
1 Introduction
This document describes a driver for the Serial Communication
Interface (SCI), allowing users to customize all the possible
configurations for this peripheral.

The software architecture is designed to provide seamless
migration between devices that have the same peripheral module.

In this application note, the driver interfaces are explained.
Various applications for the MC9S08GW64 can make use of
this driver. The following sections describe the details and steps
for creating an application using the SCI driver.

The SCI allows full duplex, asynchronous, NRZ serial
communication among the Micro Controller Unit (MCU), and
remote devices including other MCUs.

1.1 Serial Communication
Interface in the MC9S08GW64

There are four SCIs in the MC9S08GW64—SCI0, SCI1, SCI2,
and SCI3.

SCI0 is designed for the Automatic Meter Reading (AMR)
operation by making the SCI0 (TXD0) transmitter open and
drain.

Open drain circuits are used to interface different families of
devices that have different operating logic voltage levels, or to
control external circuitry that requires a higher voltage level.

© 2010 Freescale Semiconductor, Inc.

Document Number: AN4161Freescale Semiconductor
Rev. 0,8/2010Application Note

SCI Driver for the MC9S08GW64
Tanya Malikby:
Reference Design and Applications Group
Noida
India

Contents
Introduction...11

Serial Communication Interface in the
MC9S08GW64..1

1.1

Clock Gating In SCI......................................21.2

Baud Rate Generation...................................21.3

Software Driver Description.................................22

sci.h...32.1

sci_config.h...42.2

sci.c...52.3

SCI_Init...52.3.1

SCI_Set_BaudRate................................62.3.2

SCI_PutChar ...62.3.3

TERMIO_PutChar................................62.3.4

SCI_SendArray.....................................72.3.5

SCI_Get_Char.......................................72.3.6

TERMIO_GetChar................................82.3.7

SCI_GetArray82.3.8

Interrupt Subroutines.............................82.3.9

Assumptions..93

Use Case..94

Conclusion ..105

Therefore, the SCI0 can be compatible with devices with higher voltage levels such as 5 V devices as shown in Figure 1.

VDD1

VDD1

VDD1

PTB5/KBIP5/SS0/SDA

PTB4/KBIP4/SCLK0/SCL

PTB3/KBIP3/MISO0/MISI0/TxD0

M
C

9S
08

G
W

64

VDDVDD VDDVDD1

SS/SDA

SCLK/SCL

MISO/MOSI/RxD

Figure 1. Connection of SCI0 for AMR

The SCI2 is designed with double strength to facilitate IR communication.

Both SCI1 and SCI2 can connect to the FTM channel, PCNT channel, MTIM output, and the PRACMP0 and PRACMP1 order
to facilitate IR communication modulation and demodulation.

1.2 Clock Gating In SCI
The SCI module clock gating is controlled by SCGC1 (SCGC2_SCI0, SCGC2_SCI1, SCGC2_SCI2, SCGC1_SCI3). On Reset
the clock is gated to all the SCI blocks.

1.3 Baud Rate Generation
SCI communications require the transmitter and receiver that derive baudrates from independent clock sources to use the same
baudrate.

Module divide by
1 through 8191

SBR12:SBR0

BAUDRATE GENERATOR
OFF IF [SBR12:SBR0] = 0

Rx SAMPLING CLOCK
(16 x BAUDRATE)

BAUDRATE BUSCLK
[SBR12:SBR0] x 16

Divide by
16

Tx BAUDRATE
BUSCLK

Figure 2. Baudrate generation

Example:

BaudRate expected is 38400 bps. The bus clock is 20 MHz. Thus, the values written in the baudrate register are calculated
as:
BusClk/(BaudRate*16) = 32 SBR = 0x0020

2 Software Driver Description
The SCI driver is provided as C code files. You can add these files to your applications. With the integration of the SCI driver,
you can now call SCI driver APIs to use the SCI functionality in your application.

There are three files associated with the SCI driver. This is a brief description:

sci.h—It contains all the high level APIs declarations and the various macros to be used in the functions. It defines the structure
of the various SCI registers.

sci_config.h—This file contains the various defines to control the configuration of SCI. The user can make the changes in this
file to get the required configuration.

sci.c—It is the main file for the driver. It contains the various high level API definitions.

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
Freescale Semiconductor, Inc.2

Software Driver Description

2.1 sci.h

NOTE
The macros provided are passed as arguments to the respective functions to get the required
configuration. It has been explained in details in Section 2.3 sci.c.

