 K color display with a 6-bit RGB
signal input.

Table 14 gives the timing parameters of the CLAA070V CO1 module.

Table 14. Timing Parameters

Parameter Symbol Minimum Typical Maximum Unit
Screen width or Horizontal cycle HP 850 900 950 PIXCLK
Horizontal blank period HBK 50 100 150 PIXCLK
Active frame width HDISP 800 800 800 PIXCLK
Screen height or Vertical cycle VP 490 500 520 Line
Vertical blank VBK 10 20 40 Line
Active frame height VDISP 480 480 480 Line
Vertical refresh rate FV 55 60 65 Hz
Table 15 gives the pin connection of the CLAA070VC01 module.
Table 15. Pin Connection
Pin Number Description Parameter

1 VSS Power ground

2 VSS Power ground

3 ADJ Brightness control for LED B/L

4 VDD Power Supply for LED driver circuit

5 VDD Power supply for LED driver circuit

6 VDD Power supply for LED driver circuit

7 VCC Power supply for digital circuit

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 41

Display Configuration in Linux

Table 15. Pin Connection (continued)

Pin Number Description Parameter
8 VCC Power Supply for digital Circuit
9 DE Data Enable
10 VSS Power Ground
11 VSS Power Ground
12 VSS Power Ground
13 B5 Blue Data 5 (MSB)
14 B4 Blue Data 4
15 B3 Blue Data 3
16 VSS Power Ground
17 B2 Blue Data 2
18 Bl Blue Data 1
19 BO Blue Data O (LSB)

20 VSS Power Ground

21 G5 Green Data 5 (MSB)
22 G4 Green Data 4

23 G3 Green Data 3

24 VSS Power Ground

25 G2 Green Data 2

26 G1 Green Data 1

27 GO Green Data 0 (LSB)
28 VSS Power Ground

29 R5 Red Data 5 (MSB)
30 R4 Red Data 4

31 R3 Red Data 3

32 VSS Power Ground

33 R2 Red Data 2

34 R1 Red Data 1

35 RO Red Data 0 (LSB)
36 VSS Power Ground

37 VSS Power Ground

38 DCLK Clock Signals: Latch Data at falling edge
39 VSS Power Ground

40 VSS Power Ground

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

42

Freescale Semiconductor

4.3.1.2

Panel Configuration

Display Configuration in Linux

To create adriver for the new panel, the £b_videmode Structure should be configured properly. This
structure contains the information about the timings, resolution, name, and configuration for the panel to
work properly. Table 15 gives the parameters of the £b_videmode Structure and the structure is as follows:

struct fb videomode ({

const char *name; -> = CLAA-WVGA

u32 refresh; - = Refresh rate in Hz

u32 xres; - = resolution in x

u32 yres; - = resolution in y

u32 pixclock; - = Pixel clock in picoseconds
u32 left margin; - = Horizontal Back Porch

u32 right margin; i = Horizontal Front Porch
u32 upper margin; i = Vertical Back Porch

u32 lower margin; - = Vertical Front Porch

u32 hsync_ len; - = Hsync pulse width

u32 vsync_len; - = Vsync pulse width

u32 sync; g = Polarity on the Data Enable
u32 vmode; -> = Video Mode

u3d2 flag; - =0

}i
Parameters of the fb_videmode Structure are obtained from the panel data sheet. These are determined by

using some of the timing concepts described in Section 3.2, “ Synchronous Display Timing and Signals.”
These parameters are as follows:

NOTE

Refer to the timing parameters in Table 14 and use the typical values
(recommended).

* const char *name—isthe name of a parameter and is enclosed in double chords

* u32 refresh—IiStherefreshrate and isgivenin Hz. Generally, the us2 refresh valueisgiven
directly asrefresh rate or vertical refresh rate.

* u32 xres—iStheresolution in the x axis or the number of pixelsin horizontal position (H). Itis
easy to get thisvalue asus2 xres iS0ne of the most important and descriptive parametersin the
LCD.

* u32 yres—iSthe parameter provided by the data sheet and is the resolution or number of pixelsin
the vertical position (V)
* u32 pixclock—iSthe pixel clock that is available in the data sheet as dot clock or clock and is

generaly givenin MHz. However, these values should be provided in picoseconds (ps) for entering
them into the £b_videmode Structure. The clock frequency used in this caseis 25 MHz.

