Freescale Semiconductor
Application Note

Document Number: MPC5668x

Rev. 0, 09/2010

Using Sleep Mode on the MPC5668x

by: David McMenamin
Applications Engineer
East Kilbride, Scotland

1 Introduction

The dual core MPC5668x* microcontrollers (MCU) have been
developed to address the needs of high end automotive gateway
and body control applications. The MCU must offer good
performance and a range of peripherals that can meet the process
and communication intensive demands of the application when
the vehicle is running. The applications also require the MCU
to support a level of functionality when the automobile is parked
and power available from the battery only. It is therefore,
important that the MCU offers low power consumption. This
helps to maximize the time the vehicle's electronic system can
run from the battery.

Traditionally two MCU’s would have been used to achieve this.
A high performance MCU to manage a running application and
a small low performance low power MCU that will be used in
an idle mode. The MPC5668x offers a single MCU solution for
this task with its run and sleep modes of operation, helping to
reduce system cost and complexity.

This application note will explain how to use the low power
mode, the process and options available for transitioning between
run and sleep mode on the MPC5668x and provide example
scenarios and software. The software used in the examples within
this applications note is provided in AN4150SW and can be
downloaded from www.freescale.com. This application note
must be used in conjunction with the MPC5668x Reference
Manual.

1. MPC5668x includes MPC5668E and MPC5668G

© 2010 Freescale Semiconductor, Inc.

© o N o

10
11

Contents
INtrodUCLION......cocvoviiiiiic 1
MPC5668Xx Power MOdES...........ccoovevririeiriniiinine 2
Clock, Reset and Power Module (CRP)

Using Sleep MOE........cccvveeiinreniieeecsee e
Configuring a wake up source to exit sleep
MOGE....oiiiiir 3
Entering into Sleep Mode..........ccccoevvviniinccnnns 6
Low Power Mode EXit routing............ccccovvvevnine 9
Wake up to Flash or RAM........cccooiiiniicinnn
Debugging Low Power Mode
EXaMPIES...c.oiiiiccc e
CONCIUSION.....cviiiiiiii 14

-
-

L1

freescale’

semicongucinr

www.freescale.com

vir.5668x Power Modes

2 MPC5668x Power Modes

The MPC5668x supports two modes of operation:
Run Mode

* Default mode out of reset
 Device is running normally, all resources can be used, executing application code
» The estimated room temperature current in this mode is ~220 mA at 116 MHz with all peripherals and both cores running.

Sleep Mode

» Power is removed for large areas of the device to eliminate static leakage from these areas (power gating).

« Essential parts of the silicon remain powered to monitor wake up events and control the entry and exit sequence from
Run to Sleep and vice versa.

 Optional amounts of RAM can be maintained to allow program critical information to be maintained during sleep mode.

« A range of external and internal time based events can be used to cause the MCU to exit sleep and return to run mode.

A summary of what remains powered in Run and Sleep mode is shown in Table 1 below:

Table 1. Mode Summary

Features Run Mode Sleep Mode
Standard Cell Logic (€200z6, €200z0, DMA, | Powered, Running Powered Down
peripherals etc.)
Flash Power from Reset Optionally disabled | Powered Down
SRAM All SRAM Powered Optional Amounts of SRAM powered:

0: All RAM powered

1: First 32KB powered
2: First 64KB powered
3: First 128KB powered

Output Pins Active Disabled
Input Pins Active Active for Wakeup
RTC, API Optional Optional

3 Clock, Reset and Power Module (CRP)

The primary function of the clock, reset, and power (CRP) module is to maintain all the control logic that requires power when
other portions of the MCU are powered down in sleep mode. The CRP manages entry into, operation during and exit from sleep
mode.

The CRP consists of the following:

* Input isolation block

RTC/API

Wakeup and power status block
Clock and reset control block

» Low-power state machine

Bus interface unit.

Figure 1 shows block diagram of the CRP module:

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
2 Freescale Semiconductor, Inc.

