
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

This application note provides general information regarding
the board initialization process and the memory mapping
implementation of the Linux kernel using the LTIB in an
i.MX51 Board Support Package (BSP).

The board initialization process is relatively complex. Hence
this application note provides general overview of the board
initialization process, while explaining more about the
memory mapping.

The knowledge of these aspects enable better understanding
of the BSP structure. When changes such as migrations to
another board or device with the memories, external board
chips are needed, these are some of the elements that need to
be changed on the software side.

This application note is targeted to the i.MX51 BSPs, but it
is applicable to any i.MX device. The structure and
architecture of the system (software) is the same for all the
i.MX BSPs.

This application note covers the information, and the
initialization process flow of a BSP running a LTIB, on an
i.MX51 platform. The focus of this application note is on
memory elements and memory mapping, from bootloader
startup to kernel initialization.

Document Number: AN3980
Rev. 0, 03/2010

Contents
1. Linux Booting Process . 2

1.1. General Bootloader Objectives 2
1.2. Tags in Linux Booting Process 3

2. Board Initialization Process . 8
2.1. MACHINE_START Description and Flow 8
2.2. Board Initialization Function 10

3. Memory Map . 13
3.1. I/O Mapping Function Flow and Description 13
3.2. Memory Map on i.MX51 . 14

4. References . 16
4.1. Freescale Semiconductor Documents 16
4.2. Standard Documents . 16

5. Revision History . 17

i.MX51 Board Initialization and Memory
Mapping Using the Linux Target Image
Builder (LTIB)
by Multimedia Application Division

Freescale Semiconductor, Inc.
Austin, TX

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

2 Freescale Semiconductor

Linux Booting Process

The first section of this application note, explains the general objectives of a standard bootloader and how
to pass information about the system memory (size, start address) to the kernel.

The second section explains the board initialization function. It also explains the elements that are required
to setup the board initialization (structures, linker sections, functions) and their place within the flow of
the Linux booting process.

The last section describes general aspects of memory mapping on the system and the implementation of
the memory map in the BSP.

1 Linux Booting Process
This section describes the main objectives of the bootloader of a Linux system for an ARM device. It also
describes the structures and the flow that are to be executed, and the information that the bootloader needs
to pass to the kernel.

1.1 General Bootloader Objectives
This section explains the general objectives of a Linux bootlader for ARM devices. There are five
minimum elements that a bootloader needs to accomplish:

1. Setup and initialize the system RAM—The boot loader finds and initializes the entire RAM to
provide the volatile data storage in the system. The algorithm that is used to locate and set up the
RAM depends on the processor and bootloader designs.

2. Initialize serial port (optional, but highly recommended)—The bootloader locates and enables a
serial port on the target. This allows the kernel serial driver to detect the serial port that is used
later as the kernel console. The bootloader passes console= as a kernel parameter, which is
recognized as a part of the tagged list.

3. Detect the machine type—The bootloader detects the type of the processor that is running on the
system. This information is a MACH_TYPE_XXX macro.

4. Setup the kernel tagged list—The bootloader creates and initializes a kernel tagged list that
contains the information such as the size and location of the systems memory (RAM). Other
elements such a RAM disk creation and a console value are added to the tagged list. The tagged
list concept and its characteristics are described in the Section 1.2, “Tags in Linux Booting
Process.”

5. Call or start the kernel image—The bootloader finally calls the kernel image (an compressed
zImage), depending on where the zImage is stored. It is possible to call the zImage in Flash
directly or store the zImage in RAM and call there. The following are some of the conditions that
are to be set to call the zImage:

a) Set the CPU to supervisor mode with IRQ disabled.

b) Turn off the Memory Management Unit (MMU). The code running in RAM does not have
translated addressing yet.

c) Turn off the data cache

d) Set the register r0 to 0, r1 to the ARM Linux machine type, and r2 to the physical address of
the parameter list (tagged list)

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 3

Linux Booting Process

The bootloader is in charge of initializing the process while configuring the RAM for the system. The
kernel does not have knowledge of the RAM configuration beyond what is provided by the bootloader. If
there is the need of a change in the RAM of a system, most of the software changes apply to the bootloader.

A small exception is the usage of the machine fixup function (fixup_mxc_board). It is placed normally in
the machine dependant code (linux-2.6.28/arch/arm/mach-mx51/mx51_babbage.c) and it is used inside the
kernel to enable some actions of memory configuration that belong to the bootloader. It allows the user to
statically fill values for the parameters such as memory data. It is not recommended to use all the time.