* u32 left _margin—iSparalel tothe HBP. The value of this parameter is provided directly in some
of the LCD data sheets. However, instead of providing the HBP, HFP, and HSY NC pulse width,
some data sheets provide thetotal time, horizontal blank period, which isthe sum of the HBP, HFP,
and HSY NC pulse width. In this case, the value is calculated using the procedure described in
Section 3.2.2.2, “Horizontal Timing Charts,” or by using the HBP and HSY NC pulse width. The
HBP and HSY NC pulse width values should sum the horizontal blank period (the typical value).
Though variations can exist between the two values, both of them should sum the horizontal blank
period (100). Thisleft margin is givenin pixel clocks and the value in this case is 80 pixel clocks.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 43

V¥ ¢
i

Display Configuration in Linux

* u32 right margin—iSthe HFP. The procedure adopted in this case avoids this parameter as the
HFPisnot considered in the cal culation of the horizontal blank period. Therefore, theright margin
inthiscaseis0 andis provided in pixel clocks.

* u32 upper margin—iSparalel tothe VBP The procedure to find the upper marginissimilar to the
left margin. Some data sheets give the VFP, VBP, and VSY NC pulse width, whereas some others
provide a value, which is the sum of these three elements. This valueis the vertical blank period.
In this case, only the VBP (one of the porches) and VSY NC pulse width are taken to calculate the
vertical blank period. Though variations can exist between the VBP and VSY NC pulse width, both
of them should sum the vertical blank period. This upper margin is given in horizontal lines and
thevalueinthiscaseis 10.

* 132 lower margin—referstotheVFP Theproceduretofind thelower marginissimilar to theright
margin. Asthe vertical blank period provided by the LCD isonly the sum of the VSYNC pulse
width and the upper margin (VBP), the value of this parameter is 0.

* 132 hsync len—ISthe HSYNC pulse width. Some LCD data sheets provide this value directly.
However, some provide only the horizontal blank period, which isthe sum of the right margin and
thisvalue. In this case, the nsync_1en valueis set to be 20 pixel clocks as the horizontal blank
period and 1eft_margin Of thisLCD are 100 and 80, respectively.

* 132 vsync_len—ISthe VSYNC pulse width. Similar to the case of the hsync_1en parameter, some
L CD datasheetsdirectly providethisvalue. However, some provide only the vertical blank period,
which isthe sum of the upper margin and thisvalue. Inthis case, the vsync_1en valueis set to be
10 horizontal lines as the vertical blank period and upper margin Of thisLCD are 20 and 10,
respectively.

* u32 sync—refersto the signa polarity and determines the time for the valid data. Generaly, this
signalsis DE or dataready. In this case, the value of u32 sync iISSAMEasrFe syNC OE ACT HIGH,
which means that a high DE value marks the beginning of the valid data period.

* u32 vmode—iSthe video mode of the configuration. Thei.MX offers two modes for the
vmode—interlaced and non-interlaced. The video mode is stored in the soc_com conr register. In
this case, the value is same as that of rs_vmope noninTERLACED @nd iS also named in the register
optionsas TFT color.

* u32 flag—isnot used and isgeneraly left asO.

The tb_videomode Structure after calculating al the valuesis as follows:

static struct fb_videomode video modes[] = {
{
/* 800x480 @ 55 Hz , pixel clk @ 25MHz */
const char *name;—> "CLAA-WVGA",
u32 refresh; - 55,
u32 xres; —> 800,
u32 yres; —> 480,
u32 pixclock; = 40000,
u32 left margin; —> 80,
u32 right margin; - 0,
u32 upper margin; - 10,
u32 lower margin; = 0,
u32 hsync_len;—> 20,
u32 vsync_len;—> 10,
u32 sync; —F B _SYNC_OE_ACT_HIGH,

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

44 Freescale Semiconductor

Display Configuration in Linux

u32 vmode; — FB VMODE NONINTERLACED,
u32 flag; = 0,

}

Procedure to Transfer Data into Framebuffer Configuration

The fb_videomode Structure for the panel is declared in the WV GA panel driver. The information in the
fb_videomode Structureis pa%d tothe b _var screeninfo Structure (from the definitionin £b .4, itis
observed that the pixel clock parameter should be passed in picoseconds) that isdefinedintheica init fb
function (whichis called by the probe function). The datainthe to_var screeninfo Structureis passed to
the general info structurein the b_set var function, whichisalso called by the 1ca_init b () function.