Using Sleep Mode

440 |
Mz XTAL[™
32 KHz
xTaL |
26 KHz |
RC_ [
16 MHz |
RC_[™
| » U CRP
= T
A A A A
Y
> Low
POWER
FSM
Y
| CLOCKS, <—+ AA
™ RESET
| CONTROL |
> wakeur, |
POWER
STATUS
Al
— -
| RIC/ |«
ot -
INPUT
|\SOLATION|
A A
POWER ISOLATION
Y SWITCHE LOGIC
Y
sysTEM || CLOCK 1 ooy

CLOCK

\ A
RAM | BLOCKS

Figure 1. CRP module block diagram

The input isolation block allows inputs from external blocks to be driven to known states when the logic driving the input is
powered down. The RTC/API block implements a real-time counter and periodic interrupt. The wakeup and the power status
block implements the logic to select power mode operation and wakeup sources. The clock and reset control block implements
miscellaneous logic related to PLL and oscillator operation, and reset gating for sleep mode. The low power state machine
controls the transitions into and out of sleep mode. The Bus Interface Unit allows for read/write register access from the e200z6
and e200z0 cores.

4 Using Sleep Mode

When in run mode the user application must execute a sequence of events to cause the MCU to enter into sleep mode. It is
important to consider the whole picture before entering and exiting low power mode. This section will explain and provide
examples of what needs to be done and considered when using sleep mode in the following order:

1. Configuring a wake up source to exit sleep mode
2. Entering into Sleep Mode

3. Exiting Sleep mode

4. Program layout for entry and exit software.

5 Configuring a wake up source to exit sleep mode

It is important to have at least one valid wake up source configured before entering into the sleep mode. If no wakeup source
is configured then the only way to exit from sleep mode will be from an external reset or power on reset.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
Freescale Semiconductor, Inc. 3

cuniiguring a wake up source to exit sleep mode
The MPC5668x supports the following wake up sources:

 Real Time Counter (RTC)

 Real Time Counter Roll Over

« Autonomous Periodic Interrupt (API)

« External Pin transition — 32 Pins supported

Multiple wake up sources can be enabled at any time, with the first one to occur causing the MCU to exit sleep.

5.1 RTC/API

The RTC and API is based on a 32-bit free running counter that can be driven from the 32 kHz external oscillator, 128 kHz
Internal RC oscillator (IRC), 16 MHz IRC or the 4-40 MHz external oscillator. The MCU can be configured to exit sleep mode
in case of a RTC match value and/or when the counter rolls over.

The clock source chosen for the RTC is a trade-off between accuracy, power, and recovery time. The lowest power option is
the 32 kHz IRC that consumes approximately 1 pA. The disadvantage is that the clock is accurate to around only 10% deviation.
If a pin transition occurs immediately after a clock edge, the edge won’t be latched and acted upon until the next clock edge.
At 32 kHz, the clock is over 30 ps. That may not be a problem in most applications. The next lowest power option is using the
32kHz external oscillator facility. This option consumes around 3 pA of current but requires the addition of a 32 kHz crystal.
The advantage is that this is of a greater accuracy than the internal IRC and could potentially be used to track the “time of day.”

The 16 MHz IRC is the most accurate internal clock available (<5%), consuming a higher current of 160 PA. This is the default
system clock from sleep mode exit, hence allowing near instantaneous recovery. This capability allows registers, modules, etc.,
to be configured while waiting for the external crystal to stabilize. Alternatively, it supports rapid code execution during short
run cycles, enabling the device to return to sleep mode quicker.