1.2 Tags in Linux Booting Process
The following section provides a more detailed description of the tagged list, with emphasis on the
memory tag.

1.2.1 Tags in the Bootloader Environment
The tagged list contains the information of the physical layout. The information is passed to the kernel with
the ATAG_MEM parameter. This parameter is part of the tagged list that is passed from the bootloader to
the kernel. The parameter is manipulated through the kernel command line option mem=, and by using this,
the bootloader passes size and physical memory.

NOTE
For more information on the syntax of the parameters go to the
documentation inside the kernel
linux-2.6.28/Documentation/kernel-parameters.txt.

ATAG_MEM is a part of the parameter passed by the bootloader to the kernel. The parameters create a list
(tagged list) that contain information such as the command line tag associated with the kernel command
line string, serial console information, RAM disk usage, initial configuration values for the framebuffer.
This tagged list (ATAG) implemented as a structure and is stored in main memory. The address of the
structure is passed to the register r2 when starting the kernel. However, in many cases, the kernel finds it
in a previously set fixed value (by default, both the bootloader and the kernel knows where it is).

The following are the most important constraints in the tagged list:

• The list is stored in RAM. The recommended place is the first 16 Kbytes of RAM.

NOTE
The list should not be stored where the kernel is decompressed, where the
initrd overwrite it.

• The list should not extend beyond the 0x4000 boundary where the kernel initial translation page
table is created.

• The list is aligned to a 4 byte boundary

• The list begins with a tag ATAG_CORE, contain a tag ATAG_MEM and end with a tag
ATAG_NONE

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

4 Freescale Semiconductor

Linux Booting Process

Each tag in the list contains a tag_header structure that sets the size of the tag and a tag value that represent
the tag type. In almost all cases, each tag header has more data associated with the type of tag (except for
ATAG_NONE).

The following are the lines of code of the tag structure containing tag_header and several different types
of tags implemented as a union of structures. This structure is from the kernel location:
linux-2.6.28/arch/arm/include/asm/setup.h. However, the bootloader contains a definition very similar
to the following lines of code:

struct tag {
struct tag_header hdr;
union {

struct tag_core core;
struct tag_mem32mem;
struct tag_videotextvideotext;
struct tag_ramdiskramdisk;
struct tag_initrd initrd;
struct tag_serialnrserialnr;
struct tag_revisionrevision;
struct tag_videolfbvideolfb;
struct tag_cmdlinecmdline;
…..

} u;
};

The data associated with each tag (in the union part of the tag structure) contains the information related
to each type. For example, in the case of the tag_mem (ATAG_MEM), the data is described in the union as
the tag_mem structure. This structure contains two fields, one for the size of the memory represented in this
tag, and another for the physical address of this memory.

The following lines of code are from the linux-2.6.28/arch/arm/include/asm/setup.h file. The code
contains some definitions of tags, such as tag_mem, and the tag_header. The bootloader should have an
implementation of tags similar to the following lines of code:

struct tag_header {
__u32 size;
__u32 tag;

};

……

/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE0x00000000

struct tag_header {
__u32 size;
__u32 tag;

};

/* The list must start with an ATAG_CORE node */
#define ATAG_CORE0x54410001

struct tag_core {
__u32 flags; /* bit 0 = read-only */
__u32 pagesize;
__u32 rootdev;

};

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 5

Linux Booting Process

/* it is allowed to have multiple ATAG_MEM nodes */
#define ATAG_MEM0x54410002

struct tag_mem32 {
__u32 size;
__u32 start; /* physical start address */

};

1.2.2 Tags in the Kernel Environment
From the kernel standpoint, it is important to know where the tags are retrieved from, and used for the
kernel internal settings. The system needs tag structures similar to the ones from the bootloader to enable
this feature. All the tag structures definitions are provided in
linux-2.6.28/arch/arm/include/asm/setup.h.

The file from where the tag is retrieved is: linux2.6.28/arch/arm/kernel/setup.c. The specific function
inside this file is void __init setup_arch(char **cmdline_p), and this function is called from asmlinkage
void __init start_kernel(void) function (from the file linux2.6.28/initi/main.c).

The start_kernel function is called after all the assembly-oriented initialization of the kernel is executed.
This process involves the files related to the compressed kernel stage (zImage). After the function is called,
the relocation of the kernel is turned off, and finally, the uncompressed kernel startup (head-armv.S file).

The kernel gets the information from the memory configuration in the following two ways:

• Getting the tagged list that contains the memory tag with the information.