Whentheipu sdc_init () functioniscalled, many of the parametersare set to be configured in theregister
level or in the last stage of thistransfer procedure. The processor considers the back porches and pulse
width as a single parameter when the timing and back and front porch values are transferred to the i.M X
register. Therefore, thesevaluesareaddedinthe ipu_sdc_init () function and then passedto spc Hor conr
and soc_ver_conr for the horizontal and vertical cases, respectively.

Figure 24 shows the flow chart that describes the procedure to transfer data into the framebuffer
configuration.

fb_wideomod | mzc claa wvgac = lod _probe

e flow 7

mzc_claa wvgac = lod_init fh (for BG)

mzc_claa wvgac =2 b wideomode to var (passing to var structure)

mzc_claa_wvgac = th_set war (passing to info structure)

¥
fomem.c = fb_set par = me=cfh set par from mzcth c

ipu_comten c = IPTT

ipu_sdc.c 2 ipu_sdc_init_panel (zetting some walues to 1M registers)

Figure 24. Flow Chart to Transfer Data into Framebuffer

4.3.1.3 Driver Development Process

This section describesthe driver development process. Thisincludesthe description of the most important
functions, main differences that make the new driver unique, and files where these differences should be
addressed. The section also describes the general procedure and elementsthat should be considered when
apanel driver is created.

Panel Driver File

The CLAAQ70VCO1 panel offers many advantages with respect to the interface and connection, voltage
level management, and signal's (besides the obvious fact of the difference in resolution) compared to other
panels. Therefore, a new driver file should be created to cover the specific requirements of this panel.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 45

Display Configuration in Linux

Some of these changes are addressed in the new file while the changes that include the pin setup and LCD
panel device structure registration are addressed in different files. However, the new panel driver hasa
structure similar to that of the mxcfb. c file and can be considered as a subset of the mxctb.c file.

The panel driver file should contain the following structures and functions:

fb_videomode Structure with the timing and configuration datafor the panel

Char driver standard functions for the initialization and cleanup (generally, a platform driver
structure is used for registering/unregistering)

Platform driver structure with the standard pointers and functions (probe, suspend, resume, and SO
on) and their function implementations

Function and structure related to the notifier chain facility for event processing, if thisfacility is
used

Functions to communicate and pass the flow of information between the panel and framebuffer
generic structures

Interface and voltage related functions for the LCD panel power management

The panel driver isthe mxctb claa wvga.c file andislocated inthe arivers/video/mxc folder. Thisfile
registers the driver and tests the driver functionality (using the probe function). The file also provides
timingsinthe £v_videomode Structure and contains some functions to interact with the panel for instances
related to the events and ON/OFF functionality.

Important functions and structuresin the mxcfb claa wvga.c file areasfollows:

Module definition and registering functions:

— platform driver lcd driver—CONtains pointers to the power management and binding
functions such as probe, suspend, and resume that are targeted to this panel. The
platform driver lcd driver Structureisasfollows:

static struct platform driver lcd driver = {
.driver = {
.name = "lcd claa"},
.probe = lcd probe,
.remove = _ devexit p(lcd remove),
.suspend = lcd_suspend,
.resume = lcd resume,

}i

— static int _ init claa lcd init (void)—function registers the 1cd driver structure of the
type, platform driver

— static void exit claa led exit (void)—function unregistersthe lcd driver structure of
the type, platform driver

— static int _ devinit lecd probe (struct platform device *pdev)—function is called when
adeviceisinstalled and performs some functions. These functions include setting the voltage
level, calling the function to initialize the LCD, switching ON the LCD, and calling afunction
to notify the kernel that a new event has happened (the LCD driver installation).

— static void led init fb(struct fb info *info)—function iscalled by the 1cd probe
function. This function gives specific information about the panel (information about the
parameters—resolution, size, and timings—of the fb videomode Structure) to the

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

46

Freescale Semiconductor

Display Configuration in Linux

fb_var_screeninfo Structure and convertsthe information fromthe fob_videomode Structureto
parametersfor the tb_var screeninfo Structure.

Power and event related functions:

— static void led poweron (void)—function turnsthe panel ON
— static void led poweroff (void)—function turnsthe panel OFF

— fb register client (&nb)—functioniscalled by the 1ca probe function. Thisfunction
registers aclient notifier when an LCD driver event occurs. The client notifier contains a
notifier block structure that contains information such as information about the pointer to the

called function.

— static int lcd fb event (struct notifier block *nb, unsigned long val, void

«v)—functioniscalled when an LCD driver event occurs. The occurred event isthen registered

by this function.

NOTE

Some other critical panel elementsthat are not mentioned in this section are
located in other files. These elements arerelated to the pin configuration (for

the LCD connection) and LCD device structure initialization.

