|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3974
Rev. 0, 01/2010

Different Display Configurations on

I.MX35 Linux PDK

by Multimedia Application Division
Freescal e Semiconductor, Inc.
Austin, TX

This application note provides information, considerations
and steps to add or adapt a new display panel to the BSP
distribution for i.MX35 PDK. It provides details about
genera panel and generdities of display controller from the
module. It also describes the devel opment process to adapt a
new panel to the Board Support Package (BSP) taking into
cons deration theframework driver structure provided by the
operating system. This application note assumes that the
reader is familiar with LTIB packages and Linux device
driver concepts.

The i.M X35 multimedia processor supports many display
types. The Image Processing Unit (1PU) handles the display
devices. Thismodule al so controlsgraphic interfaces such as
camerasand 2D graphicsacceleration. All 1PU sub-modules
are connected using a private DMA interface (IDMA). The
IDMA isused only for the IPU to transfer data between
sub-modules and also between IPU and the external
memory.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

[SEEN I

Contents

LCD Principles ... 2
Synchronous Display Interface 5
Display ConfigurationinLinux 22
References.............ot 52
RevisionHistoryot 52

freescale"

semiconductor

|
y

'
A

LCD Principles

Figure 1 shows afunctional diagram of IPU.

=7 IPU conial

Video o Camera Camera Memory MCU
Sources Interface Processing Interface

|

Image
Erharcernent | #—»{ IDMA

ﬂ' & Conversion
h J

sl &
. 7 Display Display
Displays Q < Interface Processing
AR

The selection of proper Liquid Crystal Display (LCD) in amobile device is a challenge and involves
conflicts in the requirements. The following are examples of such conflicts:

» Large amount of dataimplying high rate of data transfer and processing and requiring significant
resources.

* Flexibility to support a variety of use cases.

» Size, cost and power consumption.

¥

Figure 1. IPU Functional Diagram

Freescal€'s reference designs for thei.M X family demonstrate the functionality of the LCD, however
developers can find many reasons to replace the display in their products. Features such as screen size,
resolution, weight, power consumption and price are important in acommercial multimedia product.
Another important fact regarding LCD panelsisthat many displays become obsolete quickly. For this
reason, it may be hard to find the same LCD panel included in the reference design when the users are
creating their own product.

While some information would be useful for Smart Displays, this application note is intended only for
dumb displays and especially those which do not have a SHARP synchronous interface. Do not confuse
the SHARP LCD panels with the SHARP interface. Many SHARP LCD panels do not use the SHARP
interface.

1 LCD Principles

This section describes the principles of aLCD.

1.1 LCD Basics

A LCD isan electronic device which consists of an array of pixels of color or monochrome units. Every
element in the array consist of a special material, which allows them to change the characteristics of the

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

2 Freescale Semiconductor

LCD Principles

light that passes through them. These devices cannot emit light and because of this reason another element
called backlight is usually shipped with the panel to create afully functional display device.

111 Resolution

Resolution is the number of pixels contained in the LCD array. It has two dimensions: horizontal and
vertical. There are some standard resol utions available in the market that must be followed.

Some of the most common video resolution standards are shown in Table 1.
Table 1. Common Video Resolution Standards

Video Name Description Width Height Aspect Ratio
CGA Color Graphics Adaptor 320 200 8:5
QVGA Quarter VGA 320 240 4:3
VGA Video Graphics Array 640 480 4:3
NTSC National Television System Committee | 720 480 4:3
PAL Phase Alternating Line (TV) 720 576 4:3
WVGA Wide VGA 800 480 5:3
SVGA Super VGA 800 600 4:3
WSVGA Wide Super VGA 1024 600 —
XGA Extended Graphic Array 1024 768 4:3

There are many resolution standards, but as SVGA is the maximum standard resolution supported by the
i.M X35 processor, larger resolutions are not included in thistable.

All resolutions mentioned in Table 1 refer to alandscape orientation, which means that there are more
pixelsin the horizontal axis than the vertical. However, Portrait LCD panels are also available in the
market with the same standard resolution but the horizontal and vertical dimensions are inverted. In that
case, Portrait LCD panels have more vertical pixels than horizontal pixels.

Figure 2 shows the Portrait and L andscape orientation of the LCD panels.