• Getting the information from the kernel command line through the usage of mem=−−. Both the cases
are described and implemented in linux-2.6.28/arch/arm/kernel/setup.c.

1.2.2.1 Retrieving Tag Information

The tag table is built by the linker using the __tagtable declarations of each tag in:
linux2.6.28/arch/arm/kernel/setup.c. One of these declarations is the memory tag as follows:

__tagtable(ATAG_MEM, parse_tag_mem32)

The definition of this line of code is found in the file linux-2.6.28/arch/arm/include/asm/setup.h, and
its meaning is:

#define __tag __attribute_used____attribute__((__section__(".taglist.init")))
#define __tagtable(tag, fn) \
static struct tagtable __tagtable_##fn __tag = { tag, fn }

The result of this declaration is a struct tagtable. The structure is formed by a __32 number and a pointer
to a function that has:

• A name ____tagtable_##fn (a concatenation with the name of the function).

• An attribute that assembly functions of code related to this declaration will be placed in the section
.taglist.init that is defined by the linker (see vmlinux.lds in the following pages) instead of the
common text section.

• It has as parameter values: tag (_u32 number in this case ATAG_MEM) and fn (a pointer to a function
that in this case is the parse_tag_mem32).

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

6 Freescale Semiconductor

Linux Booting Process

Each declaration generate one struct tagtable as the following.

The tag list is retrieved in setup_arch. In the body of the function there is a call to the function parse_tags.
This function parses all the tags contained in the list by using a function that parses a tag by each time
(parse_tag). This last function looks for the tags and calls the parse function of each tag if there is a match.

/*
* Parse all tags in the list, checking both the global and
* architecture specific tag tables.
*/
static void __init parse_tags(const struct tag *t)
{

for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))

printk(KERN_WARNING
"Ignoring unrecognised tag 0x%08x\n",
t->hdr.tag);

}

*
* Scan the tag table for this tag, and call its parse function.
* The tag table is built by the linker from all the __tagtable
* declarations.
*/
static int __init parse_tag(const struct tag *tag)
{

extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;

for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {

t->parse(tag);
break;

}

return t < &__tagtable_end;
}

As a limit it has elements such as __tagtable_begin, __tagtable_end defined in
linux-2.6.28/arch/arm/kernel/vmlinux.lds (linker file) these are the limits of the tag list in memory.

.init : { /* Init code and data*/
*(.init.text) *(.cpuinit.text) *(.meminit.text)
_einittext = .;
__proc_info_begin = .;
*(.proc.info.init)
__proc_info_end = .;
__arch_info_begin = .;
*(.arch.info.init)
__arch_info_end = .;
__tagtable_begin = .;
*(.taglist.init)
__tagtable_end = .;
. = ALIGN(16);
__setup_start = .;
*(.init.setup)
__setup_end = .;
__early_begin = .;

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 7

Linux Booting Process

*(.early_param.init)
__early_end = .;

The space between both elements is the data and its attributes (taglist.init). The first tag that needs to
be parsed and recognized is ATAG_CORE. This is the first tag found according to the established protocol.

A memory tag is also found, when the match is done it calls the parse function associated with the tag. In
the case of the memory tag, the parse function is parse_tag_mem32.

static int __init parse_tag_mem32(const struct tag *tag)
{

if (meminfo.nr_banks >= NR_BANKS) {
printk(KERN_WARNING
 "Ignoring memory bank 0x%08x size %dKB\n",

tag->u.mem.start, tag->u.mem.size / 1024);
return -EINVAL;

}
arm_add_memory(tag->u.mem.start, tag->u.mem.size);
return 0;

}

This function calls the arm_add_memory at the end. This is the function that sets the memory information
(start address and size memory) in the membank structure.

static void __init arm_add_memory(unsigned long start, unsigned long size)
{

struct membank *bank;
/*
 * Ensure that start/size are aligned to a page boundary.
 * Size is appropriately rounded down, start is rounded up.
 */
size -= start & ~PAGE_MASK;
bank = &meminfo.bank[meminfo.nr_banks++];
bank->start = PAGE_ALIGN(start);
bank->size = size & PAGE_MASK;
bank->node = PHYS_TO_NID(start);

}

1.2.2.2 Retrieving Memory Information from the Command Line

The other possibility for retrieving the memory information is getting the data from the kernel command
line and the parameter mem=. The process is similar to the retrieving of tag information from the tagged list.
Some characteristics are:

• Starts in setup_arch and finishes in arm_add_memory

• Needs a particular section in memory set as well by the vmlinux.lds, but now it is named
early_param.init and the limits are __early_begin __early_end

• Instead of a parse_tags function, there is now a parse_cmdline

• The content of early_param.init is filled by the declaration __early_param("mem=", early_mem)
using the same elements as __tagtable (__attribute__ and a special section).

