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Animation techniques are essential 3D applications where a 
character or morphing objects are present, for example, 
games, simulation, and medical applications.

This application note intends to be a guide for picking and 
implementing a technique for animation.

The animation techniques presented in this application note 
are morphing, skeletal animation, and hierarchical 
animation. One technique cannot be qualified as the best 
technique. Each animation technique has its pros and cons 
especially with regard to storage, processing, or how good or 
realistic it may look.
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Morphing

1 Morphing
Morphing is the act of changing an object into another object. This technique is widely used to animate 
clothes, skin, face, and non-solid bodies. A 3D object is composed of an array of triangles, an array of 
normals to the triangle surface and texture coordinates. Normals are used for light refraction calculations. 
Triangles have three vertices. Each vertex is composed by a position in the 3D space (X, Y, Z component). 
Figure 1 shows a sample 3D object.

Figure 1. 3D Object

To morph a 3D object, keep the texture coordinates unchanged in the animation. Since the texture 
coordinates correspond to the vertex order, and morphing changes the vertex values not their order, no 
changes in the text coordinates need to be done. Normals can be changed in the same fashion as vertex 
values for a better looking animation. To morph a 3D object, each vertex position of a 3D object must move 
to another 3D object’s vertex position.

While morphing, some 3D objects are stored as key frames as shown in Figure 2. A morphing program 
references these key frames as a source (the first frame in the animation) or destiny (the last frame in the 
animation).

Figure 2. Key Frames

Moving each vertex in certain number of frames or over time shows intermediate frames (frames between 
key frames). This way an animation is created. Figure 3 shows a four frame animation between the first 
two key frames. Moving each vertex is achieved by interpolation over time or by the number of frames.
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The two intermediate frames in Figure 3 are intermediate frames generated by a morphing program.

Figure 3. Intermediate Frames

1.1 Building a Morphing Program
The objective of a morphing program is to move each vertex from a source 3D object (a key frame) to a 
destiny 3D object (another key frame), thereby generating intermediate frames in the process.

The requirements are as follows:

• Loaded or built 3D objects that enable access to vertex information.

• OpenGL to paint the 3D objects.

The steps for initialization are as follows:

1. Load the 3D objects that work as key frames in the program.

2. Create a Temporal 3D object to store intermediate frames.

3. Create two pointers to vertex data to keep a continuous reference of the Source and Destiny 3D 
object.

4. Point Source and Destiny to the initial key frame and also make Temporal equal to the initial key 
frame.

Continuously draw the temporal 3D object and call an interpolation method. Animations can be triggered 
by buttons or by a routine in the drawing method. To do this, simply point Destiny to some other key frame 
vertex data.

1.2 Interpolation Methods
The interpolation method is used to update the vertex information in the Temporal 3D object by following 
an interpolation function between Source and Destiny. Interpolation can be over time or by frames. It can 
also be linear or non linear.

1.2.1 Interpolation over Time
Interpolation based on time is based in milliseconds and is called Interpolation over time. When the 
animation is triggered, endTime must be set by adding the currentTime to the animationTime (endTime = 
currentTime + animationTime).
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The interpolation function is based on a very simple statement: When time is up (endTime = currentTime), 
Temporal must be equal to Destiny and when animation begins (endTime-currentTime = animationTime), 
Temporal must be equal to Source.

Pseudocode for interpolationOvertime function is as follows:

interpolationOvertime(endTime)
{

If (currentTime<endTime)
{

Ω = currentTime/endTime
Temporal = Destiny*Ω + Source(1 - Ω)

}
}

With this method the following is derived:

At the beginning of the animation

endTime-currentTime = animationTime
Ω = currentTime/(currentTime + endTime) = very small number≈0
Temporal = Destiny * 0 +Source (1−0)
Temporal = Source

At the end of the animation

endTime = currentTime
Ω = currentTime/currentTime = 1
Temporal = Destiny * 1+Source (1−1)
Temporal = Destiny

1.2.2 Interpolation by Number of Frames
Interpolation based on the number of frames uses a variable to keep the number of frames nFrames. The 
count variable keeps track of the number of frames that have passed since the animation was triggered. 
When count equals one, Temporal must be equal to Source. When count equals nFrames, Temporal must be 
equal to Destiny.

