|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3980
Rev. 0, 03/2010

I.MX51 Board Initialization and Memory
Mapping Using the Linux Target Image

Builder (LTIB)

by Multimedia Application Division
Freescal e Semiconductor, Inc.
Austin, TX

Thisapplication note providesgeneral information regarding
the board initialization process and the memory mapping
implementation of the Linux kernel using the LTIB in an
i.MX51 Board Support Package (BSP).

Theboard initialization processisrelatively complex. Hence
this application note provides general overview of the board
initialization process, while explaining more about the
memory mapping.

The knowledge of these aspects enabl e better understanding
of the BSP structure. When changes such as migrationsto
another board or device with the memories, external board
chips are needed, these are some of the elementsthat need to
be changed on the software side.

This application note is targeted to the i.MX51 BSPs, but it
is applicable to any i.MX device. The structure and
architecture of the system (software) is the same for all the
i.MX BSPs.

This application note covers the information, and the
initialization process flow of aBSP running aLTIB, on an
i.MX51 platform. The focus of this application note is on
memory elements and memory mapping, from bootloader
startup to kernel initiaization.

© 2010 Freescale Semiconductor, Inc. All rights reserved.

11
12

2.1
2.2

31
3.2

4.1
4.2.

Contents
Linux BootingProcess 2
General Bootloader Objectives 2
Tagsin Linux Booting Process 3
Board Initialization Process 8
MACHINE_START Descriptionand Flow 8
Board Initialization Function 10
Memory Map ... 13
1/0 Mapping Function Flow and Description 13
Memory Maponi.MX51 14
References. ... 16
Freescale Semiconductor Documents 16
Standard Documents 16
RevisionHistory oL 17

freescale"

semiconductor

Linux Booting Process

Thefirst section of this application note, explainsthe general objectives of astandard bootloader and how
to pass information about the system memory (size, start address) to the kernel.

The second section explainsthe board initialization function. It also explainsthe elementsthat are required
to setup the board initialization (structures, linker sections, functions) and their place within the flow of
the Linux booting process.

The last section describes general aspects of memory mapping on the system and the implementation of
the memory map in the BSP.

1 Linux Booting Process

This section describes the main objectives of the bootloader of aLinux system for an ARM device. It also
describes the structures and the flow that are to be executed, and the information that the bootl oader needs
to passto the kernel.

1.1 General Bootloader Objectives

This section explains the general objectives of aLinux bootlader for ARM devices. There are five
minimum elements that a bootloader needs to accomplish:

1. Setup and initialize the system RAM—The boot loader finds and initializes the entire RAM to
provide the volatile data storage in the system. The algorithm that is used to locate and set up the
RAM depends on the processor and bootloader designs.

2. Initialize serial port (optional, but highly recommended)—T he bootloader |ocates and enables a
seria port on the target. This allows the kernel serial driver to detect the serial port that is used
later as the kernel console. The bootloader passes consol e= as a kernel parameter, whichis
recognized as a part of the tagged list.

3. Detect the machine type—T he bootloader detects the type of the processor that is running on the
system. Thisinformation is aMACH_TYPE_XXX Macro.

4. Setup the kernel tagged list—The bootloader creates and initializes a kernel tagged list that
contains the information such as the size and location of the systems memory (RAM). Other
elements such a RAM disk creation and a console value are added to the tagged list. The tagged
list concept and its characteristics are described in the Section 1.2, “ Tagsin Linux Booting
Process.”

5. Cadll or start the kernel image—The bootloader finally calls the kernel image (an compressed
zlmage), depending on where the zimage is stored. It is possible to call the zimage in Flash
directly or store the zimage in RAM and call there. The following are some of the conditions that
areto be set to call the zZimage:

a) Set the CPU to supervisor mode with IRQ disabled.

b) Turn off the Memory Management Unit (MMU). The code running in RAM does not have
translated addressing yet.

c) Turn off the data cache

d) Settheregister r0Oto 0, rl tothe ARM Linux machine type, and r2 to the physical address of
the parameter list (tagged list)

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

2 Freescale Semiconductor

Linux Booting Process

The bootloader isin charge of initializing the process while configuring the RAM for the system. The
kernel does not have knowledge of the RAM configuration beyond what is provided by the bootloader. 1
thereisthe need of achange inthe RAM of asystem, most of the software changes apply to the bootl oader.

A small exception is the usage of the machine fixup function (fi xup_nmxc_board). It is placed normally in
the machine dependant code (I i nux- 2. 6. 28/ ar ch/ ar mf mach- mx51/ nk51_babbage. ¢) and itisused insidethe
kernel to enable some actions of memory configuration that belong to the bootloader. It alows the user to
statically fill values for the parameters such as memory data. It is not recommended to use all the time.

1.2 Tags in Linux Booting Process

The following section provides a more detailed description of the tagged list, with emphasis on the
memory tag.