• In summary the flow is that the setup_arch calls parse_cmdline. When parsing the command line,
and if the mem= is found, it calls the early_mem function, that at the end arm_add_memory is called to
fill the membank structure.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

8 Freescale Semiconductor

Board Initialization Process

All the code related are found in linux-2.6.28/arch/arm/kernel/setup.c and definitions in
linux-2.6.28/arch/arm/include/asm/setup.h (__early_param or early_param structures).

2 Board Initialization Process
This section explains the process by which the board elements are initialized on a Linux system.

There are some elements that are to be set before the board is initialized. This section describes the
elements that are related to the Linux booting process. Some of these are the machine_desc structure, or the
process that the kernel uses to confirm the CPU and the machine type (current board) used in the system.

This section also explains briefly the contents of the function related to the board (system) initialization.

2.1 MACHINE_START Description and Flow
The MACHINE_START definition is the declaration of the machine_desc structure holding the name of the
board currently used. Besides having the name of the board in use, it is also set in a particular section
declared in the vmlinux.lds file. It has the MACH_TYPE and the name of the system as parameters. The
definition is located in linux-2.6.28/arch/arm/include/asm/mach/arch.h. The MACH_TYPE parameter
passed in the MACHINE_START is stored in linux-2.6.28/include/asm-arm/mach_types.h.

#define MACHINE_START(_type,_name)\
static const struct machine_desc __mach_desc_##_type\
__used \
__attribute__((__section__(".arch.info.init"))) = {\

.nr = MACH_TYPE_##_type,\

.name = _name,

#define MACHINE_END \
};

#endif

The MACHINE_START macro becomes a data structure when the compiler builds the file that holds it. Usually
this structure is declared in a file where the initialization of the current board is made. This means the file
is inside the mach-xxx folder. In this application note, the i.MX51 board is the Babbage board. The file
where the declaration is made is: linux-2.6.28/arch/arm/mach-mx51/mx51_babbage.c.

This macro is defined as the structure that describes the machine, or the board. It contains more members
than a name and a type. These members are part of the machine_desc structure that is declared with the
macro. The definition of the machine_desc structure is located in:
linux-2.6.28/arch/arm/include/asm/mach/arch.h.

struct machine_desc {
/*
* Note! The first four elements are used
* by assembler code in head.S, head-common.S
*/
unsigned intnr; /* architecture number*/

unsigned intphys_io; /* start of physical io*/
unsigned intio_pg_offst; /* byte offset for io

 * page tabe entry*/

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 9

Board Initialization Process

const char *name; /* architecture name*/
unsigned longboot_params; /* tagged list */

unsigned intvideo_start; /* start of video RAM*/
unsigned intvideo_end; /* end of video RAM*/

unsigned intreserve_lp0 :1;/* never has lp0*/
unsigned intreserve_lp1 :1;/* never has lp1*/
unsigned intreserve_lp2 :1;/* never has lp2*/
unsigned intsoft_reboot :1;/* soft reboot*/

void (*fixup)(struct machine_desc *,
 struct tag *, char **,
 struct meminfo *);

void (*map_io)(void); /* IO mapping function*/
void (*init_irq)(void);
struct sys_timer*timer; /* system tick timer*/
void (*init_machine)(void);

};

As shown, there are several members of the structure, not all of them are filled in the final MACHINE_START
declaration. For the current system, the declaration is located in
linux-2.6.28/arch/arm/mach-mx51/mx51_babbage.c:

/*
* The following uses standard kernel macros define in arch.h in order to
* initialize __mach_desc_MX51_3STACK data structure.
*/
/* *INDENT-OFF* */
MACHINE_START(MX51_BABBAGE, "Freescale MX51 Babbage Board")

/* Maintainer: Freescale Semiconductor, Inc. */
.phys_io = AIPS1_BASE_ADDR,
.io_pg_offst = ((AIPS1_BASE_ADDR_VIRT) >> 18) & 0xfffc,
.boot_params = PHYS_OFFSET + 0x100,
.fixup = fixup_mxc_board,
.map_io = mxc_map_io,
.init_irq = mxc_init_irq,
.init_machine = mxc_board_init,
.timer = &mxc_timer,