There is a fixed 32-bit divide going into the counter that provides a 1ms resolution for the 32 kHz sources. The 16 MHz IRC
is another source, and this can be the full 16 MHz or passed through a fixed divide-by-512 counter. This fixed divider again

provides a 1 ms resolution on the 32-bit counter. This 1 ms resolution provides up to 1.5 months time period. The following

RTC/API block diagram including sources and divides is given below:

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
4 Freescale Semiconductor, Inc.

g |

Configuring a wake up source to exit sleep mode

RTCCNT ARIF —\

.
| = APl Interrupt
> & 3 APIIE’i—/
©F 2 ¥ v APIVAL A
Rl & X
I F3T ¥ 9-0
oo ~ =|+‘ ‘sync|
CLKSEL—=~0 1 2 3
APIEN
CNTEN reset
DIV512EN
9-0 —
= == = APl Wakeup

(=]

3
32-bit counter
reset 21-10

‘ —= ‘-q—{ RTCVAL ‘
L

t — » RTC Wakeup
' e RTC Rollover Wakeup
‘ sync ‘ | sync | ‘ ROVREN J
' —— RTC cni_or_rlovr
RTCF 1 — =
RTCIE / -
RTC Interrupt
ROVRF ’—l‘_) >

A
ROVREN ;
[rowme | ——/

CNTEN

Figure 2. RTC/API block diagram

To use RTC or the API, the user needs to trade off the length of time the timer may have to wait before wakeup against resolution:

» The RTC system with its 12-bit compare gives a 1 s to 1 hour timeout with a 1 s resolution.

» The API system with a 10-bit compare supports wakeup intervals 1 ms to 1 s.
The match values of these timers can be changed while they are running although if the part is in sleep mode, there is no
mechanism to achieve this. The user specifies a RTC match value using the RTCVAL field within the RTC control register.
This value is compared to bits 10-21 of the RTC counter. The user must ensure the CRP is configured to keep the chosen
clock source active in sleep mode if the RTC is to be used a wakeup source. The RTC must also be enabled and selected
as a wakeup source. The code example below provides an example sequence for configuring the RTC as a wakeup source
with wake up match and roll over enabled. The RTC is driven from the 128 kHz IRC in the following example:

/* Configure RTC as Wake up Source */

CRP. RTCC. B. CLKSEL = 0x01; /* 128K I RC drives RTC */
CRP. RTCC. B. RTCVAL = OxFFF; /* Set Match value for RTC */
CRP. PSCR. B. RTCWKEN = 0x1;/* Enabl e RTC as wake up source */

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010

Freescale Semiconductor, Inc. 5

entering into Sleep Mode

CRP. RTCC. B. ROVEN = 0x1; /* Enabl e Wakeup on RTC Rol | over */
CRP. CLKSRC. B. EN128KIRC = 1;/* enable 128K IRC in Sleep */
CRP. RTCC. B. CNTEN = 1; /* Enable RTC */

The API is enabled separately. To use the APl the RTC must be enabled and a clock source running. The user then sets
the APl compare. Software Example 1 utilises the APl and RTC as wake up sources.

5.2 Pin Wakeup

An edge transition on an external pin can be used to generate a wake up event to cause the MCU to exit from sleep mode. When
in sleep mode up to 32 external pins can be monitored as a wake up source.

These are shown in Table 2
Table 2. Wake up Pin options

CRP_PWKENL

PWKn Pin PWKn Pin PWKn Pin PWKn Pin

0 PB4 8 PD9 16 PE9 24 PJ9

1 PBS 9 PD11 17 PE11 25 PJ10
2 PB6 10 PD13 18 PE13 26 PJ11
3 PB7 11 PD15 19 PF3 27 PJ12
4 PD1 12 PE1 20 PF7 28 PJ13
5 PD3 13 PE3 21 PF11 29 PJ14
6 PD5 14 PES 22 PF15 30 PK3
7 PD7 15 PE7 23 PJ8 31 PK6

The wake up event can occur on a positive, negative or either edge transition. Each pin must be enabled as a wake up source
and the wakeup edge(s) selected within the CRP Pin Wake up enable register (CRP_PWENR). Pins being used for wake up
must have their Input buffer enable bit set within the corresponding SIU pin configuration register (IBE = 1: SIU_PCSR).