1.2.1 Tags in the Bootloader Environment

Thetagged list containstheinformation of the physical layout. Theinformation ispassed to the kernel with
the ATAG_MEM parameter. This parameter is part of the tagged list that is passed from the bootloader to
the kernel. The parameter is manipulated through the kernel command line option mem=, and by using this,
the bootloader passes size and physical memory.

NOTE

For more information on the syntax of the parameters go to the
documentation inside the kernel
I'i nux- 2. 6. 28/ Docunent ati on/ ker nel - paraneters. txt.

ATAG_MEM isapart of the parameter passed by the bootloader to the kernel. The parameters create alist
(tagged list) that contain information such as the command line tag associated with the kernel command
line string, serial console information, RAM disk usage, initial configuration values for the framebuffer.
Thistagged list (ATAG) implemented as a structure and is stored in main memory. The address of the
structure is passed to the register r2 when starting the kernel. However, in many cases, the kernel finds it
in apreviously set fixed value (by default, both the bootloader and the kernel knows whereit is).

The following are the most important constraints in the tagged list:
* Thelistisstored in RAM. The recommended placeisthefirst 16 Kbytes of RAM.

NOTE
The list should not be stored where the kernel is decompressed, where the
initrd overwrite it.
* Thelist should not extend beyond the 0x4000 boundary where the kernel initial trandation page
tableis created.
* Thelistisaligned to a4 byte boundary

* Thelist beginswith atag ATAG_CORE, contain atag ATAG_MEM and end with atag
ATAG_NONE

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 3

Linux Booting Process

Eachtaginthelist containsat ag_header structurethat setsthe size of thetag and atag value that represent
the tag type. In almost al cases, each tag header has more data associated with the type of tag (except for
ATAG_NONE).

The following are the lines of code of the tag structure containing t ag_header and several different types
of tags implemented as a union of structures. This structure is from the kernel location:

l'i nux- 2. 6. 28/ arch/ arnt i ncl ude/ asn set up. h. However, the bootloader containsadefinition very similar
to the following lines of code:

struct tag {

struct tag_header hdr;

uni on {
struct tag_core core;
struct tag_nenB2mem
struct tag_vi deotextvi deot ext;
struct tag_randi skrandi sk;
struct tag_initrd initrd,;
struct tag_serialnrserialnr;
struct tag_revisionrevision;
struct tag_videol fbvideol fb;
struct tag_cndlinecndline;

Pou
b
The data associated with each tag (in the union part of the tag structure) contains the information related
to each type. For example, in the case of thet ag_mem(ATAG_MEM), the data is described in the union as
thet ag_memstructure. This structure containstwo fields, onefor the size of the memory represented in this
tag, and another for the physical address of this memory.

The following lines of code are from the | i nux-2. 6. 28/ arch/ ar ml i ncl ude/ asm set up. h file. The code
contains some definitions of tags, such astag_nem and thet ag_header. The bootloader should have an
implementation of tags similar to the following lines of code:

struct tag_header {
_u32 size;
__u32 tag;

/* The list ends with an ATAG NONE node. */
#def i ne ATAG_NONEOx00000000

struct tag_header {
_u32 size;
__u32 tag;
b

/* The list nmust start with an ATAG CORE node */
#def i ne ATAG_COREO0x54410001

struct tag_core {
_u32 flags; /* bit 0 = read-only */
__u32 pagesi ze;
__u32 rootdev;

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

4 Freescale Semiconductor

Linux Booting Process
/* it is allowed to have nmultiple ATAG MEM nodes */
#def i ne ATAG_MEMDx54410002

struct tag_nmenB2 {
_u32 si ze;
_u32 start; /* physical start address */

1.2.2 Tags in the Kernel Environment

From the kernel standpoint, it isimportant to know where the tags are retrieved from, and used for the
kernel internal settings. The system needs tag structures similar to the ones from the bootloader to enable
thisfeature. All the tag structures definitions are provided in

i nux-2.6.28/arch/arm i ncl ude/ asni set up. h.

The file from where the tag isretrieved iS: 1 i nux2. 6. 28/ ar ch/ ar nf ker nel / set up. c. The specific function
insidethisfileisvoid __init setup_arch(char **cndline_p), and thisfunctioniscalledfromasni i nkage
void __init start_kernel (void) function (fromthefile Iinux2.6.28/initi/min.c).

Thestart _kernel functioniscalled after al the assembly-oriented initialization of the kernel is executed.
Thisprocessinvolvesthefilesrelated to the compressed kernel stage (zImage). After thefunctioniscalled,
the relocation of the kernel isturned off, and finally, the uncompressed kernel startup (head- arnv. s file).
The kernel gets the information from the memory configuration in the following two ways:

» Getting the tagged list that contains the memory tag with the information.

» Getting the information from the kernel command line through the usage of rem-—. Both the cases
are described and implemented in 1'i nux- 2. 6. 28/ ar ch/ ar mf ker nel / set up. c.