Pseudocode for interpolation by number of frames is as follows:

interpolationBynFrames()
{

if(count<nFrames)
{

Temporal+= (Destiny - Source)/nFrames;
}

}

This approach is based on a simple principle

(1/nFrames)*nFrames = 1 

which means, if

nFrames = 2, 1/2 + 1/2 = 1.

By adding fractions of Destiny-Source, Destiny is obtained.
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NOTE
When an animation is triggered Temporal = Source.

Then adding each fraction of nFrames is equal to:

Temporal += Destiny− Source

And since, Temporal = Source

Source += Destiny− Source = Destiny

1.2.3 Linear Interpolation
Linear interpolation is going from source to destiny in a straight line or a slope. This is the way the 
prototypes are shown for interpolationOverTime() and interpolationBynFrames().

1.2.4 Non-Linear Interpolation
Adding to functions results in a function mounted on the other. Figure 4 demonstrates how a signal is 
mounted on a slope.

Figure 4. Signal Mounted in a Slope

1.2.5 Sinusoidal Interpolation
To mount a sinusoidal to the interpolation function, add a simple sinusoidal function to the vertex data 
from the interpolation.

NOTE
The function must begin at 0 and end at 0 so that the morph is not affected 
by the mounted function.

Sinusoidal interpolation overtime function is as follows:

Temporal = Destiny*Ω + Source(1 - Ω) + sin(Π* Ω)

Pseudocode for sinusoidal interpolation frame is as follows:

Temporal+= (Destiny - Source)/nFrames;
if (count<= nFrame/2)
{

Temporal+=sin(Π*(steps/totalsteps));
}
else
{
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Temporal-=sin(Π*(steps/totalsteps));
}

The implementations shown above are from 0 to Π.

2 Hierarchical Animation
Hierarchical animation is a technique based on moving through an array of pivots in a hierarchical fashion 
and applying the basic operations of OpenGL. For a more detailed understanding of OpenGL, its basic 
operations and stacks, refer to Chapter 3 of OpenGL red book or a web page that covers these topics in a 
more extensive way.

Every 3D object has a pivot in which OpenGL operations are performed. A 3D object is built based on 
local coordinates. Local (0,0,0) on x,y,z is the pivot of a 3D object. The basic operations of OpenGL are 
rotate, translate, and scale. These operations must be performed in the ModelView matrix in order to apply 
them to a 3D object or a set of 3D objects. When one of these operations is called, the ModelView matrix 
is transformed. Depending on the order of the operations the user gets different results, as shown in the 
Figure 5 taken from the OpenGL red book.

OpenGL possess a matrix stack were transformations of the ModelView matrix are stored. To copy a 
matrix to the top of the stack use glPushMatrix(). To discard the top matrix of the stack use glPopMatrix(). 
This stack can be used to remember previous transformations of the ModelView matrix.

Using glTranslate(), glRotate(), glPushMatrix(), glPopMatrix() pivot points in a hierarchical fashion 
determines if the 3D objects would be moved and how much would they move.

Figure 5. Rotating First or Translating First

For good looking animations, build a hierarchy of pivots and separate a 3D object into several 3D objects. 
If a car needs to be animated, the whole car can be translated but the wheels do not move. To make the 
wheels move, make separate 3D objects of the wheels and rotate them in their own pivot with a hierarchical 
structure, so they look like they are spinning.
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2.1 Building a Hierarchical Animation Program
The following are the steps involved in building of hierarchical animation program:

The requirements are as follows:

• Several 3D Objects that conform a single character to animate as the arm parts shown in Figure 6

• Variables to keep the values of rotation and position of the objects

• OpenGL to paint the 3D objects

The steps for initialization are as follows:

1. Load 3D objects.

2. Set the variables that control the position of the 3D object so that the character is in the initial 
position.

Build a hierarchy of pivots using glPushMatrix() and glPopMatrix(). Use glTranslate() and glRotate() 
with the variables mentioned in the requirements.

Figure 6 shows how a full arm is built using a hierarchy of pivots.