Either the 16 MHz IRC or the 128 kHz IRC can be used as the logic synchronizer and edge detect clock for pin wakeup. This
selection is made from within the CRP Power Status and Control Register Wake up clock select bit (CRP_CSPR WKCLK). If
the 128 kHz clock is selected, it must remain enabled when in sleep mode.

To facilitate wake up of the MCU upon reception of data on a communications interface, many of the pins that can be selected
as wake up sources are receive pins on the communications interfaces. The first frame received would cause the MCU to exit
from sleep mode. This frame would however be lost as the peripheral would not yet be powered and configured, but can be
configured ready for reception of the next frame.

6 Entering into Sleep Mode

To allow the MCU to successfully enter into sleep mode, a sequence of events must be followed. A valid wake up source, as
discussed, must be configured and an exit routine must be present in the location specified before entering. This is discussed
later in this applications note. The flow of events required to enter into sleep mode is given in Figure 3

NOTE
All program/erase operations on the flash should be completed before attempting to enter
into sleep mode.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
6 Freescale Semiconductor, Inc.

Entering into Sleep Mode

Disable DMA, FEC, MLB and
FlexRAY Modules

v

Halt all Modules via the SIU halt
bits (SIU HLT)

'

Set the System Clock to the
16MHz IRC — This will clock
CRP in low power mode

v

Disable PLL

v

Optional — If not needed in Sleep
DisableXOSC

'

Set the Sleep Bit in the CRP
PSCR

!

Set Source Address of Wake up
Code& RAM to be maintained

!

Execute Wait Instruction on Any
Active Core

'

MCUSleep

Figure 3. MCU Sleep mode entry procedure

Appendix A provides low power mode entry software example that follows the above flow diagram.

6.1 Disable DMA, FEC, MLB and FlexRAY Modules & Halt all
Modules via the SIU halt bits (SIU_HLT)

The relevant bit in the SIU Halt Register (SIU HLT) enables the halt logic built into the module to perform a controlled shutdown
of the module rather than just simply stopping the clock to the module. This allows a module currently performing a task to
complete the task and stop gracefully (such as a DSPI in the middle of transmitting a message). Each module also has a
corresponding flag in the HLTACK (halt acknowledge) register. When a module is requested to halt, and has completed its halt
sequence, it sets the appropriate halt acknowledge flag in the HLTACK register. In this way, software can easily monitor the
progress of any modules requested to halt. When entering a low power mode, because all modules are going to be halted, writing
OXFFFFFFFF to each of the 32-bit SIU_HLT registers and then waiting for the flags to assert in confirmation for halting the
modules.

However, on the MPC5668x family, the DMA, MLB, Ethernet and the FlexRay modules do not contain the halt logic necessary
to perform a graceful halt. This is due to the complex nature of these particular modules. If any of these four modules are used
within the application, the user must take care of shutting them down manually. To do this the user must ensure that all the data
transfers have completed and that no more are pending.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
Freescale Semiconductor, Inc. 7

entering into Sleep Mode

6.2 Setthe System Clock to the 16 MHz IRC

While the MPC5668X is in sleep mode, any operation of the CRP module is clocked by the 16 MHz IRC. Thus, prior to sleep
mode entry, the system clock must be set to the 16 MHz IRC. This is achieved by writing 00 to the SYSCLKSEL bits in the
SIU_SYSCLK register. If the 16 MHz IRC is not selected prior to execution of the WAIT instruction, the 16 MHz IRC is
automatically started by the system to clock the CRP module. In this case, whichever clock source that was clocking the system
prior to sleep mode entry (most likely PLL/XOSC) is still active and will be using power.

6.3 Disable PLL

Once the system clock has been configured to be the 16 MHz IRC then the PLL can be disabled as it is not required to clock
any logic when in sleep mode. Until sleep mode is entered the core will be clocked by the 16 MHz IRC. All peripherals should
be halted by this stage so they are not affected by the clock source. Writing 0b000 to the CLKCFG bits in the ESYNCRL register
disables the PLL. Power to the PLL will be removed upon entry into sleep mode but it is a good practice to disable it before
entry.