1.2.2.1 Retrieving Tag Information

The tag table is built by the linker using the __t agt abl e declarations of each tag in:
l'i nux2. 6. 28/ arch/ ar nf ker nel / set up. c. One of these declarations is the memory tag as follows:

__tagtabl e(ATAG_ MEM parse_tag_nenB2)

The definition of thisline of codeisfound inthefileli nux- 2. 6. 28/ arch/ ar m'i ncl ude/ asnt set up. h, and
itsmeaning is:

#idefine __tag __attribute_used__ _ attribute_ ((__section__(".taglist.init")))
#define _ tagtable(tag, fn) \
static struct tagtable __tagtable ##fn __tag = { tag, fn}

Theresult of thisdeclarationisast ruct tagtabl e. Thestructureisformed by a__32 number and a pointer
to afunction that has:
* Aname ___ tagtabl e_##f n (aconcatenation with the name of the function).

* Anattribute that assembly functions of code related to this declaration will be placed in the section
.taglist.init thatisdefined by thelinker (see vni i nux. I ds inthe following pages) instead of the
common text section.

* It hasas parameter values: tag (_u32 number in this case ATAG_MEM) and f n (a pointer to afunction
that in thiscaseisthepar se_t ag_men82).

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 5

Linux Booting Process

Each declaration generate onestruct t agt abl e as the following.

Thetaglistisretrieved inset up_ar ch. Inthe body of the functionthereisacall to thefunction parse_t ags.
This function parses all the tags contained in the list by using a function that parses atag by each time
(par se_t ag). Thislast function looksfor the tags and calls the parse function of each tag if thereisamatch.
/*

* Parse all tags in the list, checking both the global and

* architecture specific tag tables.

*/
static void __init parse_tags(const struct tag *t)
{
for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))
pri nt k(KERN_WARNI NG
"l gnoring unrecogni sed tag 0x%©8x\n",
t->hdr.tag);
}
* Scan the tag table for this tag, and call its parse function.
* The tag table is built by the linker fromall the __tagtable
* decl arati ons.
*/
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, _ tagtable_end;

struct tagtable *t;

for (t = & tagtable_begin; t < & tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
br eak;

}

returnt < & _tagtabl e_end;

}

Asalimitit haselementssuch as__tagtabl e_begin, _tagtabl e _end definedin
l'i nux-2. 6.28/ arch/arnf kernel /vii i nux. | ds (linker file) these are the limits of the tag list in memory.

.init : { /* Init code and data*/
*(.init.text) *(.cpuinit.text) *(.nmemnit.text)
_einittext = .;
__proc_info_begin = .;
*(.proc.info.init)
__proc_info_end = .;
__arch_info_begin = .;
*(.arch.info.init)
_arch_info_end = .;
__tagtable_begin = .;
*(.taglist.init)
__tagtable_end = .;

= ALI G\(16) ;
__setup_start = .;
*(.init.setup)
__setup_end = .;
__early_begin = .;

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

6 Freescale Semiconductor

Linux Booting Process

*(.early_paraminit)
__early_end = .;

The space between both elementsis the data and its attributes (t agl i st . i ni t). Thefirst tag that needs to
be parsed and recognized isATAG_CORE. Thisisthefirst tag found according to the established protocol.

A memory tag is also found, when the match is done it calls the parse function associated with the tag. In
the case of the memory tag, the parse function ispar se_t ag_nens2.

static int __init parse_tag_nenB2(const struct tag *tag)
{
i f (mem nfo.nr_banks >= NR_BANKS) {
pri nt k(KERN_WARNI NG
"l gnoring menory bank Ox%8x size %KB\n",
tag->u.mem start, tag->u.nmemsize / 1024);
return -ElINVAL;
}
arm add_nenory(tag->u. nemstart, tag->u.nemsize);
return O;

}

Thisfunction callsthear m add_remory at theend. Thisisthe function that sets the memory information
(start address and size memory) in the nembank Structure.

static void __init armadd_menory(unsigned long start, unsigned |ong size)
{
struct nmenbank *bank;
/*
* Ensure that start/size are aligned to a page boundary.
* Size is appropriately rounded down, start is rounded up.
*/
size -= start & ~PAGE_MASK;
bank = &mem nfo. bank[mem nfo. nr_banks++];
bank- >start PAGE_ALI GN(start);
bank- >si ze size & PAGE_MASK;
bank- >node PHYS TO NI D(start);

1.2.2.2 Retrieving Memory Information from the Command Line

The other possibility for retrieving the memory information is getting the data from the kernel command
line and the parameter rem-. The processissimilar to theretrieving of tag information from the tagged list.
Some characteristics are:

e Startsinsetup_arch and finishesin ar m add_nenory

* Needs aparticular section in memory set aswell by the vni i nux. I ds, but now it is named
early paraminit andthelimitsare early begin __early end

* Instead of aparse_t ags function, there isnow aparse_cndl i ne

* Thecontent of early_param init isfilled by thedeclaration __early_param("mem=", early_mem
using the same elementsas__tagtabl e (__attribute__ and aspecial section).