Figure 6. Full arm

Below, is the pseudocode for the drawing method of a robot arm that enables movement of the whole arm, 
the forearm, the hand, or the finger. Robotic arm pseudocode is as follows:

glPushMatrix();

glPushMatrix(); //arm position and rotation

glTranslatef(arm_position);
glRotatef(arm_Heading);
glRotatef(arm_Pitching);
glRotatef(arm_Banking);
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DrawScene(Arm);
glPushMatrix(); //forearm position and rotation

glTranslatef(forearm_positon);
glRotatef(forearm_Pitching);
glRotatef(forearm_Heading);
glRotatef(forearm_Banking);
DrawScene(Forearm);
glPushMatrix();//hand position and rotation

glTranslatef(hand_position);
glRotatef(hand_Pitching);
glRotatef(hand_Banking);
glRotatef(hand_Heading);
DrawScene(Hand);
glPushMatrix();

glTranslatef(finger_position);
glRotatef(finger_Heading);
DrawScene(&m_indexFinger);

glPopMatrix();
glPopMatix();

glPopMatix();

glPopMatix();

glPopMatix();

To Trigger the animations, change the value of the variables that control the movement of a part.

3 Skeletal Animation
Skeletal animation is also called skinning because it emulates the way the skin and muscles react to their 
attached bones. This technique is used in humaniods, birds, and most vertebrates. It mainly consists of two 
things: a mesh (object) and a set of bones called skeletons. The mesh is the 3D object (say the body) and 
the bones are the main control structure.

Each bone is a data structure, it has a translation (x,y,z), rotation (heading, pitch, bank), scale (x,y,z) and 
a possible parent bone. These bones construct a hierarchy. The complete transform of a child node is the 
result of its parent’s transform. In 3D, this is known as matrix multiplication, or a series of matrices 
multiplications.

This means that rotating an upper arm bone, rotates the lower arm, hand, and its fingers. Each bone in the 
skeleton is associated with some portion of the character’s visual representation. In the most common case 
of a polygonal mesh character, the bone is associated with a group of vertices.

In a model of a human being, the thigh bone would be associated with the vertices making up the polygons 
in the model's thigh. Portions of the character's skin can normally be associated with multiple bones, each 
one having scaling factors called vertex weights, or blend weights. The movement of skin near the joints 
of two bones, can therefore be influenced by both bones.

For a polygonal mesh, each vertex can have a blend weight for each bone. To calculate the final position 
of the vertex, each bone transformation is applied to the vertex position, scaled by its corresponding 
weight. This algorithm is called matrix palette skinning because the set of bone transformations (stored as 
transform) form a palette for the skin vertex to choose from.
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Figure 7 shows how a 3D image is developed with the help of skeletons.

Figure 7. Skeletons

Figure 8 shows a weight map.

Figure 8. Weight Maps

Nowadays, hardware skinning can be performed both on a general purpose CPU and a more specialized 
GPU, as available on many graphics cards. The speed of these GPUs increases rapidly and maximum 
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parallelism is exploited, which makes skinning on the GPU favorable in many cases. However, for some 
applications it may be beneficial to perform skinning on the CPU.

Skeletal animation systems are not new and are used in many applications. Nowadays, hardware skeletal 
animation of meshes can be performed both on the CPU and the GPU. As the number of triangles used to 
present realistic models increases, skinning can become a time consuming process on both the CPU and 
GPU. Optimizing the skinning process is essential for many applications and hardware features like 
specialized instruction sets are often exploited for this purpose.

3.1 Matrix Palette Skinning
Matrix palette skinning animates a mesh where the vertices are transformed using a palette of the matrices 
that describe the joint transformations of a skeleton. To calculate the position and other properties of each 
vertex, a selection of the joint matrices are weighed and used to transform a set of base vectors. A vertex 
of the mesh is described in Example 1.

Example 1. Structure of the Vertex of the Mesh

struct Vec4 {
float x, y, z, w; 
}; 
struct Vertex { 
Vec4 position; 
Vec4 normal; 
Vec4 tangent; 
};

The Vertex uses 4D vectors for the position, normal, and tangent though 3D vectors are sufficient. 
However, using 4D vectors improves memory alignment and the last component of the 4D vectors could 
also be used for other purposes. The tangent.w could for instance be used to store a texture polarity sign. 
The second tangent can then be derived using a cross product between the normal and the tangent where 
the vector is flipped based on the texture polarity. Example 2 describes how the tangents are derived.