6.4 Optional — If not needed in Sleep Disable XOSC

If the XOSC is not used to clock the RTC then it can be disabled to save power. This is done by clearing the EN4OMOSC bit
within the CLKSRC register. If the XOSC is left enabled then the ENLPOSC bit in the same register will determine its behavior
when low power mode is entered. If cleared the 4 — 40 MHz OSC clock is disabled to save power, but connection to the external
crystal is still active thus supports faster recovery time for availability of 4 — 40 MHz OSC after sleep recovery. This supports
the full 4 — 40MHz range of external crystals. If set, then 4 — 40 MHz OSC clock is active and may be used as the clock source
for the RTC/API. The external crystal frequency is limited to < 8 MHz.

6.5 Set the Sleep Bitin the CRP_PSCR Register

Set the sleep Bit in the CRP_PSCR Register to tell the CRP to enter sleep mode when the wait instruction is executed on the
active core(s).

6.6 Set Source Address of Wake up Code & RAM to be maintained

The CRP module contains the address of the software routine that each core must access when it exits from sleep mode. There
is an individual register provided for each core CRP_Z6VEC and CRP_Z0OVEC. The e200z0 core sleep recovery code can be
located at any 16-bit aligned address in flash or RAM as the 30 most significant address bits can be specified. On the e200z6
core only the 20 most significant bits can be specified in the Z6VVEC register, therefore code must be aligned to a 4k boundary
with the addition of OXFFC, the fixed value of the bits in the address field that are not specified by the user.

If only one core is to be used upon exit from reset, or only one core is being utilized in the system then the other core should
be put into reset by setting the Z6RST/ZORST bit in either the Z6VEC or ZOVEC register. This should be done prior to entering
into sleep mode. A core will only begin executing code from the vector (Z6VVEC/ZOVEC) register address after low power exit
if it was not held in reset and executed the Wait instruction.

NOTE
It is not possible to set the RST bit of both cores at the same time when the device is in run mode.

The user must specify the amount of RAM memory that is to be maintained when the device is in sleep mode. This is done from
within the CRP_PSCR (PSCR) register using the RAM select bits. The maximum power savings comes from maintaining the
minimum amount of RAM possible.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
8 Freescale Semiconductor, Inc.

Low Power Mode Exit routine

6.7 Execute Wait Instruction on Any Active Core

Execute the Wait Instruction on any active Core. This can be done using the “wait” assembly mnemonic if supported by your
compiler or the op code 0x7C00007C.

The MCU must now successfully enter into sleep mode. This can be verified by measuring the current that is being drawn by
pass transistor on the VRC.

6.8 Other considerations before entering Sleep Mode

Depending on the nature of the user's software and what state the user wants the system to be at low power sleep mode exit, it
may be necessary to save the machine state before entering sleep mode. This allows the application to return to where it was
before entering sleep mode. This can be done by saving the contents of the core registers and then restoring them upon exit.
This stack must also be maintained when doing this. A special register within the CRP called the Recovery Pointer
(CRP_RECPTR) can be used to store the stack pointer. This can then be used by the recovery routine to restore the core register
state before sleep mode if they are the last entry on to the stack.

7 Low Power Mode Exit routine

Exit from sleep mode is caused by a reset (power on reset or external reset pin) or the occurrence of a pre-defined wakeup event
that was specified prior to entry into sleep. Upon exit, any core that executed the “wait” instruction prior to entering sleep mode
will begin to execute code from the address stored in the corresponding Vector Register (CRP_Z6VEC / CRP_ZOVEC).