MACHINE_END

The data obtained from the declaration are as follows:

• The MACH_TYPE and architecture number (nr) is: MACH_TYPE__MX51_BABBAGE

• The name of the mach_desc structure is: __mach_desc_MX51_BABBAGE

• The name parameter of the mach_desc structure is: Freescale MX51 Babbage Board

• The physical address of the I/O bank is (phys_io): AIPS1_BASE_ADDR

• The I/O page offset that allows providing virtual memory is (io_pg_offst):
((AIPS1_BASE_ADDR_VIRT) >> 18) & 0xfffc

• The boot parameters (address of the tagged list used in the process of retrieving the tagged list to
the kernel) are (boot_params): PHYS_OFFSET + 0x100

• The fixup function reference is (fixup): fixup_mxc_board

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

10 Freescale Semiconductor

Board Initialization Process

• The I/O memory mapping function is (map_io): mxc_map_io

• The IRQ initialization function is (init_irq): mxc_init_irq

• The machine initialization function (board initialization) is (init_machine): mxc_board_init

• The timer structure is (timer): &mxc_timer

Some of these elements are extremely important for the development of this application note. For example,
the boot_params provide the location of the tag structure created in setup_arch function covered in the
Section 1.2.2.2, “Retrieving Memory Information from the Command Line,” which passes the information
about the memory layout to the system.

The init_machine parameter provides the reference to the function that initializes the system. The
objective of this section is to explain how the Linux booting process gets to that function and describe it
briefly.

The map_io parameter provides the reference to the function for the memory mapping process. This
function is explained in the following section.

2.1.1 Recognizing the CPU and Machine
In the Linux kernel boot, after passing the process of uncompressing the kernel, the kernel initializes the
hardware using init_machine parameter. Before initializing the hardware, the kernel validates if it is
running in the CPU that it was compiled for. This verification is followed by the initialization of caches
and the MMU. To know if this is true, the kernel gets the processor ID and it is compared to the data
contained in the proc.info.init section (see vmlinux.lds).

The process begins in the setup_processor() function from the setup_arch() in
linux-2.6.28/arch/arm/kernel/setup.c. This setup_processor() function uses the
lookup_processor_type (located in: arch/arm/kernel/head-common.S) and read_cpuid_id (located in:
linux-2.6.28/arch/arm/include/asm/cputype.h) functions to get the processor ID. The proc.info section
is filled with information from the file linux-2.6.28/arch/arm/mm/proc-v7.S, which sets the
.proc.info.init section, and contains the information about the processor ID.

The kernel compares the machine ID given by the bootloader to the kernel with the information contained
in .arch.info.init section (see vmlinux.lds).

This process is also inside the setup_arch() in linux2.6.28/arch/arm/kernel/setup.c. After the
setup_processor function is called, the function setup_machine(machine_arch_type) is called (the
parameter holds the machine type obtained from the MACHINE_START macro declaration). This function
reaches lookup_machine_type (nr) that gets the machine type and compares with the information in
.arch.info.init (filled with the MACHINE_START macro declaration).

2.2 Board Initialization Function
See Section 2, “Board Initialization Process,” for more information about the board initialization function.
The function is mxc_board_init and it is found in linux-2.6.28/arch/arm/mach-mx51/mx51_babbage.c. The
function is also referenced as mdesc->init_machine.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 11

Board Initialization Process

2.2.1 Calling the Function
The function is called in a specific way. In the file linux2.6.28/arch/arm/kernel/setup.c there is a
function named customize_machine. This function contains a call to init_machine(), which is defined as:
static void (*init_machine)(void) __initdata.

static int __init customize_machine(void)
{

/* customizes platform devices, or adds new ones */
if (init_machine)

init_machine();
return 0;

}
arch_initcall(customize_machine);

The relationship between init_machine and the board initialization board is given in setup_arch(). At the
end of the function init_machine is assigned with a reference to the initialization board:
init_machine = mdesc->init_machine.

This function is called in a specific way. This function is a part of a group of functions that get initialized
through a table built by the linker. This group have the __initcalls() or module_init() calls.

The function customize_kernel is a part of the __initcall group because of the line of code arch_initcall
(customize_machine). The definition of arch_initcall is found in: linux-2.6.28/include/linux/init.h.
The result expands in a __define_initcall that is placed in the section ".initcall" level ".init", and
it has a value of the function (in this case customize_machine).

