
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
This section gives an introduction to the application note.

1.1 Purpose
In a traditional file system, the Windows CE™ (WinCE)
image is generally an NK.NB0/NK.BIN signal file.
Therefore, when a NAND Flash is used for storage, the
NK.NB0 signal file has to be copied into the RAM (by the
EBOOT) before the file is run, as the NAND Flash storage
cannot support XIP (Execute In Place).

There are two disadvantages in this process: long boot time
and requirement of large RAM memory size. If the WinCE
image is large (included with more features), these issues
become critical. The Binary ROM Image File System
(BinFS) can fix the two issues by using a 32-Mbyte RAM to
run a 64-Mbyte WinCE image. In a BinFS file system, the
final WinCE image is divided into multi-Binary Image
(BIN) files, and only the XIPKERNEL BIN (less than
5 Mbytes) is copied into the RAM by the EBOOT. The files
in the other BIN files work with demand paging mode. These
files are loaded into the RAM only when they are required to
be run.

With the BinFS support, the boot time (from start reading
Flash image to show WinCE desktop) is reduced to 6

Document Number: AN4137
Rev. 0, 06/2010

Contents
1. Introduction . 1
2. Design References . 2
3. EBOOT Reference . 12
4. NAND Disk Reference . 15
5. Registry and BIB Settings . 18
6. Support Scripts . 20
7. Patch for i.MX27ADS WinCE 6.0 F15 BSP 20
8. Revision History . 20

BinFS Implementation Guide
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

BinFS Implementation Guide, Rev. 0

2 Freescale Semiconductor

Design References

seconds in the i.MX27ADS board, and the free RAM size increases, which can be used for storing and
programming. This reduces the cost of the final products.

1.2 Scope
This application note gives an introduction to the BinFS support in the Freescale WinCE 6.0 Board
Support Package (BSP) based on the NAND Flash.

NOTE
The reference codes in this application note are based on the Freescale
i.MX27ADS F15 BSP.

1.3 Audience Description
This application note is helpful to the people who wants to know about:

• NAND Flash boot time

• RAM that uses NK images

2 Design References
This section gives an introduction to the system architecture of the BinFS files and also gives an example
for porting.

2.1 Framework Description
In this application note, the BinFS is based on the multi-NAND disks solution (refer to the Multi-Nand
Disks Implementation Guide (AN4139)). A read-only disk (NAND disk) is created to manage the BinFS
partition.

Some important aspects related to the BinFS, which are described in the following sections, are as follows:

• EBOOT—supports multi-BIN WinCE image and BinFS

• NAND disk—blocks device driver to manage the BinFS partition

• Registry setting and bib files—supports BinFS

• Support scripts—processes the ce.bib file that supports BinFS

In a non-BinFS file system, the WinCE image is the RAMIMAGE that follows the NAND Flash and RAM
layout as shown in Figure 1 and Figure 2, respectively.

Figure 1. NAND Flash Layout for non-BinFS File System

Figure 2. RAM Layout for non-BinFS File System

 Boot loader
(XLDR, EBOOT)

NK.NB0
(RAMIMAGE)

Sto rage
(FATF S)

NK.NB0
(RAMIMAGE)

Free R AM
(Program and s torage)

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 3

Design References

In NAND Flash and RAM layout, when the EBOOT loads the NK.NB0 file into the RAM, the RAM reads
the 48-Mbyte fixed size data from the NAND Flash. The read data is then copied into the WinCE NK run
RAM base address, IMAGE_BOOT_NKIMAGE_RAM_PA_START (defined in image_cfg.h), based on the
i.MX27ADS F15 WinCE 6.0 BSP.

In a BinFS file system, only the XIPKERNEL.NB0 and CHAIN.NB0 files are RAMIMAGE, and the others are
NANDIMAGE. The total size of the RAMIMAGE is less than 5 Mbytes. In the earlier version of WinCE,
the CHAIN.NB0 file is used by the EBOOT to locate each BIN region.

The NAND Flash and RAM layouts followed by the BinFS file system are shown in Figure 3 and Figure 4,
respectively.

Figure 3. NAND Flash Layout for BinFS File System

Figure 4. RAM Layout for BinFS File System

In this new layout, when the EBOOT loads a WinCE image, it first checks the Memory Buffer Register
(MBR) that includes the RAMIMAGE (partition type 0x23, PART_RAMIMAGE) and NANDIMAGE partitions
(partition type 0x21, PART_BINFS). Only the RAMIMAGE partition is copied into the RAM. The EBOOT
also gets the logical start sector address and sector size of the RAMIMAGE partition, and the real size of
the data that is required to be copied into the WinCE NK run RAM base address,
IMAGE_BOOT_NKIMAGE_RAM_PA_START, can be calculated.

NOTE
Both the MBR and XIP.NB0 regions are managed by the NAND Flash block
device driver, Nanddisk.dll.

The XIPKERNEL.NB0 contains only the modules necessary for the boot-up. The files, which are loaded prior
to implementation of BinFS, are stored in the XIPKERNEL.NB0. As the kernel resides in the RAM and the
XIPKERNEL region is the RAMIMAGE, the files loaded into the XIPKERNEL region typically include
everything required for the kernel. The FILES\MakeBinfsBib.js script is used to decide the modules that
are required to be added into the XIPKERNEL region. The BSP drivers, which are required to be put into
the XIPKERNEL region, should be directly specified in platform.bib file.