The code that will be executed from this point onward will depend on the needs of the following application tasks and the
location where the wake up code is. Following list provides some guidelines on this:

 Reconfigure the Memory Management Unit (MMU) - (e200z6 core only)
* Restore the context

 Configure and change the system clock source

« Reinitialize RAM if disabled

* Re-enable cache

 Reconfigure peripherals

« Clear the sleep flag to enable i/o

« Establish the cause of the wakeup

7.1 Reconfigure the Memory Management Unit (MMU)

If the e200z6 core has to resume after exit from sleep mode then the MMU must be reconfigured. After exit from sleep mode
there will be only one valid MMU entry- TLBO. This will be setup for the flash if the e200z6 sleep recovery vector is located
in flash and RAM if it is located in RAM. The VLE bit contained within the Z6VVEC register will determine if the VLE bit is
set in the MMU entry. The valid address ranges in the MMU are shown depending on the memory location of the MMU.

Table 3. MMU Settings after Sleep Mode Exit

e200z6 VEC Location

Start of Valid Address

End of Valid Address

Range Range
RAM 0x40000000 0x40000FFF
Flash 0x00000000 0xO00000FFF

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010

Freescale Semiconductor, Inc.

Low Power Mode Exit routine

As only the 20 most significant bits can be specified in the Z6VEC field and the remaining bits are fixed adding on OxFFC then
the sleep mode exit procedure code cannot be placed sequentially from this address. Only memory is available for one BookE
/32bit VLE or 2 16-bit VLE instructions. Therefore, the first instruction must be a branch to a lower numerical address where
the low power exit code is located. An example of how this can be achieved with the single MMU entry and e200z6 core vector
restrictions is shown below.

0x00000000 | RCHW + Start Address Sleep_exit_Code 0x40000000
0x00000008 Sleep_exit_Code

Valid MMU Entry Valid MMU Entry

0x00000FFC branch Sleep_exit_Code branch Sleep_exit_Code 0x40000FFC

0x00001000 0x40001000

No MMU Entry No MMU Entry

Figure 4. e200z6 Memory and Code location After Sleep Mode EXxit

The MMU can then be configured to meet the needs of the application. At least one entry will be required for RAM, flash,
Peripheral Bridge A and Peripheral Bridge B if the e200z6 core needs to access all of these resources. Software is included
within the examples that show how to configure the MMU after exit from sleep mode. The €200z0 core does not have an MMU
and all address map resources are available to the e200z0 after exit from sleep mode.

7.2 Restore Context

If the context of the core was saved to RAM and retained during sleep mode then the application may wish to restore this after
exit from sleep mode. This is shown in the examples later in this applications note.

7.3 Configure and Change System Clock Source

The MCU will be clocked from the 16 MHz IRC at this point. It may be desirable to switch the system to a faster clock speed
or to full system speed. This will be beneficial as it will speed up the time taken to reconfigure the system. Some peripherals
may also need a faster clock speed to meet the needs of the application. If the exit from sleep is only for a short period of time
before sleep mode is entered again it may not be desirable to start the faster clock as the external oscillator needs time to stabilize
and the PLL needs to lock.

7.4 Reinitialize RAM

Any areas of RAM that were disabled when in sleep mode must be written to again before they can be used to initialize the
ECC syndrome bits. RAM that remained powered can be left as these values are retained for these areas.

7.5 Reinitialize Cache

If cache memory is required then it must be re-enabled in the same way that was used previously in the application before
entering sleep mode.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
10 Freescale Semiconductor, Inc.

Wake up to Flash or RAM

7.6 Reinitialize Peripherals

Power is removed from the peripherals when sleep mode is entered and applied again when sleep mode is exited. Therefore
after sleep mode exit, all peripherals, except CRP module, are in their reset state and must be fully configured again before they
can be used in the application.

7.7 Clear the Sleep flag to enable I/O

The sleep flag, SLEEPF within the CRP_PSCR is set to indicate that the MCU has entered into sleep mode. While SLEEPF is
set, the pads remain in a safe state after sleep mode recovery and clearing SLEEPF will return the pads to normal operation.
Writing 1 clears this status flag and a writing 0 has no effect.

7.8 Establish the cause of the Wakeup

If there are multiple wake up sources that can cause the MCU to exit from sleep mode then the application might require to
identify what wakeup source caused the MCU to exit from sleep mode so it can carry out tasks according to this.