Example 2. Deriving the Tangents

bitangent.x = tangent.w * ( normal.y * tangent.z - normal.z * tangent.y );
bitangent.y = tangent.w * ( normal.z * tangent.x - normal.x * tangent.z );
bitangent.z = tangent.w * ( normal.x * tangent.y - normal.y * tangent.x );

A single influence or joint weight from the palette is described in Example 3 below: 

Example 3. Joint Weight From the Palette

struct JointWeight {
float weight;
int jointMatOffset;
int nextVertexOffset;
};

The weight is the scale factor for the influence. Usually, the weights for all influences for a single vertex 
add up to one.
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The jointMatOffset is the offset in bytes to the joint matrix associated with the influence. This byte offset 
can be added directly to the base pointer of an array with all the joint matrices to get the correct matrix for 
an influence.

The nextVertexOffset is the offset in bytes to the first weight for the next vertex and is used to tell when 
the last joint influence for a vertex has been processed.

The last joint influence is found when this offset equals the size of a JointWeight object. The 
nextVertexOffset also allows easy capping of the number of influences to one influence per vertex which 
could be used for a very simple approach to LevelOfDetail. This requires the joint influences to be sorted 
with decreasing weight. Only the first joint influence would be used with an assumed weight of one, and 
the nextVertexOffset would be used to jump right to the first influence for the next vertex. Some snapping 
may occur when the number of joint influences changes to a vertex. However, for distant models this may 
not be or hardly noticeable while decreasing the number of processed influences may improve 
performance considerably.

The following approach to matrix palette skinning is best used when only vertex positions are needed. This 
approach can also be used to skin all meshes for shadow volumes while the visible mesh is skinned on the 
GPU with normals and tangents. For some applications this may be the perfect trade between using the 
CPU and the GPU.

For this approach a set of base vectors are stored relative to the joints that transform them. If a vertex is 
influenced by more than one joint, multiple base vectors are stored, one for each joint with its weighting. 
Each base vector is multiplied by its associated weight and transformed with the appropriate joint matrix. 
The pseudocode in Example 4 shows how one vertex is transformed in this manner.

Example 4. Transforming One Vertex with its Base and Weight

position = matrix0 * base0 * weight0;
position += matrix1 * base1 * weight1; 
position += matrix2 * base2 * weight2;

The base? and weight? variables are the base vectors and weights for each influence. The matrix? variables 
are the joint matrices associated with the influences.

Since both, a base vector and a weight, are stored for every influence, the base vectors can be premultiplied 
with the weights. This eliminates several multiplications from the real-time skinning process. The 
pseudocode in Example 5 shows the transformation of one vertex with the weighted base vectors.

Example 5. Transforming one Vertex with the Weighted Base Vectors

position = matrix0 * weightedBase0;
position += matrix1 * weightedBase1; 
position += matrix2 * weightedBase2;
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Example 6 shows the C/C++ code to complete the skinning routine.

Example 6. C/C++ Code to Complete Skinning Routine

void MulMatVec( Vec4 &result, const JointMat &m, const Vec4 &v ) const { 
result.x = m.mat[0 * 4 + 0] * v.x + m.mat[0 * 4 + 1] * v.y + m.mat[0 * 4 + 2] * v.z + m.mat[0 
* 4 + 3] * v.w; 
result.y = m.mat[1 * 4 + 0] * v.x + m.mat[1 * 4 + 1] * v.y + m.mat[1 * 4 + 2] * v.z + m.mat[1 
* 4 + 3] * v.w; 
result.z = m.mat[2 * 4 + 0] * v.x + m.mat[2 * 4 + 1] * v.y + m.mat[2 * 4 + 2] * v.z + m.mat[2 
* 4 + 3] * v.w; 
}

