
© 2010 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor
Application Note

Document Number: AN4104

1 Introduction
This application note explains how to convert a ColdFire
project created in CodeWarrior Development Studio for
Microcontrollers V6.2 or CodeWarrior Development
Studio for ColdFire Architectures V7.1 to CodeWarrior
Development Studio for Microcontrollers V10.0.

2 Terms and Abbreviations
This application note uses following terms and
abbreviations:

• MSL — Main Standard Libraries

• EWL — Embedded Warrior Libraries

• MCU 6.2 — Refers to CodeWarrior
Development Studio for Microcontrollers,
Version 6.2.

• CW 7.1 — Refers to CodeWarrior Development
Studio for ColdFire Architectures, Version 7.1.

• MCU 10.0 — Refers to CodeWarrior
Development Studio for Microcontrollers,
Version 10.0

Converting ColdFire Projects
to CodeWarrior Development Studio for
Microcontrollers V10.0

Contents
1 Introduction . 1
2 Terms and Abbreviations 1
3 Embedded Warrior Libraries (EWL) 2
4 Access Include Paths 3
5 Librarian . 4
6 Parameter Calling Convention 6
7 Assembly Function Declarations and Definitions

6
8 EWL Memory Allocation Scheme 7
9 Additional Information 7

Embedded Warrior Libraries (EWL)

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

2 Freescale Semiconductor

3 Embedded Warrior Libraries (EWL)
Embedded Warrior Libraries (EWL) model for the libraries reduces the memory footprint taken by the IO
operations and simplifies the memory allocation. The IO operations are divided in three categories:

• printing,

• scanning, and

• file operations.

The printing and scanning formatters for EWL are grouped in an effort to provide only the support required
for the application:

• int — integer and string processing

• int_FP — integer, string, and floating point

• int_LL — integer (including long long) and string

• int_FP_LL — all but wide chars

You can replace buffered IO with raw IO to bypass the buffering and write directly to the device. However,
this works only when printf and scanf are used to perform IO.

EWL libraries contain prebuilt versions for all formatters and IO modes. Selecting a model combination
enables correct compiling and linking. The EWL layout for ColdFire is built per core architecture. The
EWL layout for the ColdFire projects consists of:

• libm.a — math support (c9x or not)

• libc.a — non c9x std C libs

• libc99.a — c9x libs

• librt.a — runtime libraries

• libc++.a — non-c9x matching c++ libraries

• libstdc++.a — c9x/c++ compliant libs

• fp_coldfire.a — FPU emulation libraries

If you have selected an EWL model for the libraries, you do not need to add libraries to the project. The
linker determines the correct library set from the settings, such as processor, pid/pic, hard/soft FPU.
Although the library names are known to the toolset their location is not. For information about how to
select a library model, refer Section 5, “Librarian.

NOTE The importer generates an error because the old libraries could not be
found, as shown in .You should ignore the error as these libraries are
replaced by the EWL scheme.

Access Include Paths

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

Freescale Semiconductor 3

Figure 1. CodeWarrior Project Importer Error — MSL Library Files could not be Found

4 Access Include Paths
In the old projects "System Access Paths" contained entries to MSL code. The importer translates them to
point to the new libraries. In MCU V10.0, the "System Recursive Path" has an entry which points to the
root EWL folder:

"${CW_Compiler}/ColdFire_Support/ewl"

Librarian

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

4 Freescale Semiconductor

Figure 2. System Recursive Path

5 Librarian
In the Librarian panel, you can select a library model from a pre-defined list of models:

• ewl

• ewl_c++

• c9x

• c9x_c++

Librarian

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

Freescale Semiconductor 5

Figure 3. Librarian Panel

• ewl and ewl_c++ models have a smaller memory footprint. Also, the ewl and ewl_c++ models
have relevant sub-models that allow the user to select the desired print and scan formatters and the
IO scheme.

• c9x and c9x_c++ models are fully C99 compliant. The c9x and c9x_c++ models do not have sub-
models.

For the print and scan sub-models the available choices and the functionality that they cover are listed in
the "Libraries" section above.

The IO mode can be either raw or buffered. The raw IO mode implies that no buffer is used for the IO
operations. For example, if the code is only doing fread() and/or fwrite() on a file in binary mode,
then raw model should be used, otherwise, using raw IO mode will result in poor performance. In case of
the buffered IO mode, all IO passes through a buffer.

If you select the c9x or c9x_c++ model, the sub-model drop-down lists are disabled, as they do not apply
to these models.