#define arch_initcall(fn)__define_initcall("3",fn,3)

* initcalls are now grouped by functionality into separate
* subsections. Ordering inside the subsections is determined
* by link order.
* For backwards compatibility, initcall() puts the call in
* the device init subsection.
*
* The `id' arg to __define_initcall() is needed so that multiple initcalls
* can point at the same handler without causing duplicate-symbol build errors.
*/

#define __define_initcall(level,fn,id) \
static initcall_t __initcall_##fn##id __used \
__attribute__((__section__(".initcall" level ".init"))) = fn

The function is added in the table built by the linker. The following code is from: vmlinux.lds
(linux-2.6.28/arch/arm/kernel/).

__initcall_start = .;
*(.initcallearly.init) __early_initcall_end = .; *(.initcall0.init) *(.initcall0s.init)
*(.initcall1.init) *(.initcall1s.init) *(.initcall2.init) *(.initcall2s.init)
*(.initcall3.init) *(.initcall3s.init) *(.initcall4.init) *(.initcall4s.init)
*(.initcall5.init) *(.initcall5s.init) *(.initcallrootfs.init) *(.initcall6.init)
*(.initcall6s.init) *(.initcall7.init) *(.initcall7s.init)
__initcall_end = .;

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

12 Freescale Semiconductor

Board Initialization Process

2.2.2 Board Initialization Content
The content of the board initialization function (mxc_board_init) is a set of initialization routines for the
systems, modules and, integrated chips that are in the board. The initialization is not that the drivers for
each module are described and coded in this file, but it is actually the opposite. This function is where all
the devices that are represented in the board are getting initialized or registered.

The attributes are passed to each device and resources that are provided. Some important cases are as
follows:

• GPIO are assigned to each module

• Partitions for MTD devices are made

• Devices for buses are registered (such as I2C or SPI)

Most of the routines inside the board initialization function are also in
linux-2.6.28/arch/arm/mach-mx51/mx51_babbage.c. The following function is a summary for the
elements that are enabled on the system and its characteristics:

static void __init mxc_board_init(void)
{

int err;

mxc_cpu_common_init();
mxc_gpio_init();
mx51_3stack_io_init();
early_console_setup(saved_command_line);
mxc_init_devices();

mxc_expio_init();
mxc_init_enet();
mxc_init_pata();
mxc_init_fb();
mxc_init_bl();
mxc_init_keypad();
mxc_init_nand_mtd();
mxc_init_mmc();
mxc_init_sim();
mxc_init_srpgconfig();
mx51_3stack_init_mc13892();

#if defined(CONFIG_I2C_MXC) || defined(CONFIG_I2C_MXC_MODULE)

#ifdef CONFIG_I2C_MXC_SELECT1
i2c_register_board_info(0, mxc_i2c0_board_info,

ARRAY_SIZE(mxc_i2c0_board_info));
#endif
#ifdef CONFIG_I2C_MXC_SELECT2

i2c_register_board_info(1, mxc_i2c1_board_info,
ARRAY_SIZE(mxc_i2c1_board_info));

#endif
#if defined(CONFIG_I2C_MXC_HS) || defined(CONFIG_I2C_MXC_HS_MODULE)

i2c_register_board_info(3, mxc_i2c_hs_board_info,
ARRAY_SIZE(mxc_i2c_hs_board_info));

#endif

#endif

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 13

Memory Map

mxc_init_touchscreen();
mxc_init_wm8903();
mxc_init_sgtl5000();
mxc_init_bluetooth();

err = mxc_request_iomux(MX51_PIN_EIM_D19, IOMUX_CONFIG_GPIO);
if (err)

printk(KERN_ERR "Error: bt reset request gpio failed!\n");
else
mxc_set_gpio_direction(MX51_PIN_EIM_D19, 0);

}

3 Memory Map
Linux runs in virtual address space, the Memory Management Unit (MMU) provides the virtual to physical
address mapping defined by memory map page table. This page table is a pre-defined memory map
definition that maps virtual memory to physical memory, so the device drivers access device registers.

In the i.MX platform, the table is defined in linux-2.6.28/arch/arm/mach-mx51/mm.c. This location is
under machine dependant code (MSL or Machine Specific Layer). The header files that provide macros
for all the IO modules (physical and virtual addresses or conversion macros) are stored in
linux-2.6.28/arch/arm/plat-mxc/include/mach/hardware.h or
linux-2.6.28/arch/arm/plat-mxc/include/mach/mx51.h.