void MadMatVec( Vec4 &result, const JointMat &m, const Vec4 &v ) const { 
result.x += m.mat[0 * 4 + 0] * v.x + m.mat[0 * 4 + 1] * v.y + m.mat[0 * 4 + 2] * v.z + m.mat[0 
* 4 + 3] * v.w; 
result.y += m.mat[1 * 4 + 0] * v.x + m.mat[1 * 4 + 1] * v.y + m.mat[1 * 4 + 2] * v.z + m.mat[1 
* 4 + 3] * v.w; 
result.z += m.mat[2 * 4 + 0] * v.x + m.mat[2 * 4 + 1] * v.y + m.mat[2 * 4 + 2] * v.z + m.mat[2 
* 4 + 3] * v.w; 
}

void TransformVerts( Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 
*base, const JointWeight *weights, int numWeights ) { 
int i, j; 
const byte *jointsPtr = (byte *)joints; 
for( j = 0, i = 0; i < numVerts; i++, j++ ) { 
idVec4 v; 
MulMatVec( v, ( *(JointMat *) ( jointsPtr + weights[j].jointMatOffset ) ), base[j] ); 
while( weights[j].nextVertexOffset != sizeof( JointWeight ) ) { 
j++; 
MadMatVec( v, ( *(JointMat *) ( jointsPtr + weights[j].jointMatOffset ) ), base[j] ); 
}

verts[i].position.x = v.x; 
verts[i].position.y = v.y; 
verts[i].position.z = v.z; 
} 
}

4 Comparison of Animation Techniques
The following are the parameters used for comparing the animation techniques:

• Control and Constraints

— Morphing offers more control since it works on a per vertex basis.

— Skeletal has the constraints of bones.

— Hierarchical has the constraints of pivots.

— Therefore, morphing is a good option with regard to controls and constraints.

• Processing Time

— Morphing is the most time consuming since every vertex position has to be calculated.
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— Skeletal animation can be very time consuming and difficult to process. However, it can be 
optimized in many ways and many times hardware support is available for this technique (not 
in i.MX31).

— Hierarchical animation is very efficient in terms of processing since it uses OpenGL basic 
operations.

— Therefore, hierarchical is a good option with regard to processing time.

• Better Looks

— Doing complex facial expressions using skeletal animation would be very odd looking. Also, 
coding facial expression using hierarchical animation would be very complex.

— As mentioned before, morphing is used for animation of clothes, skin, face, and non-solid 
bodies. This is because modeling and animating something non solid with bones is difficult and 
in most cases odd looking. The same thing applies to hierarchical animation.

— Skeletal animation is used for characters and highly solid objects, organic stuff or things with 
skin-like surface.

— Hierarchical animation may be used for things with more solid linear movement like a robot.

— Therefore, both morphing and skeletal are good options with regard to looks of an animation.

• Memory

— In terms of memory, almost always morphing takes more space because of the number of key 
frames that have to be stored for the animation. For example, 20 key frames are required for a 
model with 4,000 vertices. This means 80,000 vertices have to be stored in the program.

— Skeletal animation takes a considerable amount of memory depending on the number of bones 
and the weight maps. Based on this, the number of matrices and their sizes may increase.

— Hierarchical animation takes no more than a few global variables for control of the positions.

— Therefore, hierarchical is a good option with regard to memory.

• Coding Difficulty

— Hierarchical is the easiest to program as shown in the pseudocode in Section 2, “Hierarchical 
Animation.”

— Morphing is fairly easy to code unless the user wants to make very detailed interpolations in 
the vertex information.

— Skeletal is the most difficult to code and requires a more experienced programer to implement 
it.

— Therefore, hierarchical is a good option with regard to the level of difficulty in coding.

5 Conclusion
There is no single best animation technique. All depends on how good the animation must look and the 
resources available. For the best looking animation, combine skeletal and morphing animation depending 
on the kind of object to be animated (solid or non-solid).

Implementing skeletal and using morphing to take care of small details slows down the development of 
the project. Also, implementing skeletal with a few resources and no hardware support may end up being 
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too slow or even impossible to implement. A combination of morphing and less memory results in the user 
using less than the key frames needed. The animation may look bad or simply run out of memory.

In conclusion, use hierarchical as a low cost resource keeping in mind its limitations in looks and 
advantages in memory and processing. Do not use this technique if there is enough time and resources.

6 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 01/2010 Initial Release
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