Table 1. Defined macros

DescriptionsMarcos

There are macros to choose between the four
SCIs. The four SCIs can also be chosen simul-
taneously. Choose the following three macros,
between the four SCIs.

define SCI_Index0

define SCI_Index1

define SCI_Index2

define SCI_Index3

Macros for enabling and disabling the interrupt
for a specific SC.

define SCI_Interrupt_Enable

define SCI_Interrupt_Disable

To indicate that the data has been received on
the specific SCI port, three macros are used for
the four SCIs for enabling.

define SCI0_RX

define SCI1_RX

define SCI2_RX

define SCI3_RX

To indicate that the data has been transmitted
from the specific SCI port. Three macros are
used for the four SCIs.

define SCI0_TX

define SCI1_TX

define SCI2_TX

define SCI3_TX

There are macros to set the baudrate of the SCI
(9600 / 19200 / 38400 / 115200 bps). x is the
SCI where the baudrate is to be set.

define SCI_Set_BaudRate_9600(x)

define SCI_Set_BaudRate_19200(x)

define SCI_Set_BaudRate_38400(x)

define SCI_Set_BaudRate_115200(x)

Global variables are also defined, used globally,
and can be accessed by any function.There are
four global char pointers used to store the data
for SCI0 Tx and Rx in case of an interrupt.

unsigned char* SCI0_Data

unsigned char* SCI1_Data

unsigned char* SCI2_Data

unsigned char* SCI3_Data

There are four char variables to store the length
of the data to be transmitted or read from the
SCI.

unsigned char SCI0_DataLen

unsigned char SCI1_DataLen

unsigned char SCI2_DataLen

unsigned char SCI3_DataLen

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
3Freescale Semiconductor, Inc.

Software Driver Description

2.2 sci_config.h
This file contains the various defines to control the configuration of the SCI. The user can make the changes in this file to get
the required configuration.

Macro used to define the value of the bus clock.

• # define BUS_CLK

NOTE
It does not change the bus clock of the device. It only sets the value of the macro which is
used in the calculation of baudrate.

Example:
define BUS_CLK 20000000 defines the bus clock to be 20 MHz, therefore the
baudrate is calculated assuming the bus clock to be 20 MHz

• # define UART_SEL

It is a macro to define the SCI port used for printf function. The printf function sends the string to the SCI defined by
UART_SEL.
Example:
define UART_SEL SCI_Index3 selects SCI3 for printf function

NOTE
No macro is provided for SCI0 pin muxing because there is no pin muxing in SCI0. Only
port B is used with Pin B3 for TXD0, pin B2 for RXD0.

The following macros are used for pin muxing SCI1:

• # SCI1_TxRx_PortC

It is used to configure pin C5 for TXD1 and C4 for RXD1

Example:
define SCI1_TxRx_PortC 1

• # SCI1_TxRx_PortB

It is used to configure pin B1 for TXD1 and B0 for RXD1
Example:
define SCI1_TxRx_PortB 1

NOTE
Both SCI1_TxRx_PortC and SCI1_TxRx_PortB cannot be 1 at the same time. It will give
an error.

The following macros are used for pin muxing SCI2
• # define SCI2_TxRx_PortA

It is used to configure pin A5 for TXD2 and A4 for RXD2
Example:
define SCI2_TxRx_PortA 1

• # define SCI2_TxRx_PortB

It is used to configure pin B7 for TXD2 and B6 for RXD2
Example:

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
Freescale Semiconductor, Inc.4

Software Driver Description

define SCI2_TxRx_PortB 1

NOTE
Both SCI2_TxRx_PortA and SCI2_TxRx_PortB cannot be 1 at the same time. It gives an
error.

The following macros are used for pin muxing SCI3
• # define SCI3_TxRx_PortC

It is used to configure pin C7 for TXD3 and C6 for RXD3
Example:
define SCI3_TxRx_PortC 1

• # define SCI3_TxRx_PortG

It is used to configure pin G5 for TXD3 and G4 for RXD3k
Example:
define SCI3_TxRx_PortG 1

NOTE
Both SCI3_TxRx_PortC and SCI3_TxRx_PortG cannot be one at the same time. It gives
an error.

2.3 sci.c
This file contains the definition of various functions.