Microsoft® suggests the following modules to be put into the XIPKERNEL region:

• NK.exe

Boot loader
(XLDR, EBOOT)

XIP.NB0
(RAMIMAGE + NANDIMAGE)

Storage
(FATFS)

MBR

XIPKERNEL.NB0
(RAMIMAGE)

NK.NB0
(NANDIMAGE)

CHAIN.NB0
(RAMIMAGE)

XIPKERNEL.NB0
+ CHAIN.NB0
(RAMIMAGE)

Free RAM
(Program and storage)

BinFS Implementation Guide, Rev. 0

4 Freescale Semiconductor

Design References

• Kernel.dll

• Coredll.dll

• K.coredll.dll

• Oalioctl.dll

• Filesystem.dll

• Fsdmgr.dll

• Mspart.dll

• Romfsd.dll

• Binfs.dll

• Default.fdf or boot.hv

• Fpcrt.dll

• Ceddk.dll (if required by the Flash driver)

• Flash driver

If the Flash driver is loaded by the device manager, add device.dll, devmgr.dll, regenum.dll,
busenum.dll, and pm.dll files into the XIPKERNEL region. For Kernel Independent Transport Layer
(KITL) support, add kitl.dll file into the XIPKERNEL region. For debugging support, add hd.dll,
osaxst0.dll, and osaxst1.dll files into the XIPKERNEL region.

2.2 Porting Example
In this application note, based on the i.MX27ADS WinCE 6.0 F15 BSP, the 512-byte page size Single
Level Cell (SLC) NAND Flash is used as the target Flash ROM. This solution can also be used in other
WinCE 6.0 BSPs with the related NAND Flash driver. In this example, three BINs—XIPKERNEL.BIN,
CHAIN.BIN, and NK.BIN—are created for the BinFS support.

In non-BinFS file system, the final WinCE images are NK.BIN and NK.NB0. But in BinFS file system, the
final images are XIP.BIN and XIP.NB0. These two files are emerged from the files—XIPKERNEL.BIN,

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 5

Design References

CHAIN.BIN, and NK.BIN. There is an another file, chain.lst, that is selected by the platform builder to
download the BinFS image. The property page in a BinFS file system is shown in Figure 5.

Figure 5. i.MX27ADSMobility Property Page

All the changes that are required to be done in the i.MX27ADS F15 WinCE 6.0 BSP to support the BinFS
are listed as follows:

NOTE
All the changes listed are made in the BSP folder.

• File WINCE600\PLATFORM\iMX27ADS\iMX27ADS.bat:

— Rename the file, MX27ADS.bat to iMX27ADS.bat.

— Add set IMGNAND = 1.

— Add set SYSGEN_FLASHMDD = 1 to support the WinCE 6.0 R2 Model Device Driver (MDD) and
Platform-Dependent Driver (PDD) based Flash driver.

— Add set BSP_NAND_PDD = 1 to use the Flash PDD driver, and include the related support codes.

— Change set BSP_NAND_FMD = to avoid the usage of old NAND Flash Media Driver (FMD)
driver.

— Add set BSP_SUPPORT_DEMAND_PAGING = 1 for BinFS support.

These changes are coded as follows:

set IMGNAND=1
set BSP_NAND_FMD=
set BSP_NAND_PDD=1
set SYSGEN_FLASHMDD=1
set BSP_SUPPORT_DEMAND_PAGING=1
if "%BSP_SUPPORT_DEMAND_PAGING%"=="1" set BSP_NONANDDISK=
if "%BSP_SUPPORT_DEMAND_PAGING%"=="1" set SYSGEN_BINFS=1

BinFS Implementation Guide, Rev. 0

6 Freescale Semiconductor

Design References

• File WINCE600\PLATFORM\iMX27ADS\sources.cmn
Add macro definition for the BSP_NAND_PDD file. This macro is used in the source codes to support
the multi-NAND disks:

!IF "$(BSP_NAND_PDD)"=="1"
CDEFINES=$(CDEFINES) -DBSP_NAND_PDD
!ENDIF

• File WINCE600\PLATFORM\iMX27ADS\FILES\Config.bib
Change memory map to support the BinFS.

NOTE
The config.bib file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\FILES\MakeBinfsBib.js
Java script file is used to process the ce.bib file for multi-BIN support.

NOTE
The MakeBinfsBib.js file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\FILES\Platform.bib:

— Use macro to define the different BIN names.

— Add block driver for the BinFS support.

— Add the Flash PDD driver, flashpdd_nand.dll, and the auto-run application, InstallNand.exe,
into the MODULES section in the platform.bib file.

NOTE
The platform.bib file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\FILES\Platform.reg:

— Add registry setting for the multi-NAND disks support.

— Add registry setting for the BinFS support:

IF BSP_NAND_PDD
; HIVE BOOT SECTION
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\NAND_Flash]

"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:1
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="NSFlash"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver"
"RegionNumber"=dword:1

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 7

Design References

; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash]

"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1
"MountFlags"=dword:0
"Ioctl"=dword:4

IF SYSGEN_FSREGHIVE
"MountAsBootable"=dword:1
"MountPermanent"=dword:1

; "MountHidden"=dword:1
ENDIF

IF SYSGEN_FSROMONLY
"MountAsRoot"=dword:1

ENDIF

[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NAND_Flash2]
"Dll"="flashmdd.dll"
"FlashPddDll"="flashpdd_nand.dll"
"Order"=dword:1
"Prefix"="DSK"
"Ioctl"=dword:4
"Profile"="NSFlash2"
"IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
"FriendlyName"="NAND FLASH Driver2"
"RegionNumber"=dword:2