There are two registers that must be read to establish the cause of the wakeup:
CRP PSCR: There are 3 bits in this register that provide information about the cause of the exit from sleep mode.

1. RTC Counter Rollover Wakeup Flag (RTCOVRWKF) :The RTCOVRWAKEF bit indicates that a RTC counter rollover
was the wakeup source

2. RTC Wakeup Flag (RTCWKF): The RTCWKEF bit indicates that the RTC match was the wakeup source.

3. APl Wakeup Flag (APIWKEF): The APIWKF bit indicates the API was the wakeup source.

If the wakeup was caused by an edge transition on an external pin then this can be established by reading the Pin Wake up
Source Flag register within the CRP (CRP_PWKSRCF).

8 Wake up to Flash or RAM

The code executed by either core after sleep mode exit can be located in either flash or RAM memory. There are advantages
and disadvantages to placing the code in each memory type. The choice will be determined by the needs of the application.

If the sleep mode exit code is located in RAM then the FASTREC bit can be set within the CRP_RECPTR register. This shortens
the period of time it takes to exit sleep mode from 1000 clock cycles to 16 clock cycles as there is no delay while the flash
initializes. This is ideal if the application needs to wake up quickly and make some assessments before deciding to fully initialise
the system or go back to sleep again. The disadvantage of this is that the software must be stored in flash and copied over into
RAM at start up. A cost of time and memory duplication.

9 Debugging Low Power Mode
9.1 Debugging Through Low Power Mode

There is a handshaking procedure that is performed by the MCU and the debug hardware to allow the user to debug through
sleep mode. Debuggers that support this functionality must be able to indicate the user when the MCU is in sleep mode. The
tools vendor can advise if this feature is supported.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
Freescale Semiconductor, Inc. 11

examples

9.2 Checking Entry into Low Power Mode

If the debugger does not support sleep mode debug or the MCU that is being used independently from the debugger then the
user can attach an ammeter in series with the VRC supply. The current drawn will greatly reduce when low power mode is
entered. Please see the expected values in the MPC5668x Data sheet.

9.3 MCU is not entering Low Power Mode

Step the entry code for low power mode and ensure all the required tasks are being carried out correctly.

NOTE
The wait instruction cannot be stepped using debug software.

9.4 MCU is not exiting Low Power Mode

If MCU does not exit from sleep mode when it should have, then check that the wake up source is configured correctly and if
it is dependant on a clock source, then the clock source is not disabled in sleep mode. If a reset occurs when exiting sleep mode
then there might be a software issue in the start up code (for example, MMU region is not configured correctly and the core
tries to access it).

The user can then step the code up until the wait instruction is under the control of the debugger. Then change the pc counter
to the start up code before executing the wait instruction. Clear the core registers and configure MMU settings to mimic exit
from sleep then step the code to see if the cause of the issue can be identified.

10 Examples

The example software that accompanies this applications note contains 2 low power examples for the MPC5668x. These
examples have been developed to be run on the MPC5668EVB that is provided with the MPC5668KIT. The following examples
are provided:

Example 1

Running from RAM and waking up to RAM after sleep mode. Fast recovery on Wake up on an edge transition on an external
pin.

Example 2
Running from flash and waking up to flash. Wake up caused by API.

These examples have been built using the Greenhills Multi v5.05 PPC compiler.

10.1 Example 1

This is a Book E coded RAM only single core (€200z6) example; it runs from RAM and wakes up to RAM. When running the
code configures the MCU Pins and then remains in RUN mode toggling Pin PBO (This can be connected to an LED on the EVB
to give a visual representation) and monitoring PAO. A high input on PAQ causes the MCU to execute the sleep entry procedure
and enter into sleep mode. Pin PB4 is configured as a wake up source prior to entering sleep mode. A rising edge on this pin
will cause the MCU to exit from sleep mode, disable the watchdog reconfigure the MMU and restore the context. When the
context is restored the MCU will return to the main function immediately after the enter sleep mode function. PB0O will begin
to toggle again and the MCU is ready to re-enter sleep mode.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010
12 Freescale Semiconductor, Inc.