The Enable automatic library configuration checkbox in the Librarian panel, determines whether or
not the EWL mechanism of library selection will be used by the build tools (compiler and linker). When
this checkbox is not checked, you need to manually add the required library files to the project.

You can select the relevant library files by choosing the correct architecture (CF v1, v2-4) and specifying
whether or not FPU and PIC/PID is used in the Project -> Properties -> C/C++ Build -> Settings ->
ColdFire Compiler -> Processor panel.

NOTE If you import a CFv1 MCU 6.2 project or a CW 7.1 project to MCU 10.0,
the importer selects ewl model for the project, and sets print and scan
formatters to int and IO mode to raw.

If the IO mode is set to raw, compilation of some projects may generate
the following conversion error:
../MCU/ColdFire_Tools/Command_Line_Tools/mwldmcf:

Parameter Calling Convention

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

6 Freescale Semiconductor

Undefined : "__files".
You can resolve the error by changing the IO mode to buffered.

6 Parameter Calling Convention
The parameter passing affects space and time performance. The best performance for both occurs when
selecting the register passing ABI.

The default calling convention for ColdFire compiler is register ABI. Compact ABI and Standard ABI are
available through one of the following methods:

1. Use declspec for function prototypes, also described in the "Declaration Specifications" section
of the ColdFire Architectures Build Tools Reference Manual:

asm void __declspec(compact_abi) check_CC(unsigned long)

{

....

}
2. Use pragma to specify the calling convention for function defined from:

#pragma compact_abi

asm void check_CC(unsigned long)

{

....

}

NOTE A function prototype specifies the function's name, arity, argument types,
and return type. If a function does not have a prototype, a default behavior
is selected. But, if the default behavior does not match with the function
behavior it is possible to have unexpected results. To avoid this problem
you need to use the require functions prototypes option in Project >
Properties > C/C++ Build > Settings > Language Settings.

7 Assembly Function Declarations and Definitions
For all pure assembly functions in the application, the function definition and declaration(s) should contain
a __declspec qualifier that defines the parameter passing convention. For example:

asm void __declspec(register_abi) TrapHandler_printf(void)

The compiler generate the following warning message for all the pure assembly function definition and
declaration that does not contain the __declspec qualifier:

WARNING! "Possible abi conflict, use __declspec(register_abi):"

EWL Memory Allocation Scheme

Converting ColdFire Projects to Microcontrollers V10.0 Application Note

Freescale Semiconductor 7

Therefore, while converting a MCU 6.2 CF v1 project or a CW 7.1 CF v2-4 project to a MCU 10.0 project,
you need to modify the code of the project such that the assembly functions contain the __declspec
qualifier.

Also, if the function contains code that uses a calling convention other than Register, and is called from
a C function, the code should be modified to use the Register parameter passing convention (if the
calling convention is not explicitly mentioned using __declspec qualifier).

For example, the following function assumes that the parameter is on stack, at offset 14, not in register:

asm void mcf5xxx_wr_vbr(unsigned long) { /* Set VBR */

move.14(SP),D0

movec d0,VBR

nop

rts

}

The code should be modified to use the Register parameter passing convention. In this example, the
following code line should be removed because a C function which calls this assembly function put the
parameter in the D0 register.:

move.14(SP),D0

Another solution is to add the __declspec qualifier with the proper calling convention (as intended in
the original project). Please note that the performance may be affected if the calling convention is other
than Register.

8 EWL Memory Allocation Scheme
EWL supports an improved memory allocation scheme. The memory allocation scheme in EWL requires
the following symbols to be defined in the LCF file:

• ___mem_limit

• ___stack_safety: Specifies the size of the cushion between the stack and the heap.

Listing 1 shows an example.

Listing 1. Example: EWL Memory Allocation Scheme

___mem_limit = ___HEAP_END;
___stack_safety = 16;

In Listing 1, ___stack_safety is set to 16 bytes. You can add these symbols to the LCF file right after
the definition of ___HEAP_END.

9 Additional Information
For more information about MCU 10.0:

Document Number: AN4104

3 January 2012

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Flexis and Processor Expert are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners.

© 2010 -2011 Freescale Semiconductor, Inc. All rights reserved.

• Refer Release Notes in the <CodeWarriorInstallDir>\MCU\Release_Notes folder.

• Refer Microcontrollers V10.0 documentation in the <CodeWarriorInstallDir>\MCU\Help\PDF
folder

NOTE CodeWarriorInstallDir is the folder where MCU 10.0 is installed.

• Visit http://www.freescale.com/support for additional assistance.