* Insummary theflow isthat the set up_arch callspar se_cmdl i ne. When parsing the command line,
and if the rem= isfound, it callsthe ear 1 y_nemfunction, that at theend ar m add_nenory iscaled to
fill the menbank structure.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 7

|
y

'
A

Board Initialization Process

All the code related are found in1i nux- 2. 6. 28/ arch/ ar mf ker nel / set up. ¢ and definitionsin
i nux-2.6.28/ arch/arm i ncl ude/ asnif setup. h (__earl y_param OI early_param StI’UCtUI’eS).

2 Board Initialization Process

This section explains the process by which the board elements are initialized on a Linux system.

There are some elementsthat are to be set before the board isinitialized. This section describes the
elementsthat are related to the Linux booting process. Some of these are the machi ne_desc structure, or the
process that the kernel usesto confirm the CPU and the machine type (current board) used in the system.

This section also explains briefly the contents of the function related to the board (system) initialization.

2.1 MACHINE_START Description and Flow

The macH NE_START definition is the declaration of the machi ne_desc structure holding the name of the
board currently used. Besides having the name of the board in use, it is also set in a particular section
declared inthevni i nux. I ds file. It has the vacH_TYPE and the name of the system as parameters. The
definition islocated in 1 nux-2. 6. 28/ ar ch/ arm i ncl ude/ asm mach/ ar ch. h. The MACH_TYPE parameter
passed in the MacH NE_START isstored in i nux- 2. 6. 28/ i ncl ude/ asm ar i mach_t ypes. h.

#def i ne MACHI NE_START(_type, _nane)\
static const struct nachine_desc __nmach_desc_##_type\
__used \
attribute ((__section__(".arch.info.init"))) = {\
.nr MACH_TYPE_##_t ype, \
. hame _naneg,

#def i ne MACHI NE_END \
}s

#endi f

The macH NE_START macro becomes a data structure when the compiler buildsthefilethat holdsit. Usually
this structure is declared in afile where the initialization of the current board is made. This meansthefile
isinside the mach-xxx folder. In this application note, the i.MX51 board is the Babbage board. Thefile
where the declaration ismade is. | i nux- 2. 6. 28/ ar ch/ ar mf mach- nk51/ nk51_babbage. c.

Thismacro is defined as the structure that describes the machine, or the board. It contains more members
than a name and a type. These members are part of the machi ne_desc structure that is declared with the
macro. The definition of the machi ne_desc structure is located in:

li nux-2.6.28/ arch/arm i ncl ude/ asm mach/ arch. h.

struct machi ne_desc {

/*

* Note! The first four elements are used

* by assenbler code in head.S, head-comon.S

*/

unsi gned intnr; /* architecture nunber*/
unsi gned intphys_io; /* start of physical io*/
unsigned intio_pg_offst; /* byte offset for io

* page tabe entry*/

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

8 Freescale Semiconductor

Board Initialization Process

const char *nane; /* architecture name*/
unsi gned | ongboot _parans; /* tagged |ist */
unsi gned intvideo_start; /* start of video RAMF/
unsi gned i ntvideo_end; /* end of video RAM/
unsigned intreserve_| p0 :1;/* never has | p0*/
unsigned intreserve_|pl :1;/* never has |pl*/
unsigned intreserve_|p2 :1;/* never has |p2*/
unsi gned intsoft_reboot :1;/* soft reboot*/
voi d (*fixup)(struct machi ne_desc *,
struct tag *, char **,
struct nmenminfo *);
voi d (*map_io)(void); /* 10 mapping function*/
voi d (*init_irq)(void);
struct sys_tinmer*tiner; /* systemtick tiner*/
voi d (*init_machine)(void);

b
Asshown, there are several members of the structure, not all of them arefilled in the final MACH NE_START
declaration. For the current system, the declaration islocated in
i nux-2. 6.28/arch/arm mach- mk51/ nx51_babbage. c:
/*
* The follow ng uses standard kernel macros define in arch.h in order to
* initialize __mach_desc_MX51_3STACK data structure.
*/
[* *| NDENT- OFF* */
MACHI NE_START(MX51_BABBACE, "Freescal e MX51 Babbage Board")
/* Maintainer: Freescale Sem conductor, Inc. */
.phys_io = Al PS1_BASE ADDR,
.io_pg_offst = ((Al PS1_BASE_ADDR VIRT) >> 18) & Oxfffc,
.boot _paranms = PHYS_OFFSET + 0x100,
.fixup = fixup_nxc_board,
.map_i 0 = nxc_map_i o,
init_irg = mkc_init_irq,
.init_machine = nxc_board_init,
.timer = &mxc_ti mer,
MACHI NE_END