; Override names in default profile
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NSFlash2]

"PartitionDriver"="flashpart.dll"
"Name"="NANDFLASH"
"Folder"="NANDFlash"
"AutoMount"=dword:1
"AutoPart"=dword:1
"AutoFormat"=dword:1
"MountFlags"=dword:0
"Ioctl"=dword:4

; END HIVE BOOT SECTION

[HKEY_LOCAL_MACHINE\init]
"Launch129"="InstallNand.exe"
"Depend129"=hex:14,00

ENDIF

IF BSP_SUPPORT_DEMAND_PAGING
IF BSP_NONANDDISK !
; HIVE BOOT SECTION
[HKEY_LOCAL_MACHINE\System\StorageManager\AutoLoad\NSDisk]

"DriverPath"="Drivers\\BlockDevice\\NandDisk"
"LoadFlags"=dword:1
"MountFlags"=dword:11
"BootPhase"=dword:0

BinFS Implementation Guide, Rev. 0

8 Freescale Semiconductor

Design References

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF

[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NandDisk]
"Prefix"="DSK"
"Dll"="NandDisk.dll"
"Order"=dword:0
"Ioctl"=dword:4
"Profile"="NandDisk"
"FriendlyName"="BINFS Flash Driver"
"MountFlags"=dword:11
"BootPhase"=dword:0

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF

; Bind BINFS to the block driver
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NandDisk]

"DefaultFileSystem"="BINFS"
"PartitionDriver"="mspart.dll"
"AutoMount"=dword:1
"AutoPart"=dword:1
"MountFlags"=dword:0
"Folder"="BINFS"
"Name"="BINFS Flash Disk"
"BootPhase"=dword:0
"MountAsROM"=dword:1
"MountHidden"=dword:1
"MountPermanent"=dword:1

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF
; END HIVE BOOT SECTION
ENDIF
ENDIF ;BSP_SUPPORT_DEMAND_PAGING

• File WINCE600\PLATFORM\iMX27ADS\FILES\PreRomImage.bat
This file is called before the platform builder, romimage stage. It processes the ce.bib file for the
multi-BIN support.

NOTE
The PreRomImage.bat file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\src\inc\image_cfg.h
Add NAND address definition for the MBR that is required for the BinFS:

#define IMAGE_BOOT_MBR_NAND_OFFSET (IMAGE_BOOT_IPLIMAGE_NAND_OFFSET +
IMAGE_BOOT_IPLIMAGE_NAND_SIZE)
#define IMAGE_BOOT_MBR_NAND_PA_START (IMAGE_BOOT_NANDDEV_NAND_PA_START +
IMAGE_BOOT_MBR_NAND_OFFSET)
#define IMAGE_BOOT_MBR_NAND_UA_START
((DWORD)OALPAtoUA(IMAGE_BOOT_MBR_NAND_PA_START))

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 9

Design References

#define IMAGE_BOOT_MBR_NAND_CA_START
((DWORD)OALPAtoCA(IMAGE_BOOT_MBR_NAND_PA_START))
#define IMAGE_BOOT_MBR_NAND_SIZE (128 * 1024)
#define IMAGE_BOOT_MBR_NAND_PA_END (IMAGE_BOOT_MBR_NAND_PA_START +
IMAGE_BOOT_MBR_NAND_SIZE - 1)

#define IMAGE_BOOT_NKIMAGE_NAND_OFFSET (IMAGE_BOOT_MBR_NAND_OFFSET +
IMAGE_BOOT_MBR_NAND_SIZE)

• File WINCE600\PLATFORM\iMX27ADS\src\inc\image_cfg.inc
Add NAND address definition for the MBR that is required for the BinFS:

IMAGE_BOOT_MBR_NAND_OFFSET EQU (IMAGE_BOOT_IPLIMAGE_NAND_OFFSET +
IMAGE_BOOT_IPLIMAGE_NAND_SIZE)
IMAGE_BOOT_MBR_NAND_PA_START EQU (IMAGE_BOOT_NANDDEV_NAND_PA_START +
IMAGE_BOOT_MBR_NAND_OFFSET)
IMAGE_BOOT_MBR_NAND_SIZE EQU (128 * 1024)
IMAGE_BOOT_MBR_NAND_PA_END EQU (IMAGE_BOOT_MBR_NAND_PA_START +
IMAGE_BOOT_MBR_NAND_SIZE - 1)

IMAGE_BOOT_NKIMAGE_NAND_OFFSET EQU (IMAGE_BOOT_MBR_NAND_OFFSET +
IMAGE_BOOT_MBR_NAND_SIZE)

• File WINCE600\PLATFORM\iMX27ADS\src\inc\Ioctl_cfg.h
Add define for IOCTL_HAL_NANDFMD_ACCESS:

#ifdef BSP_NAND_PDD
//OEM IOCTL CODE
#define IOCTL_HAL_NANDFMD_ACCESSCTL_CODE(FILE_DEVICE_HAL, 4000, METHOD_BUFFERED,
FILE_ANY_ACCESS)
#endif

• File WINCE600\PLATFORM\iMX27ADS\src\inc\Ioctl_tab.h
Add link between the macro, IOCTL_HAL_NANDFMD_ACCESS, and the function,
OALIoCtlHalNandfmdAccess():