2.3.1 SCI_Init
Description:

This function is used to initialize the specific SCI by configuring the internal registers. It enables the transmitter and
receiver of the specific SCI and sets the baudrate to a value of 38400 bps when the bus clock is assumed to be 20 MHz.

Prototype:
void SCI_Init ((unsigned char SCI_Index,void (*p)(unsigned char1, unsigned char2);

Input parameters:
• SCI_Index—To select the SCI to be initiated

SCI_Index0
SCI_Index1
SCI_Index2
SCI_Index3

• p—Function is used only in case of interrupts. The user can pass the address of the callback function or pass zero.
• char1—Is passed as an argument to the callback function and specifies whether the interrupt is due for transmission or

reception.
• char2—Passes the data received (in case of reception) or pass 0 (in case of transmission) to the callback function

Output parameters:
None

Example:
void func (unsigned char, unsigned char)
{}

SCI_Init (SCI_Index1, &func);

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
5Freescale Semiconductor, Inc.

Software Driver Description

Initializes SCI1 and passes the address of a function for the callback

2.3.2 SCI_Set_BaudRate
Description:

This function is used internally by calling it in other function. This function is used to set the required baudrate of a specific
SCI.

Prototype:
void SCI_Set_BaudRate (unsigned char SCI_Index, unsigned int Baud_Rate)

Input parameters:
1. SCI_Index—Selects the SCI to be initiated

SCI_Index0, SCI_Index1, SCI_Index2, SCI_Index3

2. Baud_Rate—The baudrate to be set.

Output parameters:
None

2.3.3 SCI_PutChar
Description:

This function sends one byte of data to the specific SCI port.

Prototype:
void SCI_PutChar (unsigned char SCI_Index, unsigned char Send_Data)

Input parameters:
1. SCI_Index—Selects the SCI to be initiated

SCI_Index0, SCI_Index1, SCI_Index2, SCI_Index3

2. Send_Data—The one byte data to be sent

Output parameters:
None

Example:
SCI_PutChar(SCI_Index1, 0xAA);
Sends a char 0xAA to SCI1

NOTE
Enabling the interrupt is not available while sending a char. The interrupt can only be enabled
while sending an array.

2.3.4 TERMIO_PutChar
Description:

This function sends one byte of data to the specific SCI port selected by UART_SEL. It is used in printf function.

Prototype:
void TERMIO_PutChar (unsigned char Character)

Input parameters:
1. Character—Sends one byte of data to the SCI selected by the macro UART_SEL

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
Freescale Semiconductor, Inc.6

Software Driver Description

Output parameters:
None

Example:
define UART_SEL SCI_Index0
TERMIO_PutChar(0xAA);
It sends the character 0xAA to SCI0.

2.3.5 SCI_SendArray
Description:

This function sends the data array to the specific SCI port.

Prototype:
void SCI_SendArray(unsigned char SCI_Index, unsigned char interrupt_enable, unsigned char* array, unsigned char
length)

Input parameters:
1. SCI_Index—To select the SCI to be initiated

SCI_Index0, SCI_Index1, SCI_Index2, SCI_Index3

2. interrupt_enable—To enable or disable the interrupt for Tx and Rx
3. array—Data array to be transmitted to the selected SCI port
4. length—Length of the array to be sent

Output parameters:
None

Example:
SCI_SendArray (SCI_Index1, SCI_Interrupt_Disable, Data_Array, 10);
Sends an array of length 10 to SCI1 with interrupt disabled.

2.3.6 SCI_Get_Char
Description:

This function reads and returns the data (1 byte) read from the selected SCI port.

Prototype:
unsigned char SCI_GetChar(unsigned char SCI_Index)

Input parameters:
1. SCI_Index—Selects the SCI to be initiated

SCI_Index0
SCI_Index1
SCI_Index2
SCI_Index3

Output parameters:
Returns the data byte read from the selected SCI port.

Example:
unsigned char data;
data = SCI_GetChar(SCI_Index1);
Returns the char read from SCI1

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
7Freescale Semiconductor, Inc.

Software Driver Description

NOTE
Enabling the interrupt is not available in this software driver while receiving a char. The
interrupt can only be enabled for receiving an array.

2.3.7 TERMIO_GetChar
Description:

This function reads one byte of data from the specific SCI port selected by UART_SEL. It is used in the printf function.