LCD Initialization and Working

Similar to the general framebuffer initialization, the LCD driver also starts at an early stage of the kernel
loading. Asmentioned in Section 4.2.2, “Filesand Important Elements,” the registration of the LCD panel

as aplatform device structureis made in the mx3_3stack.c file. At this point, both the LCD panel and
framebuffer are registered as the platform device elements.

In this stage, the processor pins are setup so that the LCD has a proper connection. All these tasks are
developed inthe mx3 3stack gpio.c filethat islocated inthe..1inux-2.6.24/arch/arm/mach-mx3,/ folder.
Among the other features, thegpio 1cd active functioninthewmxs 3stack gpio.cfilesetsal thepinsthat
are used by the panel with the help of thé mxc_request_iomux function. The gpio 1cd active function
passes parameters (pins) to this function and the desired characteristics are obtained from each signal.

The gpio_1cd active functionisasfollows:

void gpio lcd active (void)

{

mxc_request iomux (MX31 PIN LDO,
mxc_request iomux (MX31 PIN LD1,
mxc_request iomux (MX31 PIN LD2,
mxc_request iomux (MX31 PIN LD3,
mxc_request iomux (MX31 PIN LD4,
mxc_request iomux (MX31 PIN LD5,
mxc_request iomux (MX31 PIN LD6,
mxc_request iomux (MX31 PIN LD7,
mxc_request iomux (MX31 PIN LDS8,
mxc_request iomux (MX31 PIN LD9,
mxc_request iomux (MX31 PIN LD1O,
mxc_request iomux (MX31 PIN LD11,
mxc_request iomux (MX31 PIN LD12,
mxc_request iomux (MX31 PIN LD13,
mxc_request iomux (MX31 PIN LD14,

OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_ FUNC,
OUTPUTCONFIG_FUNC,
OUTPUTCONFIG_FUNC,
OUTPUTCONFIG_FUNC,
OUTPUTCONFIG_FUNC,
OUTPUTCONFIG_FUNC,

INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;
INPUTCONFIG_FUNC) ;

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor

47

|
y

'
A

Display Configuration in Linux

mxc_request iomux (MX31 PIN LD15, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC) ;
mxc_request iomux (MX31 PIN LD16, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //LD16
mxc_request iomux (MX31 PIN LD17, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //LD17
mxc_request iomux (MX31 PIN VSYNC3, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //VSYNC
mxc_request iomux (MX31 PIN HSYNC, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //HSYNC
mxc_request iomux (MX31 PIN FPSHIFT, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //CLK
mxc_request iomux (MX31 PIN DRDYO, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //DRDY
mxc_request iomux (MX31 PIN D3 REV, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //REV
mxc_request iomux (MX31 PIN CONTRAST, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //CONTR
mxc_request iomux (MX31 PIN D3 SPL, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //SPL
mxc_request iomux (MX31 PIN D3 CLS, OUTPUTCONFIG FUNC, INPUTCONFIG FUNC); //CLS

}

At thispoint, al the pins are set properly. The following stages are from loading the generic framebuffer
infrastructure (in the romem. ¢ fil€) to loading and registering the structures and functions related to this
panel. The process starts with the fomem. ¢ file execution and then, the IPU module is loaded. The
framebuffer implementation for the i.MX family is then started by registering the framebuffers (normal
and overlay) and the procedure completes with the panel driver.

The panel driver executionisalsoinitiated with theinitialization routinesthat registersthe platform driver.
However, most of theinitialization procedure is performed under the probe function. Various actions that
are performed by the probe function are asfollows:

* Allocation of memory for the structures related to the panel

* Passing the fb_videmode Structure, which isdeclared in the v_info Structure, with the datafrom
the panel tothe var screen info Structure

* Functions to switch ON/OFF the panel and regulating the voltage levels using the functions from
the regulation framework

* Registration of an LCD event for the kernel notifier chain register

All the information flow (from the £b_videomode Structure) and important events happen in the

lcd init_ fb function. The fb_set var function, which isthe part of the fops structureinthe fb_info
structure, isalink to the mxcfb set par function that islocated in the mxctb. c file. Themxcfb. c fileisthe
implementation of b set pat for thei.MX framebuffer. Here, among the most important things, the
ipu sdc_init panel function is called with the arguments as the most of the fo_videmode Structure
elements. Thisfunction is the place where all these elements are eventually passed to the processor
registersfor the SDC module. Thoughthe1cd init fb functioniscalled twicein the probe function, only
one time the function accessesthe ipu sdc_init panel function. Thisis because, the function detects
when the configuration should be made for the background or foreground. In this case, the function
accesses only the SDC function when the configuration is made for the background.