The linux-2.6.28/arch/arm/mach-mx51/mm.c file contains the memory map of the system, and the
mxc_map_io function, which is responsible for I/O memory mapping. This function is also found as
mdesc->map_io(), in other words, this function is the I/O memory mapping function from the machine
description structure. The following sections explain how the I/O mapping function is called, and describe
the content of the memory map table.

3.1 I/O Mapping Function Flow and Description
The flow of calling the mxc_map_io function starts from the setup_arch() function inside the
linux2.6.28/arch/arm/kernel/setup.c. The call that initiates the process is paging_init(&meminfo,
mdesc) (it is the function that is called after parse_cmdline). The paging_init function is located in
linux-2.6.28/arch/arm/mm/mmu.c, and this function calls devicemaps_init (located in
linux-2.6.28/arch/arm/mm/mmu.c), and from there the function mdesc->map_io() is called.

static void __init devicemaps_init(struct machine_desc *mdesc)
{

struct map_desc map;
unsigned long addr;

…
/*

 * Ask the machine support to map in the statically mapped devices.
 */
if (mdesc->map_io)

mdesc->map_io();
…

The mxc_map_io function has a simple objective. This function calls iotable_init, which gets the
mapping using the create_mapping function (linux-2.6.28/arch/arm/mm/mmu.c). In i.MX51, the

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

14 Freescale Semiconductor

Memory Map

mxc__map_io function checks the revision of the chip before calling iotable_init, and changes the
tzic_addr.

/*!
* This function initializes the memory map. It is called during the
* system startup to create static physical to virtual memory map for
* the IO modules.
*/
void __init mxc_map_io(void)
{

u32 tzic_addr;
if (cpu_is_mx51_rev(CHIP_REV_2_0) < 0)

tzic_addr = 0x8FFFC000;
else

tzic_addr = 0xE0003000;

mxc_io_desc[2].pfn = __phys_to_pfn(tzic_addr);
iotable_init(mxc_io_desc, ARRAY_SIZE(mxc_io_desc));

}

/*
* Create the architecture specific mappings
*/
void __init iotable_init(struct map_desc *io_desc, int nr)
{

int i;

for (i = 0; i < nr; i++)
create_mapping(io_desc + i);

}

3.2 Memory Map on i.MX51
The memory map is formed by an array of map_desc structures. This structure located in
linux-2.6.28/arch/arm/include/asm/map.h, contains only four elements. These elements are unsigned
long types for a virtual address, length and page frame number, while the unsigned int is for the type.

struct map_desc {
unsigned long virtual;
unsigned long pfn;
unsigned long length;
unsigned int type;

};

The information obtained from the memory map are as follows:

• There are seven map_desc structures inside the array.

• The .virtual field is the virtual address where that map_desc is defined.

• The .pfn field is the address of the map_desc in terms page frame number. The page frame
numbers are the physical address with the offset values taken out, and the page values shifted to
the right.

arch/arm/include/asm/memory.h
/*
* Convert a physical address to a Page Frame Number and back

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 15

Memory Map

*/
#define__phys_to_pfn(paddr)((paddr) >> PAGE_SHIFT)
#define__pfn_to_phys(pfn)((pfn) << PAGE_SHIFT)

• Most of the macros used in the structure is seen in the headers:
linux-2.6.28/arch/arm/plat-mxc/include/mach/mx51.h.

• IRAM_BASE_ADDR_VIRT represents the internal RAM (physical address 0x1FFE0000), the virtual
address is 0xFA3E0000 is and the length of the map_desc is 128 KB.

• DEBUG_BASE_ADDR_VIRT represents the area for debugging modules on the chip (physical address
0x60000000), the virtual address is 0xFA200000 and the length of the map_desc is 1 MB.

• TZIC_BASE_ADDR_VIRT represents trust zone aware interrupt controller. The TZIC collects interrupt
request for all i.MX51 sources to the core (physical address 0x8FFFC000), the virtual address is
0xFA100000 and the length of the map_desc is 16 KB.

• AIPS1_BASE_ADDR_VIRT represents the area for the AIPS section 1 of module registers (physical
address 0x73F00000 some of them are USBs, UARTs, GPIOs KPP, WDOGs GPT, IOMUX, PWMs,
EPITs), the virtual address is 0xFB000000 and the length of the map_desc is 1 MB.

• SPBA0_BASE_ADDR_VIRT represents the global module registers area (physical address 0x70000000
some of them are ESDH, UART, eCSPI, SSI, SPBA, PATA), the virtual address is 0xFB100000 and
the length of the map_desc is 1 MB.