4
A

Examples

The wakeup code is located at address 0x40000FFC (A branch to 0x40000000 is located at this address) therefore the fast
recovery bit is set as this is a location in RAM.

The flow chart below explains the operation of this example. All codes are executed by the €200z6 core:

Figure 5. Program flow

main()

v

setup_pin()

PAO — Input for Sleep Entry
PBO — Output for Status LED
PB4 — Wakeup Source Input

buffer enabled

!

Enable PB4 +edge as wake up
source

'

Toggle PBO to show that MCU is |
in RUN mode

!

Check if Sleep entry
has been requested
PAO =1?

Configure the MMU
Disable the Watchdog
Restore the Context

A

e€200z6 start to execute wake up

Enter Sleep Mode code
A

No

CRP Monitors
wake request
+ edge on PB4?

CRP Wakes up MCU

Following key software files for this example can be found in Appendix A which is included in AN4150SW and can be
downloaded from www.freescale.com.

* main.c — Main routine, enter sleep mode and pin setup

» execute_wait.s — saves the core context to the stack and executes the wait instruction

« LPM_Recover.s — sleep recovery functions.
e 76 ram.Id — linker file

NOTE
To run this example, the user must init the MMU from the debugger before downloading
and running the software.

10.2 Example 2

This example runs from flash memory and wakes up to flash memory. Unlike Example 1 one it does not depend on an external
input to wake up. The wake up signal is generated by the RTC, using thel6 Mhz IRC as the source clock for this. After entering
sleep, again upon a high signal on PAO, to wake up the MCU waits for the RTC clock match to occur.

The key software files for this example can be found in Appendix B, which is included in AN4150SW and can be downloaded
from www.freescale.com

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010

Freescale Semiconductor, Inc. 13

www.freescale.com
www.freescale.com

r
4\ ___|

conclusion

11 Conclusion

Through this application note the procedure for entering and exiting from sleep mode on the MPC5668x has been discussed. It
has shown the options that are available for wake up sources, clock options for wake up sources and code storage options for
sleep entry and exit software. The advantages and disadvantages of the options have been discussed as well as the issues that
can occur and the methods for debugging these issues. Additionally, example code has been discussed and provided.

Using Sleep Mode on the MPC5668x, Rev. 0, 08/2010

14 Freescale Semiconductor, Inc.

g |

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor

Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5668x
Rev. 0, 09/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. “Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental ~ Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

-

Z “freescale

semicongucinr

	Introduction
	MPC5668x Power Modes
	Clock, Reset and Power Module (CRP)
	Using Sleep Mode
	Configuring a wake up source to exit sleep mode
	RTC/API
	Pin Wakeup

	Entering into Sleep Mode
	Disable DMA, FEC, MLB and FlexRAY Modules & Halt all Modules via the SIU halt bits (SIU_HLT)
	Set the System Clock to the 16 MHz IRC
	Disable PLL
	Optional – If not needed in Sleep Disable XOSC
	Set the Sleep Bit in the CRP_PSCR Register
	Set Source Address of Wake up Code & RAM to be maintained
	Execute Wait Instruction on Any Active Core
	Other considerations before entering Sleep Mode

	Low Power Mode Exit routine
	Reconfigure the Memory Management Unit (MMU)
	Restore Context
	Configure and Change System Clock Source
	Reinitialize RAM
	Reinitialize Cache
	Reinitialize Peripherals
	Clear the Sleep flag to enable I/O
	Establish the cause of the Wakeup

	Wake up to Flash or RAM
	Debugging Low Power Mode
	Debugging Through Low Power Mode
	Checking Entry into Low Power Mode
	MCU is not entering Low Power Mode
	MCU is not exiting Low Power Mode

	Examples
	Example 1
	Example 2

	Conclusion