The data obtained from the declaration are as follows:
* The macH_TypPe and architecture number (nr) iS: MACH TYPE__MX51_BABBAGE
e The name of the mach_desc Structureis: __nmach_desc_MX51_ BABBAGE
* The name parameter of the mach_desc Structureis. Freescal e MX51 Babbage Board
* Thephysical address of the I/O bank is (phys_i 0): Al PS1_BASE_ADDR

» Thel/O page offset that allows providing virtual memory iS (i o_pg_of f st):
((Al PS1_BASE_ADDR VIRT) >> 18) & Oxfffc

* The boot parameters (address of the tagged list used in the process of retrieving the tagged list to
the kernel) are (boot _parans): PHYS_OFFSET + 0x100

» Thefixup function referenceis (fi xup): fi xup_nmxc_board

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 9

|
y

'
A

Board Initialization Process

* The /O memory mapping function is (map_i 0): mxc_map_io

* ThelRQ nitialization functionis(init_irq): mxc_init_irq

» The machineinitialization function (board initialization) is (i ni t _machi ne): mxc_board_i ni t
* Thetimer structureis(tinmer): &mxc_timer

Some of these elements are extremely important for the development of this application note. For example,
the boot _par ams provide the location of the tag structure created in set up_ar ch function covered in the
Section 1.2.2.2, “Retrieving Memory | nformation from the Command Line,” which passestheinformation
about the memory layout to the system.

Thei ni t _machi ne parameter provides the reference to the function that initializes the system. The
objective of this section isto explain how the Linux booting process gets to that function and describe it
briefly.

The map_i o parameter provides the reference to the function for the memory mapping process. This
function is explained in the following section.

211 Recognizing the CPU and Machine

In the Linux kernel boot, after passing the process of uncompressing the kernel, the kernel initializes the
hardware using i ni t _machi ne parameter. Before initializing the hardware, the kernel validatesif it is
running in the CPU that it was compiled for. This verification is followed by the initialization of caches
and the MMU. To know if thisis true, the kernel gets the processor ID and it is compared to the data
contained intheproc.info.init Section (Seevniinux.|ds).

The process beginsin the set up_processor () function fromthesetup_arch() in

l'i nux-2.6.28/ arch/arm kernel / setup. c. ThiSsetup_processor () function usesthe

| ookup_processor_type (located in: ar ch/ ar nf ker nel / head- common. S) and read_cpui d_i d (located in:

l'i nux- 2. 6. 28/ arch/ arnt i ncl ude/ asn cput ype. h) functionsto get the processor ID. The proc. i nf o Section
isfilled with information from the file 1 i nux- 2. 6. 28/ ar ch/ ar mf nm proc- v7. S, which sets the
.proc.info.init Section, and contains the information about the processor ID.

The kernel comparesthe machine ID given by the bootloader to the kernel with the information contained
iNn .arch.info.init Section (seevminux. | ds).

This processisaso insidethesetup_arch() in Iinux2.6.28/ arch/arnt kernel / set up. c. After the
setup_processor function is called, the function set up_rmachi ne(machi ne_arch_t ype) iscaled (the
parameter holds the machine type obtained from the MacHi Ne_START macro declaration). This function
reaches | ookup_machi ne_t ype (nr) that gets the machine type and compares with the information in
.arch.info.init (filled with the MacHi NE_START macro declaration).

2.2 Board Initialization Function

See Section 2, “Board Initialization Process,” for more information about the board initialization function.
Thefunctionismxc_board_i nit anditisfoundinti nux- 2. 6. 28/ ar ch/ ar m mach- mx51/ nx51_babbage. c. The
function is also referenced as ndesc- >i ni t _nmachi ne.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

10 Freescale Semiconductor

Board Initialization Process

2.2.1 Calling the Function

The function is called in a specific way. In thefile1i nux2. 6. 28/ arch/ ar mf ker nel / set up. c thereisa
function named cust oni ze_nmachi ne. Thisfunction containsacall toi ni t _machi ne() , which isdefined as:
static void (*init_nachine)(void) __initdata.

static int __init custoni ze_nachi ne(void)

{

/* custom zes platform devices, or adds new ones */
if (init_machine)
i ni t_machine();

return O;
}
arch_initcall (custom ze_nachi ne);
Therelationship betweenii ni t _machi ne and the board initialization boardisgiveninset up_arch() . Atthe
end of the functioni ni t _machi ne isassigned with areference to the initialization board:

init_machine = ndesc->init_machi ne.

Thisfunction iscalled in aspecific way. Thisfunction is apart of agroup of functionsthat get initialized
through atable built by the linker. Thisgroup havethe __initcalls() or nodule_init() cals

Thefunctioncust oni ze_ker nel isapart of the__i ni t cal I group because of thelineof codear ch_i ni tcal |
(cust oni ze_machi ne). The definition of arch_i ni tcal I isfound in: Ii nux-2. 6.28/incl ude/ I i nux/init. h.
Theresult expandsina __define_initcall thatisplacedinthesection ".initcall" level ".init",and
it has a value of the function (in this case cust oni ze_nachi ne).