Prototype:
unsigned char TERMIO_GetChar ()

Input parameters:
None

Output parameters:
Returns the data byte read from the specific SCI selected by UART_SEL

Example:
#define UART_SEL SCI_Index0
unsigned char data;
data = TERMIO_GetChar();
Returns the data read from SCI0.

2.3.8 SCI_GetArray
Description:

This function sends the data array to the specific SCI port.

Prototype:
void SCI_GetArray(unsigned char SCI_Index, unsigned char interrupt_enable, unsigned char* array, unsigned char length)

Input parameters:
1. SCI_Index—To select the SCI to be initiated

SCI_Index0, SCI_Index1, SCI_Index2, SCI_Index3

2. interrupt_enable—To enable or disable the interrupt for Tx and Rx
3. array—Stores the data array received
4. length—Length of the array to be sent

Output parameters:
None

Example:
SCI_GetArray (SCI_Index1, SCI_Interrupt_Disable, Data_Array, 10);
It gets an array of length 10 from the SCI with the interrupt disabled.

2.3.9 Interrupt Subroutines
There are three types of interrupts:

• Transmit Data Register Empty
• Transmission Complete
• Receive Data Register Full

SCITX0_ISR

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
Freescale Semiconductor, Inc.8

Software Driver Description

Description:
It is an interrupt subroutine for SCI0. The function is executed when either of the two interrupt occurs; Transmit Data
Register Empty or Transmission Complete Provided. The respective interrupts are then enabled. The routine clears the
interrupt and sends the data to the SCI0 port.

Prototype:
void interrupt VectorNumber_Vsci0tx SCITX0_ISR()

Input parameters:
None

Output parameters:
None

There are similar interrupt subroutines for SCI1, SCI2, SCI3:
SCITX1_ISR for SCI1
SCITX2_ISR for SCI2
SCITX3_ISR for SCI3

SCIRX0_ISR

Description:
It is the interrupt subroutine for SCI0. The function is executed when the following interrupt occurs Receive Data Register
Full, provided that the respective interrupts are enabled. The routine clears the interrupt and takes the required action by
receiving the data from SCI0.

Prototype:
void interrupt VectorNumber_Vsci0rx SCIRX0_ISR()

Input parameters:
None

Output parameters:
None

There are similar interrupt subroutines for SCI1, SCI2, SCI3:
SCIRX1_ISR for SCI1
SCIRX2_ISR for SCI2
SCIRX3_ISR for SCI3

3 Assumptions
The descriptions in this document assumes the person reading it has full knowledge of all the configuration registers of all the
blocks in the MC9S08GW64, especially the SCI and Internal Clock Source (ICS) blocks.

4 Use Case
Assuming that the clock settings are done and the bus clock is running on 20 Mhz. Include the sci.c in the main file.

To initialize the respective SCI1 with the desired configuration and establish communication:

Step 1—If you want to choose port C for SCI, make this setting in sci_config.h:
SCI1_TxRx_PortC 1

Step 2—Suppose there is a callback function defined as:

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
9Freescale Semiconductor, Inc.

Assumptions

void callback(unsigned char a, unsigned char b)
{
 return;
}

SCI_Init (SCI_Index1, & callback);
This initialized the SCI1 by enabling the transmitter and receiver. The address of callback function is passed which is
used in case of interrupts.The default baudrate is set as 38400 bps.

Step 3—The baudrate can be changed by calling:
SCI_Set_BaudRate_9600(SCI_Index1);
It sets the baudrate of SCI1 to 9600bps

Step 4—To send data, the following function is called:
SCI_PutChar(SCI_Index1, 0xAA);
It sends a char 0xAA to SCI1 with the interrupt disabled by default.

5 Conclusion
This driver provides a software base for applications that need the implementation of SCI.

SCI Driver for the MC9S08GW64 , Rev. 0,8/2010
Freescale Semiconductor, Inc.10

Conclusion

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4161
Rev. 0,8/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

	Introduction
	Serial Communication Interface in the MC9S08GW64
	Clock Gating In SCI
	Baud Rate Generation

	Software Driver Description
	sci.h
	sci_config.h
	sci.c
	SCI_Init
	SCI_Set_BaudRate
	SCI_PutChar
	TERMIO_PutChar
	SCI_SendArray
	SCI_Get_Char
	TERMIO_GetChar
	SCI_GetArray
	Interrupt Subroutines

	Assumptions
	Use Case
	Conclusion