#ifdef BSP_NAND_PDD
{ IOCTL_HAL_NANDFMD_ACCESS, 0, OALIoCtlHalNandfmdAccess },
#endif

• File WINCE600\PLATFORM\iMX27ADS\src\inc\oemaddrtab_cfg.inc
Map more addresses for the NAND Flash Control (NFC) to support multi-BIN images in the
EBOOT:

 DCD 0x9C200000, CSP_BASE_REG_PA_NANDFC, 48 ; EMI modules (NANDFC + ESDRAMC
+ WEIM + M3IF + PCMCIA)
DCD 0x9F200000, CSP_BASE_MEM_PA_VRAM, 1 ; VRAM (45K)

• Folder WINCE600\PLATFORM\iMX27ADS\src\common\nandfmd
Update the nandfmd_lib file for multi-NAND disks support. The multi-NAND disks can support
both 2-Kbyte and 512-byte page size SLC NAND Flash.

NOTE
The NANDFMD.zip file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

BinFS Implementation Guide, Rev. 0

10 Freescale Semiconductor

Design References

• Folder WINCE600\PLATFORM\iMX27ADS\src\drivers\block\nandpdd
Add this folder to support the new PDD Flash driver.

NOTE
The NANDPDD.zip file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• Folder WINCE600\PLATFORM\iMX27ADS\src\drivers\block\nanddisk
Add this folder to support the BinFS block device driver.

NOTE
The NandDisk.zip file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\src\drivers\block\DIRS:

— Add NANDPDD into the DIRS file.

— Add NANDDISK into the DIRS file.

• File WINCE600\PLATFORM\iMX27\SRC\OAL\OALLIB\nfc.cpp
New file to support the NANDFMD_LIB in OEM Adaptation Layer (OAL)

NOTE
The nfc.cpp file can be found in the zip file, AN4137SW.zip, that is included
with the application note.

• File WINCE600\PLATFORM\iMX27\SRC\OAL\OALLIB\sources
Add nfc.cpp file to the sources file for compilation.

• File WINCE600\PLATFORM\iMX27\SRC\OAL\OALLIB\ioctl.c
Implement OALIoCtlHalNandfmdAccess() and CriticalSection() functions for the NAND Flash
operation:

#ifdef BSP_NAND_PDD
#include <partdrv.h>
#include "..\..\common\nandfmd\nandfmd.h"
#endif
… …
#ifdef BSP_NAND_PDD
CRITICAL_SECTION g_oalNfcMutex;
#endif
… …
BOOL OALIoCtlHalPostInit(
UINT32 code, VOID *pInpBuffer, UINT32 inpSize, VOID *pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{

// Note that WinCE 6.00 only allows the use of critical sections whereas
// WinCE 5.00 also allowed the use of named mutexes. Therefore, we must
// now create and use a single critical section instead of a named mutex
// to provide mutual exclusion between the OAL and all PMIC drivers for
// accessing the CSPI bus.
InitializeCriticalSection(&g_oalPmicMutex);
#ifdef BSP_NAND_PDD
InitializeCriticalSection(&g_oalNfcMutex);

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 11

Design References

#endif

// Set flag to indicate it is okay to call EnterCriticalSection() and
// LeaveCriticalSection() within the OAL.
g_oalPostInit = TRUE;

return(TRUE);
}
… …
#ifdef BSP_NAND_PDD
BOOL OALIoCtlHalNandfmdAccess(
UINT32 code, VOID* pInpBuffer, UINT32 inpSize, VOID* pOutBuffer,
UINT32 outSize, UINT32 *pOutSize)
{

BOOL bResult;

EnterCriticalSection(&g_oalNfcMutex);
bResult = OALFMD_Access(pInpBuffer, inpSize);
LeaveCriticalSection(&g_oalNfcMutex);

return bResult;
}
#endif

• File WINCE600\PLATFORM\iMX27\SRC\OAL\OALEXE\sources
Add support to use the nandfmd_lib.lib file in OAL:

!IF "$(BSP_NAND_PDD)" == "1"
TARGETLIBS=\

$(TARGETLIBS) \
$(_TARGETPLATROOT)\lib\$(_CPUINDPATH)\nandfmd_lib.lib

!ENDIF

• Folder WINCE600\PLATFORM\iMX27ADS\SRC\TOOLS\InstallNand
This is an auto-run application, which is used to load the Flash storage disk driver after the WinCE
is booted up.

NOTE
The Tools.zip file can be found in the zip file, AN4137SW.zip, that is
included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\SRC\DIRS
Add the TOOLS folder for compilation.

• Folder WINCE600\PLATFORM\iMX27ADS\SRC\BOOTLOADER\XLDR\NAND
Update this folder to support the MT29F4G08AB and the other 5-cycle address mode NAND
Flash.

NOTE
The nandchip.inc, xldr.s, and sources files can be found in the zip file,
AN4137SW.zip, that is included with the application note.

BinFS Implementation Guide, Rev. 0

12 Freescale Semiconductor

EBOOT Reference

• Folder WINCE600\PLATFORM\iMX27ADS\SRC\BOOTLOADER\EBoot
Update this folder to support the multi-BIN images and BinFS in the EBOOT.

NOTE
The flash.c, main.c, and nand.c files can be found in the zip file,
AN4137SW.zip, that is included with the application note.