#define arch_initcall (fn)__define_initcall ("3",fn,3)

* initcalls are now grouped by functionality into separate

* subsections. Ordering inside the subsections is determ ned
* by link order.

* For backwards conpatibility, initcall() puts the call in

* the device init subsection.
*
*
*
*

The “id" arg to __define_initcall() is needed so that nultiple initcalls
can point at the same handler w thout causing duplicate-synbol build errors.
/

#define __define_initcall (level,fn,id) \
static initcall_t __initcall _##fn##id __used \
attribute ((__section__(".initcall" level ".init"))) = fn

The function is added in the table built by the linker. The following codeisfrom: vniinux. 1 ds
(1i nux-2.6.28/ arch/ ar m ker nel /).

_initcall_start = .;

*(.initcallearly.init) __early_initcall_end = .; *(.initcallO.init) *(.initcall0Os.init)
*(.initcalll.init) *(.initcallls.init) *(.initcall2.init) *(.initcall2s.init)
*(.initcall3.init) *(.initcall3s.init) *(.initcall4.init) *(.initcall4s.init)
*(.initcall5.init) *(.initcall5s.init) *(.initcallrootfs.init) *(.initcall6.init)
*(.initcall6s.init) *(.initcall7.init) *(.initcall7s.init)

_initcall_end = .;

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 11

Board Initialization Process

2.2.2 Board Initialization Content

The content of the board initialization function (mxc_board_i ni t) isaset of initialization routines for the
systems, modules and, integrated chipsthat are in the board. The initialization is not that the drivers for
each module are described and coded in thisfile, but it isactually the opposite. Thisfunction iswhere all
the devices that are represented in the board are getting initialized or registered.

The attributes are passed to each device and resources that are provided. Some important cases are as
follows:

* GPIO are assigned to each module
* Partitionsfor MTD devices are made
« Devicesfor buses are registered (such as 12C or SPI)

Most of the routines inside the board initialization function are a'so in
l'i nux- 2. 6. 28/ ar ch/ ar mf mach- mx51/ nx51_babbage. c. The following function is a summary for the
elements that are enabled on the system and its characteritics:

static void __init mxc_board_init(void)

{

int err;

mxc_cpu_comon_init();

mxc_gpio_init();

mx51_3stack_io_init();

early_consol e_set up(saved_command_l i ne);
mxc_i nit_devices();

mxc_expio_init();
nxc_init_enet();
nxc_init_pata();
mxc_init_fb();
mxc_init_bl();

mxc_i nit_keypad();
mxc_init_nand_ntd();
mxc_init_mrc();
mxc_init_sim);

mxc_i nit_srpgconfig();
mx51_3stack_i nit_nmc13892();

#if defined(CONFI G | 2C_MXC) || defined(CONFI G | 2C_MXC_MODULE)

#i fdef CONFI G | 2C_MXC_SELECT1
i 2c_register_board_info(0, nxc_i2c0_board_i nfo,
ARRAY_SI ZE(nxc_i 2c0_board_i nfo));
#endi f
#i f def CONFI G_| 2C_MXC_SELECT2
i 2c_register_board_info(1l, nxc_i2cl_board_info,
ARRAY_SI ZE(nxc_i 2c1_board_info));
#endi f
#if defined(CONFI G | 2C_ MXC_HS) || defined(CONFI G | 2C_MXC_HS_MODULE)
i 2c_register_board_info(3, mxc_i2c_hs_board_info,
ARRAY_SI ZE(nmxc_i 2c_hs_board_i nfo));
#endi f

#endi f

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

12 Freescale Semiconductor

Memory Map

mxc_i nit_touchscreen();
mxc_i nit_wiB903() ;
mxc_init_sgtl 5000();
mxc_i nit_bl uetooth();

err = nxc_request _i omux(MX51_PI N_EI M D19, | OMUX_CONFI G GPI O ;
if (err)
pri nt K(KERN_ERR "Error: bt reset request gpio failed!\n");
el se
nmxc_set _gpi o_directi on(MX51_PIN_EI M D19, 0);

3 Memory Map

Linux runsin virtual address space, the Memory Management Unit (MMU) providesthevirtual to physical
address mapping defined by memory map page table. This page table is a pre-defined memory map
definition that maps virtual memory to physical memory, so the device drivers access device registers.

In thei.MX platform, the tableis defined in 1 i nux- 2. 6. 28/ ar ch/ ar m mach-mx51/ mm c. Thislocation is
under machine dependant code (MSL or Machine Specific Layer). The header files that provide macros
for al the IO modules (physical and virtual addresses or conversion macros) are stored in

i nux-2. 6.28/arch/arm pl at-mxc/i ncl ude/ mach/ hardware. h Or

l'i nux-2.6. 28/ arch/arm pl at - mxc/i ncl ude/ mach/ mx51. h.