This condition is coded as follows:

if (mxc_fbi—>ipu ch == MEM SDC BG) {

memset (&sig cfg, 0, sizeof (sig cfg));
The condition asks if the logical 1PU channel (that is used at that time) is employed for the background
case. If thisiscorrect the ipu sdc init panel functioniscalled. If not, that section is skipped.

The prove function callsthe 1ca_poweron function (when background only) using the functionsin the
voltage and current regulator frameworks (such as regulator_enable). The prove function then usesthe
fb_register client function by passing anotifier block structure as an argument that contains a pointer

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

48 Freescale Semiconductor

Display Configuration in Linux

tothe1ca fo_event function. Thisfunction is called whenever an LCD events happens (when Qtopia
starts).

Figure 25 shows the flowchart for the mxcfb_claa wvga.c file.

LWOOWWVGA | mxc_claa_wvgac =2 claa_lod_init
Framebufter T
Initialization

mxc_claa_wwgac = led probe

¥
mzc_claa wvgac = led init fb (for B3

mze_claa wvgac =2 fb_wideomode_to_wvar (passing to war structure)

—»| mzc_claa wvgac = fb_set var (passing to info structure)

v

fomem.c = fb_set par = mzcfb set par fom mzctb c

ipu_common c = [PT

ipu_sdc.c = ipu_sdc_init_panel {(setting some values
to 1. M registers for the BGY

s mxc_claa wvgac = led poweron

—» mxc_claa wvgac = led init fb (for FO)

mxc_claa wvgac =2 fb_wideomode to wvar (passing to var structure)

Lyl muc claa wvgac =2 fb_set var (passing to info structure)

v

fhmem.c = fb_set par —-= mxcfh set par from macth c

—»

ipu_commeon ¢ = [PTT functions

— muxc_claa wvgac =2 fb_register client

LWMEIWVGA b mxc claa wvgac = lod_fb_event
Framebuffer
Event

Figure 25. mxcfb_claa_wvga Flow Chart

Linux Voltage and Current Regulator Framework

Linux voltage and current regulator framework isa part of the panel driver and is used as an interface for
controlling the voltage and current levelsin the Linux Kernel 2.6. This framework also provides the
information to the user with the help of sysfsinterface. The framework works with PMICs such as the
MC13787 from Freescale and Wolfson WM 8350.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 49

References

Thefunctions pI'OVi dedinthe panel driver comesfromthe.. 1inux-2.6.24 /drivers/regulator/reg _core.c
file. Thisfileisalso located in the folder that contains the code for the PMIC, which isused in the 3-Stack
board (MC13783). Some of the functions that are used in the panel driver are the regulator get,
regulator set voltage, and regulator enable functions.

The Linux voltage and current regulator framework is made by Liam Girdwood from the Wolfson
Micro€electronics. More information about this framework can be found in the link,
http://opensource.wolfsonmicro.com/node/15.

Notifier Chain

The notifier chain or notifier block is a part of the panel driver and is an information mechanism where
different elements are notified to the asynchronous events of the kernel. The basic element of the notifier
chain isthe notifier block structure (the definition is available in the
.linux-2.6.24/include/linux/notifier.h fi |E) The notifier block structure (notifier_block) includesa
reference event function in a struct member. In the panel driver, the notifier block function declaration
receives the function (1ca_fb_event function) event reference as the argument. At the end of the probe
function, the registration of the event is made by the fo_register cilient function. The

fb_register client functi on, which residesinsdethe ..1inux-2.6.24/drivers/video/ fb notify.c file,
calls the function in charge or assembles the notifier block that is passed as an argument to the notifier
chain. Therefore, with the registration function, a callback is registered whenever a change in the LCD
OCCUrS.

5 References

* MCIMX31 and MCIMX31L Applications Processors Reference Manual (M CIX31RM)
* 1.MX31 PDK 1.5 Linux Reference Manual (926-77210)
* LTMO08C351S Product Information (Toshiba Matsushita Display Technology Co. Ltd)

» Embedded Linux Systems Design and Devel opment (Raghavan P, Lad Amol, Neelakandan Sririam,
Auerbach Publications)

6 Revision History

Table 16 provides arevision history for this application note.

Table 16. Document Revision History

Rev. .
Number Date Substantive Change(s)
0 08/2010 | Initial release.