• File WINCE600\PLATFORM\iMX27ADS\SRC\OAL\OALLIB\oal_startup.c
Add the following code (refer to line 80 in the oal_startup.c file) to support both the 2-Kbyte and
512-Kbyte page size NAND Flash:

#ifdef NAND_LARGE_PAGE
pSYSCTRL->FMCR = 0xFCFFFFE9;
#else
pSYSCTRL->FMCR = 0xFCFFFFC9;
#endif

3 EBOOT Reference
The main functions of EBOOT to support the multi-BIN images and BinFS files are as follows:

• To use a different RAM buffer to receive the downloaded multi-BIN files

• To make the MBR for the WinCE NAND disks driver before programming the image into the
NAND Flash

• To check the MBR before loading the WinCE image to the RAM, and to copy only the
RAMIMAGE data to IMAGE_BOOT_NKIMAGE_RAM_PA_START

While downloading the image from the PC to the board, the platform builder sends the BIN files one after
the other based on the chain.lst file. In old EBOOT, all the BIN files were received with the same RAM
buffer, and the EBOOT was unable to receive multi-BIN images. However, the new EBOOT uses a
different RAM address to receive the BIN files, based on the different starting address of each BIN file.
The EBOOT also records the starting address and size of each BIN, after all the BIN files are downloaded
into the board. Based on the recorded starting address and size, EBOOT can program the address and size
to the NAND Flash sequentially. In i.MX27ADS F15 BSP, the first BIN is RAMIMAGE and the last is
chain. Before programming the BIN data, the EBOOT should create an MBR for the received WinCE
image. The created MBR includes two partitions: one for the RAMIMAGE (PART_RAMIMAGE) and the other
for the NANDIMAGE (PART_BINFS). The size for each partition is calculated from the received BIN files.
Generally, a 128-Kbyte memory is reserved for the MBR region. However, the real data for the MBR is
only 512 bytes.

The first three bytes of the MBR are 0xE9, 0xFD, and 0xFF, and the last two bytes of the MBR are 0x55 and
0xAA. At the end of MBR, there are four partition tables structured as follows:

typedef struct _PARTENTRY {
BYTE Part_BootInd; // If 80h means this is boot partition
BYTE Part_FirstHead; // Partition starting head based 0
BYTE Part_FirstSector; // Partition starting sector based 1
BYTE Part_FirstTrack; // Partition starting track based 0
BYTE Part_FileSystem; // Partition type signature field
BYTE Part_LastHead; // Partition ending head based 0
BYTE Part_LastSector; // Partition ending sector based 1

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 13

EBOOT Reference

BYTE Part_LastTrack; // Partition ending track based 0
DWORD Part_StartSector; // Logical starting sector based 0
DWORD Part_TotalSectors; // Total logical sectors in partition
} PARTENTRY;

After each BIN file is programmed to the NAND Flash, the EBOOT reads back the data for verification.
In the old EBOOT, the read back data is stored in the RAM that followed the receiver buffer. However,
this cannot be applied in multi-BIN images as another BIN data can occupy the address. Therefore, in the
new EBOOT, checksum is used to verify the BIN data.

3.1 Updated Source Files for EBOOT
The updated source files for the EBOOT are as follows:

• WINCE600\PLATFORM\iMX27ADS\SRC\Bootloader\Eboot\flash.c

• WINCE600\PLATFORM\iMX27ADS\SRC\Bootloader\Eboot\main.c

• WINCE600\PLATFORM\iMX27ADS\SRC\Bootloader\Eboot\nand.c

• WINCE600\PLATFORM\iMX27ADS\SRC\inc\image_cfg.h

• WINCE600\PLATFORM\iMX27ADS\SRC\inc\image_cfg.inc

• WINCE600\PLATFORM\iMX27ADS\SRC\inc\oemaddrtab_cfg.inc

These source files are described in the following sections.

3.1.1 flash.c

It includes two functions as follows:
• LPBYTE OEMMapMemAddr (DWORD dwImageStart, DWORD dwAddr)

Adds RAM map for the multi-BIN images, if IMGNAND is not set.
• BOOL OEMWriteFlash(DWORD dwStartAddr, DWORD dwLength)

While programming the first BIN file, a message, WARNING: Flash update requested, appears and
allows the user to select the Flash update. Before programming the first BIN file, the
NANDMakeMBR() function is called to create the MBR first. After the last BIN is programmed, the file
shows the message, Reboot the device manually, and calls the SpinForever() function.

3.1.2 main.c

It includes two functions as follows:
• void OEMMultiBINNotify(const PMultiBINInfo pInfo)

Before downloading the image, the platform builder sends the MultiBINInfo variable, and this
function is called once. This function records the number of multi-BIN images and saves to the
global variable, g_dwTotalBinNum. The function also initializes g_dwCurrentBinNum variable to 0,
which means to start from the first BIN.

• BOOL OEMVerifyMemory(DWORD dwStartAddr, DWORD dwLength)

This function does the following operations:

— Before each BIN file transfer, this function is called to verify the address and to translate the
RAM buffer address.

— Increments g_dwCurrentBinNum to calculate the BIN number.

BinFS Implementation Guide, Rev. 0

14 Freescale Semiconductor

EBOOT Reference

— Adjusts the BinFS NK address between IMAGE_BOOT_MBR_NAND_PA_START and
IMAGE_BOOT_NANDDEV_NAND_PA_END.

— Calls the NANDCheckImageAddress() to check if each BIN file size is aligned in the NAND Flash
block size.

— Starting address and size for each BIN is stored in the g_dwBinAddress and g_dwBinLength
arrays, respectively.

— After the last BIN is processed, this function sets g_dwCurrentBinNum to 0 for using the
OEMWriteFlash() function.