Thelinux- 2. 6. 28/ arch/ ar m mach- mx51/ mm ¢ file contains the memory map of the system, and the
mxc_map_i o function, which is responsible for 1/0 memory mapping. Thisfunction is also found as
ndesc- >map_i o() , iN other words, this function is the 1/0 memory mapping function from the machine
description structure. The following sections explain how the I/O mapping functioniscalled, and describe
the content of the memory map table.

3.1 I/0 Mapping Function Flow and Description

The flow of calling the mxc_map_i o function startsfrom theset up_arch() function inside the

l'i nux2. 6. 28/ arch/ arnf kernel / setup. c. Thecall that initiates the process is pagi ng_i ni t (&eni nf o,
mdesc) (itisthefunctionthat iscalled after parse_cmdl i ne). The pagi ng_i nit functionislocated in
l'i nux- 2. 6. 28/ ar ch/ armf mm mmu. ¢, and this function calls devi cemaps_ini t (located in

l'i nux- 2. 6. 28/ ar ch/ ar mf mm nmu. ¢), and from there the function ndesc- >map_i o() is called.

static void __init devicemaps_init(struct machi ne_desc *ndesc)

{

struct map_desc map;
unsi gned | ong addr;

/*
* Ask the nachine support to map in the statically napped devices.
*/
if (nmdesc->map_i o)
mdesc->map_i o();

The mxc_map_i o function has a ssmple objective. Thisfunction callsi ot abl e_i ni t, which getsthe
mapping using the cr eat e_mappi ng function (1 i nux- 2. 6. 28/ arch/ ar mf mm mmu. ¢). INi.MX51, the

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 13

Memory Map

mxc__map_i o function checks the revision of the chip before calingi ot abl e_i ni t , and changes the
t zi c_addr.

/*1

* This function initializes the menory map. It is called during the

* systemstartup to create static physical to virtual menory map for
* the 10 nodul es.

*/
void __init nxc_map_io(void)
{
u32 tzic_addr;
if (cpu_is_nmx51_rev(CH P_REV_2_0) < 0)
tzi c_addr = Ox8FFFCO00;
el se
t zi c_addr = O0xE0003000;
nmxc_i o_desc[2].pfn = _ phys_to_pfn(tzic_addr);
iotable_init(nxc_io_desc, ARRAY_SIZE(nxc_i o_desc));
}
/*
* Create the architecture specific mappings
*/
void __init iotable_init(struct nap_desc *io_desc, int nr)
{
int i;
for (i =0; i <nr; i++)
create_mapping(i o_desc + i);
}

3.2 Memory Map on i.MX51

The memory map isformed by an array of map_desc structures. This structure located in
l'i nux- 2. 6. 28/ arch/ arnt i ncl ude/ asm map. h, contains only four elements. These elements are unsi gned
| ong types for avirtual address, length and page frame number, while the unsi gned i nt isfor the type.

struct map_desc {
unsigned long virtual;
unsi gned | ong pfn;
unsi gned | ong | ength;
unsi gned int type;

}s
The information obtained from the memory map are asfollows:
* There are seven map_desc structuresinside the array.
e The .virtual fieldisthe virtua address where that map_desc is defined.

* The .pfn fieldisthe address of the map_desc interms page frame number. The page frame
numbers are the physical address with the offset values taken out, and the page values shifted to
theright.

arch/ arnminclude/ asm nenory. h
/ *
* Convert a physical address to a Page Frane Nunmber and back

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

14 Freescale Semiconductor

/*!

Memory Map

*/
#defi ne__phys_to_pfn(paddr) ((paddr) >> PAGE_SHI FT)
#define__pfn_to_phys(pfn)((pfn) << PAGE_SH FT)

Most of the macros used in the structure is seen in the headers:
i nux-2. 6.28/arch/arm pl at-nmxc/i ncl ude/ mach/ nx51. h.

| RAM_BASE_ADDR VI RT represents the internal RAM (physical address ox1FFE0000), the virtual
address is oxFA3e0000 is and the length of the map_desc is 128 KB.

DEBUG_BASE_ADDR VI RT represents the area for debugging modules on the chip (physical address
0x60000000), the virtual address isoxFAa200000 and the length of the map_desc is1 MB.

TZI C_BASE_ADDR_VI RT represents trust zone aware interrupt controller. The TZIC collectsinterrupt
request for all i.MX51 sources to the core (physical address oxsFrFrFco00), the virtual addressis
oxFA100000 and the length of the map_desc is 16 KB.

Al PS1_BASE_ADDR_VI RT represents the area for the AIPS section 1 of module registers (physical
addressox73F00000 some of them are USBs, UARTSs, GPIOs KPP, WDOGs GPT, IOMUX, PWMs,
EPITs), the virtual addressis oxFBoooooo and the length of the map_desc is1 MB.
SPBAO_BASE_ADDR_VI RT represents the global module registers area (physical address 0x70000000
some of them are ESDH, UART, eCSPI, SSI, SPBA, PATA), the virtual addressis oxFs100000 and
the length of the map_desc is1 MB.