• AIPS2_BASE_ADDR_VIRT represents the area for the AIPS section 2 of module registers (physical
address 0x83F00000 some of them are DPLLIPs, IIM, SDMA I2Cs, FEC, VPU, SAHARA, EMI,
AUDMUX), the virtual address is 0xFB200000 and the length of the map_desc is 1 MB.

• NFC_BASE_ADDR_AXI_VIRT represents the NAND Flash register area (physical address 0xCFFF0000),
the virtual address is 0xF9000000 and the length of the map_desc is 64 KB.

/*!
* This structure defines the MX51 memory map.
*/
static struct map_desc mxc_io_desc[] __initdata = {

{
 .virtual = IRAM_BASE_ADDR_VIRT,
 .pfn = __phys_to_pfn(IRAM_BASE_ADDR),
 .length = IRAM_SIZE,
 .type = MT_DEVICE},
{
 .virtual = DEBUG_BASE_ADDR_VIRT,
 .pfn = __phys_to_pfn(DEBUG_BASE_ADDR),
 .length = DEBUG_SIZE,
 .type = MT_DEVICE},
{
 .virtual = TZIC_BASE_ADDR_VIRT,
 .pfn = __phys_to_pfn(TZIC_BASE_ADDR),
 .length = TZIC_SIZE,
 .type = MT_DEVICE},
{
 .virtual = AIPS1_BASE_ADDR_VIRT,
 .pfn = __phys_to_pfn(AIPS1_BASE_ADDR),
 .length = AIPS1_SIZE,
 .type = MT_DEVICE},
{
 .virtual = SPBA0_BASE_ADDR_VIRT,

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

16 Freescale Semiconductor

References

 .pfn = __phys_to_pfn(SPBA0_BASE_ADDR),
 .length = SPBA0_SIZE,
 .type = MT_DEVICE},
{
 .virtual = AIPS2_BASE_ADDR_VIRT,
 .pfn = __phys_to_pfn(AIPS2_BASE_ADDR),
 .length = AIPS2_SIZE,
 .type = MT_DEVICE},
{
 .virtual = NFC_BASE_ADDR_AXI_VIRT,
 .pfn = __phys_to_pfn(NFC_BASE_ADDR_AXI),
 .length = NFC_AXI_SIZE,
 .type = MT_DEVICE},

};

The memory mapping represents the static I/O section that has 0xfeffffff and VMALLOC_END as limits. See
memory.txt from the linux-2-6.28/Documentation/arm/.

4 References
The following reference documents are used in conjunction with this application note for board
initialization and memory mapping using LTIB.

4.1 Freescale Semiconductor Documents
The following i.MX reference manuals are found at Freescale Semiconductor Inc. World Wide Web site
at http://www.freescale.com.

• i.MX Family Linux Software Development Kit Reference Manual. Chapter 3: Machine Specific
Layer, 3.3 Memory Map, at

http://www.freescale.com/files/32bit/doc/support_info/EVK16_IMX51_LINUXDOCS_BUNDLE.zip
• MCIMX51 Multimedia Applications Processor Reference Manual (MCIMX51RM). Chapter 2:

Memory Map.

4.2 Standard Documents
The following standard documentations are used as reference for this application note and are found at
their respective Web sites.

• Booting ARM Linux (June 2004), at
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_MEM#ATAG_MEM

• Booting and Porting Linux and uCLinux on a new Platform (February 2006), at
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-08.pdf

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com/files/32bit/doc/support_info/EVK16_IMX51_LINUXDOCS_BUNDLE.zip
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_MEM#ATAG_MEM
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-08.pdf

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 17

Revision History

5 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 03/2010 Initial Release.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

18 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 19

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3980
Rev. 0
03/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB)
	1 Linux Booting Process
	1.1 General Bootloader Objectives
	1.2 Tags in Linux Booting Process
	1.2.1 Tags in the Bootloader Environment
	1.2.2 Tags in the Kernel Environment
	1.2.2.1 Retrieving Tag Information
	1.2.2.2 Retrieving Memory Information from the Command Line

	2 Board Initialization Process
	2.1 MACHINE_START Description and Flow
	2.1.1 Recognizing the CPU and Machine

	2.2 Board Initialization Function
	2.2.1 Calling the Function
	2.2.2 Board Initialization Content

	3 Memory Map
	3.1 I/O Mapping Function Flow and Description
	3.2 Memory Map on i.MX51

	4 References
	4.1 Freescale Semiconductor Documents
	4.2 Standard Documents

	5 Revision History
	Table 1. Document Revision History