3.1.3 nand.c

This is the main file that supports the multi-BIN images and BinFS in the EBOOT NAND Flash. This file
includes the following functions:

• static CHSAddr LBAtoCHS(FlashInfo *pFlashInfo, LBAAddr lba)

This fuction converts the Logical Block Addressing (LBA) address to Cylinder-Head-Sector
(CHS) address and is used to create the partition table.

• DWORD CheckSum(void *pAddr, DWORD dwLen)

CheckSum function is used to verify the data. The input to this function is the data buffer and the
function returns the calculated checksum value.

• static DWORD NANDGetRealBlockAddress(DWORD dwBlockLogAddress)

This function finds the real NAND Flash block address from the input logical address and skips
the bad blocks. If bad blocks are not found, the real block address is taken as the logical address.

• BOOL NANDWriteXldr(DWORD dwStartAddr, DWORD dwLength)

• BOOL NANDWriteEboot(DWORD dwStartAddr, DWORD dwLength)

• BOOL NANDWriteIPL(DWORD dwStartAddr, DWORD dwLength)

This fuction changes the data verification method to checksum.
• BOOL NANDWriteNK(DWORD dwStartAddr, DWORD dwLength)

This function is called once to program the BIN file to the NAND Flash. To program three BIN
files, this function is called thrice. For each BIN file, this function calculates the real data size
aligned in the block size. The function then calculates the physical starting block address for the
BIN region and programs the BIN data to the NAND Flash. The data is then read back for
verification.

• BOOL NANDMakeMBR(void)

This function creates MBR based on the received BIN files. For a BinFS image, the MBR creates
two partitions: one for the RAMIMAGE and other for the NANDIMAGE. If the received image is
an NK.NB0 signal instead of a BinFS image, then the MBR creates only the RAMIMAGE partition.
When the data is fully loaded into the MBR, the data is programmed into the NAND Flash MBR
region and is read back to verify.

• BOOL NANDStartWriteBinDIO(DWORD dwStartAddr, DWORD dwLength)

• BOOL NANDContinueWriteBinDIO(DWORD dwAddress, BYTE *pbData, DWORD dwSize)

• BOOL NANDLoadIPL(VOID)

This function uses the NANDGetRealBlockAddress() to convert logical block address to physical
block address. The old code for the NANDLoadIPL() function used to start reading the data from the

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 15

NAND Disk Reference

fixed physical block address. However, the new code uses the logical block address to start reading
the data.

• BOOL NANDLoadNK(VOID)

This function checks the MBR and gets the starting block address and size of the RAMIMAGE.
The function then reads the data from the NAND Flash to the RAM address,
IMAGE_BOOT_NKIMAGE_RAM_PA_START.

• BOOL NANDCheckImageAddress(DWORD dwPhyAddr)

This function checks if the BIN region starts from the aligned block address and returns TRUE for
the aligned blocks.

• BOOL NANDFormatNK(void)

This function uses NANDGetRealBlockAddress() function to convert the logical block address to
physical block address. The old code for the NANDFormatNK() function used to start deleting the data
from the fixed physical block address. However, the new code uses the logical block address to
start deleting the data.

3.1.4 image_cfg.h
In this file, the NAND offset definition for the MBR region, in C code of size 128 Kbytes, is added between
the IPL and NK regions.

3.1.5 image_cfg.inc
In this file, the NAND offset definition for MBR region, in ASM code of size 128 Kbytes, is added
between the IPL and NK regions.

3.1.6 oemaddrtab_cfg.inc
In this file, the address map for the NFC space is changed from 1 Mbyte to 48 Mbytes. When the multi-BIN
file is implemented, the starting address of the bin files can exceed 1Mbyte.

4 NAND Disk Reference
nanddisk.dll is the BinFS block device driver used to manage the MBR and multi-BIN regions in the
NAND Flash.

4.1 NAND Disk Source Files
The NAND disk source files are as follows:

• WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDDISK\makefile

• WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDDISK\nanddisk.def

• WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDDISK\nanddisk.h

• WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDDISK\sources

• WINCE600\PLATFORM\iMX27ADS\SRC\DRIVERS\BLOCK\NANDDISK\system.c

These source files are described in the following sections.

BinFS Implementation Guide, Rev. 0

16 Freescale Semiconductor

NAND Disk Reference

4.1.1 nanddisk.def
This def file exports the DSK interface for the NAND disk device driver.

4.1.2 nanddisk.h
This file includes some definitions related to the MBR and the sector size. nanddisk.h file also defines the
data structure for the DSK device:

typedef struct _DISK {
struct _DISK * d_next;
CRITICAL_SECTION d_DiskCardCrit;// guard access to global state and card
DISK_INFO d_DiskInfo; // for DISK_IOCTL_GET/SETINFO
DWORD d_StartBlock;
DWORD d_TotalSize;
LPWSTR d_ActivePath; // registry path to active key for this device
} DISK, * PDISK;

Some important variables used in this file are as follows:
• d_StartBlock

This is the physical block address corresponding to the starting NAND Flash block of the NAND
disk.

• d_TotalSize

This gives the size of the NAND disk in bytes.

4.1.3 system.c
system.c is the main file in the NAND disk device driver of the BinFS disk. The BinFS disk is read-only,
and the bad block manage method is simple in this driver. Here, a list has been created for the bad block
and while accessing a block, the block is checked if it is in the bad block table.