Al PS2_BASE_ADDR_VI RT represents the area for the AIPS section 2 of module registers (physical
address 0x83F00000 some of them are DPLLIPs, IIM, SDMA 12Cs, FEC, VPU, SAHARA, EMI,
AUDMUX), the virtual addressis oxrFs200000 and the length of the map_desc is1 MB.
NFC_BASE_ADDR_AXI _VI RT represents the NAND Flash register area (physical address oxcFFF0000),
the virtual addressisoxF9000000 and the length of the nap_desc is64 KB.

* This structure defines the MX51 nenory map.

*/

static struct map_desc nxc_io_desc[] __initdata = {

{
.virtual = | RAM BASE_ADDR VI RT,

.pfn = __phys_to_pfn(l| RAM BASE_ADDR),
.length = | RAM SI ZE,
.type = MI_DEVI CE},

.virtual = DEBUG BASE_ADDR VI RT,

.pfn = __phys_to_pfn(DEBUG BASE_ADDR),
.length = DEBUG_SI ZE,

.type = MI_DEVI CE},

.virtual = Tzl C_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(TZl C_BASE_ADDR),
.length = TZI C_SI ZE,

.type = MI_DEVI CE},

.virtual = Al PS1_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(Al PS1_BASE_ADDR),
.length = Al PS1_SI ZE,

.type = MI_DEVI CE},

.virtual = SPBAO_BASE_ADDR VI RT,

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 15

References

.pfn = __phys_to_pfn(SPBAO_BASE_ADDR),
.length = SPBAO_SI ZE,
.type = MI_DEVI CE},

.virtual = Al PS2_BASE_ADDR VI RT,

.pfn = __phys_to_pfn(Al PS2_BASE_ADDR),
.length = Al PS2_SI ZE,

.type = MI_DEVI CE},

.virtual = NFC_BASE ADDR AXI _VI RT,
.pfn = __phys_to_pfn(NFC_BASE_ADDR_AXI),
.length = NFC_AXI _SI ZE,
.type = MI_DEVI CE},
b

The memory mapping representsthe static 1/0O section that hasoxfeffffff and vmaLLoc END aslimits. See
nmemory. t xt fromthel i nux-2- 6. 28/ Docunent at i on/ ar n .

4 References

The following reference documents are used in conjunction with this application note for board
initialization and memory mapping using LTIB.

4.1 Freescale Semiconductor Documents

The following i.MX reference manuals are found at Freescale Semiconductor Inc. World Wide Web site
at http://www.freescale.com.

* i.MXFamily Linux Software Development Kit Reference Manual. Chapter 3: Machine Specific
Layer, 3.3 Memory Map, at

http://www.freescal e.com/files/32bit/doc/support_info/EVK16 IMX51 LINUXDOCS BUNDLE.zip
* MCIMX51 Multimedia Applications Processor Reference Manual (MCIMX51RM). Chapter 2:
Memory Map.

4.2 Standard Documents
The following standard documentations are used as reference for this application note and are found at
their respective Web sites.

* Booting ARM Linux (June 2004), at
http://www.simtec.co.uk/products/SWLINU X/files/booting_article. ntmli#ATAG_MEM#ATAG_MEM

* Booting and Porting Linux and uCLinux on a new Platform (February 2006), at
http://www.ens-lyon.fr/L | P/Pub/Rapports RR/RR2006/RR2006-08. pdf

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

16 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com/files/32bit/doc/support_info/EVK16_IMX51_LINUXDOCS_BUNDLE.zip
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_MEM#ATAG_MEM
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-08.pdf

PR 4

5 Revision History

Table 1 provides arevision history for this application note.

Table 1. Document Revision History

Revision History

Rev.)
Number Date Substantive Change(s)
0 03/2010 | Initial Release.

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor

17

) 4

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

18 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB), Rev. 0

Freescale Semiconductor 19

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3980
Rev. 0
03/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© 2010 Freescale Semiconductor, Inc.

B POWERED

ARM
freescale"

semiconductor

	i.MX51 Board Initialization and Memory Mapping Using the Linux Target Image Builder (LTIB)
	1 Linux Booting Process
	1.1 General Bootloader Objectives
	1.2 Tags in Linux Booting Process
	1.2.1 Tags in the Bootloader Environment
	1.2.2 Tags in the Kernel Environment
	1.2.2.1 Retrieving Tag Information
	1.2.2.2 Retrieving Memory Information from the Command Line

	2 Board Initialization Process
	2.1 MACHINE_START Description and Flow
	2.1.1 Recognizing the CPU and Machine

	2.2 Board Initialization Function
	2.2.1 Calling the Function
	2.2.2 Board Initialization Content

	3 Memory Map
	3.1 I/O Mapping Function Flow and Description
	3.2 Memory Map on i.MX51

	4 References
	4.1 Freescale Semiconductor Documents
	4.2 Standard Documents

	5 Revision History
	Table 1. Document Revision History