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

50 Freescale Semiconductor

http://opensource.wolfsonmicro.com/node/15

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Different Display Configurations on the i.MX31 Linux PDK, Rev. 0

Freescale Semiconductor 51

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN4182
Rev. 0
08/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.

© 2010 Freescale Semiconductor, Inc.

B POWERED

ARM
freescale"

semiconductor

	Different Display Configurations on the i.MX31 Linux PDK
	1 Introduction
	Figure 1. IPU Functional Diagram

	2 LCD Generalities
	2.1 LCD Basics
	2.1.1 Resolution
	Table 1. Video Resolution Standards
	Figure 2. Portrait and Landscape Orientations
	Figure 3. Non-native Portrait and Landscape Orientations

	2.1.2 Size
	2.1.3 Color Spaces

	2.2 LCD Types
	2.2.1 Synchronous Panel (Dumb Display)
	2.2.2 Asynchronous Panel (Smart Display)

	3 IPU-SDC Generalities
	3.1 LCD Interfaces
	3.1.1 Synchronous Display Interface
	Table 2. Synchronous Display Interface Signals

	3.1.2 Examples of Synchronous Display Interfaces
	3.1.2.1 i.MX31 PDK Epson L4F00242T03 2.7" VGA LCD Interface
	Figure 4. Interface between i.MX31 and Epson L4F00242T03 VGA Panel

	3.1.2.2 i.MX31 PDK Chunghwa CLAA070VC01 7" WVGA LCD Interface
	Figure 5. Interface between i.MX31 and Chunghwa CLAA070VC01 VWGA Panel
	Figure 6. Interface between i.MX31 and Chunghwa CLAA070VC01V WVGA Panel with Touch Panel and Power Control Circuitry

	3.2 Synchronous Display Timing and Signals
	3.2.1 Timing Concepts
	Table 3. Timing Concepts

	3.2.2 Timing Charts
	3.2.2.1 Vertical Timing Charts
	Figure 7. VGA Vertical Timing Chart
	Table 4. VGA Vertical Timing
	Figure 8. WVGA Vertical Timing Chart
	Table 5. WVGA Vertical Timing
	Figure 9. WVGA Vertical Timing Chart with Imaginary VSYNC Signal
	Table 6. WVGA Vertical Timing and Porches

	3.2.2.2 Horizontal Timing Charts
	Figure 10. VGA Horizontal Timing Chart
	Table 7. VGA Horizontal Timing
	Figure 11. WVGA Horizontal Timing Chart
	Table 8. WVGA Horizontal Timing
	Figure 12. WVGA Horizontal Timing Chart with Imaginary HSYNC Signal
	Table 9. WVGA Horizontal Timing and Porches

	3.2.2.3 Pixel Clock Timing Charts
	Figure 13. VGA Pixel Clock Timing Chart
	Table 10. VGA Pixel Clock Timing
	Figure 14. WVGA Pixel Clock Timing Chart
	Table 11. WVGA Pixel Clock Timing

	3.2.3 Custom LCD Timing
	3.2.3.1 VGA Custom LCD Timing
	Figure 15. Reset Signal
	Table 12. Reset Signal Timings
	Figure 16. SPI Command Interface Signals

	3.2.3.2 WVGA Custom LCD Timing

	3.3 LCD Panels Supported by i.MX31
	Table 13. Displays Supported by i.MX31

	4 Display Configuration in Linux
	4.1 Linux Framebuffer Overview
	4.1.1 Definition and Concept
	4.1.2 Linux Framebuffer Structures

	4.2 Linux Framebuffer for i.MX
	4.2.1 Initialization Process
	Figure 17. Initialization Flow Chart

	4.2.2 Files and Important Elements
	Figure 18. mx3_3stack Flow Chart
	Figure 19. fbmem Flow Chart
	Figure 20. ipu_common Flow Chart
	Figure 21. ipu_device Flow Chart
	Figure 22. mxcfb Flow Chart
	Figure 23. mxc_v4l2_output Flow Chart

	4.3 Panel Configurations
	4.3.1 Case-WVGA Panel
	4.3.1.1 Panel Generalities
	Table 14. Timing Parameters
	Table 15. Pin Connection

	4.3.1.2 Panel Configuration
	Figure 24. Flow Chart to Transfer Data into Framebuffer

	4.3.1.3 Driver Development Process
	Figure 25. mxcfb_claa_wvga Flow Chart

	5 References
	6 Revision History
	Table 16. Document Revision History