This file includes the following variables and functions:
• static DWORD g_dwBad[MAX_BADBLOCK_COUNT];

This array represents the bad block table.
• static DWORD g_dwBadBlockNumber;

This variable gives the number of bad blocks in the bad block table.
• static BOOL NAND_ReadSector(SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff, PSectorInfo

pSectorInfoBuff, DWORD dwNumSectors)

This function reads the requested sector data and metadata from the Flash media and transfers the
request to the OAL. The OAL then finishes the real NAND Flash access.

• static DWORD NAND_GetBlockStatus(DWORD dwBlockID)

This function returns the status of the NAND Flash block.
• static void InitBadBlockTable(PDISK pDisk)

This function initializes the NAND Flash bad block table, g_dwBad[], and the variable,
g_dwBadBlockNumber.

• static DWORD GetRealBlockAddress(DWORD dwBlockLogAddress)

This function converts the logical block address to physical block address based on the bad block
table.

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 17

NAND Disk Reference

• static BOOL IsValidMbr(DWORD dwBlockID, DWORD * pdwDiskSize)

This function verifies the MBR for the NAND disk. If the MBR is valid, the function calculates the
disk size and returns pdwDiskSize, which gives the disk size.

• static BOOL GetNandDiskInfo(PDISK pDisk)

This function is called when the NAND disk driver is initialized. The function searches the MBR
and initializes the pDisk->d_StartBlock and pDisk->d_TotalSize.

• static PDISK CreateDiskObject(VOID)

This function creates a DISK structure and initializes some fields.
• static BOOL IsValidDisk(PDISK pDisk)

This function verifies if the pDisk points to anything in the list. The function returns TRUE if the
pDisk is valid and FALSE if the pDisk is invalid.

• static HKEY OpenDriverKey(LPTSTR ActiveKey)

This function opens the driver key specified by the active key. The caller is responsible for closing
the returned HKEY.

• BOOL GetDeviceInfo(PDISK pDisk, PSTORAGEDEVICEINFO pInfo)

This function fills the STORAGEDEVICEINFO structure for IOCTL_DISK_DEVICE_INFO.
• static BOOL GetFolderName(PDISK pDisk, LPWSTR FolderName, DWORD cBytes, DWORD * pcBytes)

This function retrieves the folder name value from the driver key. The folder name is used by
FATFS to name the disk volume. The GetFolderName() function is used by the DISK_IOCTL_GETNAME
and IOCTL_DISK_GETNAME macros.

• static VOID CloseDisk(PDISK pDisk)

This function frees all the resources associated with the specified disk.
• static DWORD DoDiskIO(PDISK pDisk, DWORD Opcode, PSG_REQ pSgr)

This function performs the requested input/output operation. This function is called from the
DSK_IOControl function. The requests in the fuction are serialized by using the critical section of
the disk.

• static DWORD GetDiskInfo(PDISK pDisk, PDISK_INFO pInfo)

This function returns the disk information in response to the DISK_IOCTL_GETINFO macro.
• static DWORD SetDiskInfo(PDISK pDisk, PDISK_INFO pInfo)

This function stores the disk information in response to DISK_IOCTL_SETINFO.
• static DWORD GetSectorAddr(PDISK pDisk, DWORD dwSector)

This function converts the data address from the sector address in response to the
IOCTL_DISK_GET_SECTOR_ADDR variable.

• BOOL WINAPI DllEntry(HINSTANCE DllInstance, DWORD Reason, LPVOID Reserved)

This function gives dll entry to the NAND disk driver.

The interface functions for the WinCE block device are as follows:
• DWORD DSK_Init(DWORD dwContext)

• BOOL DSK_Close(DWORD Handle)

• BOOL DSK_Deinit(DWORD dwContext)

• DWORD DSK_Open(DWORD dwData, DWORD dwAccess, DWORD dwShareMode)

• BOOL DSK_IOControl(DWORD Handle, DWORD dwIoControlCode, PBYTE pInBuf, DWORD nInBufSize,
PBYTE pOutBuf, DWORD nOutBufSize, PDWORD pBytesReturned)

• DWORD DSK_Read(DWORD Handle, LPVOID pBuffer, DWORD dwNumBytes)

BinFS Implementation Guide, Rev. 0

18 Freescale Semiconductor

Registry and BIB Settings

• DWORD DSK_Write(DWORD Handle, LPCVOID pBuffer, DWORD dwNumBytes)

• DWORD DSK_Seek(DWORD Handle, long lDistance, DWORD dwMoveMethod)

• void DSK_PowerUp(void)

• void DSK_PowerDown(void)

5 Registry and BIB Settings
This section describes the registry and BIB settings.

5.1 Platform.reg
The block device driver, nanddisk.dll, is a read-only Flash driver to manage the RAMIMAGE and BinFS
disk. The registry setting to support the BinFS on NAND disk is as follows:

IF BSP_SUPPORT_DEMAND_PAGING
IF BSP_NONANDDISK !
; HIVE BOOT SECTION
[HKEY_LOCAL_MACHINE\System\StorageManager\AutoLoad\NSDisk]

"DriverPath"="Drivers\\BlockDevice\\NandDisk"
"LoadFlags"=dword:1
"MountFlags"=dword:11
"BootPhase"=dword:0

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF

[HKEY_LOCAL_MACHINE\Drivers\BlockDevice\NandDisk]
"Prefix"="DSK"
"Dll"="NandDisk.dll"
"Order"=dword:0
"Ioctl"=dword:4
"Profile"="NandDisk"
"FriendlyName"="BINFS Flash Driver"
"MountFlags"=dword:11
"BootPhase"=dword:0

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF

; Bind BINFS to the block driver
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\NandDisk]

"DefaultFileSystem"="BINFS"
"PartitionDriver"="mspart.dll"
"AutoMount"=dword:1
"AutoPart"=dword:1
"MountFlags"=dword:0
"Folder"="BINFS"
"Name"="BINFS Flash Disk"
"BootPhase"=dword:0
"MountAsROM"=dword:1
"MountHidden"=dword:1
"MountPermanent"=dword:1

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 19

Registry and BIB Settings

IF SYSGEN_FSREGHIVE
"Flags"=dword:1000

ENDIF
; END HIVE BOOT SECTION
ENDIF
ENDIF ;BSP_SUPPORT_DEMAND_PAGING

5.2 Platform.bib
The Platform.bib file decides how to divide the BSP modules and files into XIPKERNEL and NK
regions. To support both multi-BIN and non-multi-BIN systems, some macros are defined in the file
header:

IF BSP_SUPPORT_DEMAND_PAGING !
#define XIPKERNELNK
#define NK NK

ENDIF

IF BSP_SUPPORT_DEMAND_PAGING
#define XIPKERNELXIPKERNEL
#define NK NK

ENDIF

5.3 Config.bib
The Config.bib file defines the memory map for the multi-BIN image. In retail building, the three BIN
mapped address is followed.

The layout followed by the RAM is given as follows:

ARGS 88000000 00001000 RESERVED

VPU 88001000 000FF000 RESERVED

FRAMEBUFFER 88100000 00100000 RESERVED

XIPKERNEL 88200000 004FC000 RAMIMAGE

CHAIN 886FC000 00004000 RESERVED

NK 88700000 03B00000 NANDIMAGE

RAM 88700000 07900000 RAM

NANDIMAGE region based address can be of any kernel address value. It is used only by the EBOOT to
download to the NAND Flash and to program it. The NANDIMAGE region based address does not affect
the run-time. Here, the address follows the XIPKERNEL and CHAIN regions, and this makes the platform
builder to generate the NB0 file (XIP.NB0) successfully. This file is merged with all the BIN files.

The XIPKERNEL region must map to the address it runs. In the i.MX27ADS BSP, the XIPKERNEL
region runs from the physical RAM address, IMAGE_BOOT_NKIMAGE_RAM_PA_START (0xA0200000), and so the
config.bib is mapped to the address, 0x88200000 (IMAGE_BOOT_NKIMAGE_RAM_UA_START), with reference to
oemaddrtab_cfg.inc.

BinFS Implementation Guide, Rev. 0

20 Freescale Semiconductor

Support Scripts

6 Support Scripts
The bat and script files help the platform builder to generate the multi-BIN image successfully. This
section describes some of the support scripts that help platform builder.

6.1 MakeBinfsBib.js
The MakeBinfsBib.js java script is used to process the final ce.bib file before making the image. All the
WinCE public files that are required to be put into the XIPKERNEL region are listed in the file header.
After running the script, the region name of the files changes from NK to XIPKERNEL.

NOTE
If the BSP variable, BSP_SUPPORT_DEMAND_PAGING, is not set, this
script does not effect the ce.bib file.

6.2 PreRomImage.bat
PreRomImage.bat file is called by the platform builder automatically before the ROMIMAGE stage. In this
file, the java script, MakeBinfsBib.js, is used to process the ce.bib file. With the processed ce.bib file,
the ROMIMAGE can generate the multi-BIN images as designed by the user.

7 Patch for i.MX27ADS WinCE 6.0 F15 BSP
Unzip the patch file and overwrite to old the BSP folders, sysgen and built. The patch is tested on the
512-byte page size SLC NAND K9K1G08U0B.

The iMX27ADS_BINFS.zip file can be found in the zip file, AN4137SW.zip, that is included with the
application note.

NOTE
The XLDR and EBOOT should be updated first.

8 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 06/2010 Initial release.

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 21

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

BinFS Implementation Guide, Rev. 0

22 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

BinFS Implementation Guide, Rev. 0

Freescale Semiconductor 23

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN4137
Rev. 0
06/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	BinFS Implementation Guide
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Audience Description

	2 Design References
	2.1 Framework Description
	Figure 1. NAND Flash Layout for non-BinFS File System
	Figure 2. RAM Layout for non-BinFS File System
	Figure 3. NAND Flash Layout for BinFS File System
	Figure 4. RAM Layout for BinFS File System

	2.2 Porting Example
	Figure 5. i.MX27ADSMobility Property Page

	3 EBOOT Reference
	3.1 Updated Source Files for EBOOT
	3.1.1 flash.c
	3.1.2 main.c
	3.1.3 nand.c
	3.1.4 image_cfg.h
	3.1.5 image_cfg.inc
	3.1.6 oemaddrtab_cfg.inc

	4 NAND Disk Reference
	4.1 NAND Disk Source Files
	4.1.1 nanddisk.def
	4.1.2 nanddisk.h
	4.1.3 system.c

	5 Registry and BIB Settings
	5.1 Platform.reg
	5.2 Platform.bib
	5.3 Config.bib

	6 Support Scripts
	6.1 MakeBinfsBib.js
	6.2 PreRomImage.bat

	7 Patch for i.MX27ADS WinCE 6.0 F15 BSP
	8 Revision History
	Table 1. Document Revision History