& : f
o ® «;
freescale® freesca!e

Enabled

Figure 2. Portrait and Landscape Orientation

Selecting aproper LCD orientation isimportant, because both el ectronic and optical featuresare optimized
for applications that use the native orientation of the panel. Besides the optical characteristics, dumb
displays include an embedded L CD controller, and the chip draws the pixels from left to right and al'so

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 3

LCD Principles

from top to bottom. In some scenarios, images or L CDs are shown using a nonnative orientation. In that
case, display contents should be preprocessed to create abuffer where the image iswritten with the purpose
of matching the way (order) in which the LCD controller expects to receive the pixel information. This
operation is called rotation and i.MX35 includes hardware to perform it. It is recommended to select an
LCD panel which can work using the native orientation, to avoid image processing overhead.

Figure 3 shows both portrait and Landscape L CD panels displaying images in a nonnative orientation.

abled

. ';:‘
’ &
o 2
&
freescale*

>
free_scafe'*

Figure 3. Rotated Frames on Portrait and Landscape Orientation

It isimportant to mention that rotation could be 90°, 180° or 270° (that is, it is not limited only to 90°).
Note that if such rotations are chosen, then each frame should be rotated before sending them for the

display.

1.1.11 Size

The size of an LCD panel isusually measured diagonally in inches, from corner to corner. When choosing
between aVGA (640 x 480) panel and aQV GA (320 x 240) panel, one could expect the VGA panel to be
of alarger size asit has more pixels (four time as many), but thisis not always the case. LCD
manufacturing processes allow size and resolution to be independent variables; it is hard to determine the
size of apanel only from its resolution. Screens that are lager in size consume more power than smaller
ones and they also impact the size and weight of the final product. On the other hand, high resolutions on
small LCD screens can complicatethevisibility of on-screen objectsfor thefinal user. Sometimesitishard
to determine how well a particular LCD panel | fitsin an application based only on the information from
the datasheet.

1.1.1.2 Color Spaces

A color space is used to represent colors. There are two main color spaces, RGB (that is, RGB565,
RGB888, RGBAS8888) and YUV (thatis, YUV 4:4:4, YUV 4:2:2, YUV 4:2:0). Thei.MX35 supports both
the color spaces.

NOTE
Display panels can receive only data using the RGB color space.

1.2 LCD Types

This section describes the various LCD types.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

4 Freescale Semiconductor

Synchronous Display Interface

1.2.1 Synchronous Panel (Dumb Display)

Dumb display or synchronous display standsfor panelswhich require the system to send continuous frame
data. Therefreshisdone by sending all pixelsthat compose afull frame, for every singleframe. In general,
smart displays are more expensive than dumb displays, and that is one of the reasons why it is more
common to use synchronous (dumb) panelsin afinal product. This application note focusseson Thin Film
Transistor Liquid Crystal Display (TFT) whichisa particular group of synchronous panels.

1.2.1.1 Asynchronous Panel (Smart Displays)

The advantage of Smart displaysisthat thei.MX35 only has to send display data when the image has
changed, and most of the times, it can send only the data for the portion of the image that has changed.
Images can be sent at any time and the embedded Smart LCD display controller handlesthe screen refresh.
The i.M X35 processor can handle up to three asynchronous displays simultaneously and can handle
synchronousinterface at the same time. This means that if the application requirestwo LCD panels, then
one of them must use an asynchronous interface.

2 Synchronous Display Interface

Thei.MX35 Synchronous Display controller can be configured to handle the following four different types
of devices:

* TFT monochrome
* TFT color
* YUV progressive
* YUV interlaced
This document focuses only on the Synchronous TFT Color interface. For these cases, i.M X35 providesa

28-line interface which is described in Table 2.
Table 2. 28-Line Interface

Signal IPU Signal Description
HSYNC DISPB_D3_HSYNC Horizontal Synchronization
VSYNC DISPB_D3_VSYNC Vertical Synchronization
DRDY DISPB_D3_DRDY Data Enable or Data Ready
PIXCLK DISPB_D3_CLK Pixel Clock
Red Data [7:0] DISPB_DATA[23:16] Pixel Red component
Green Data[7:0] | DISPB_DATA[15:8] Pixel Green Component
Blue Data [7:0] DISPB_DATA[7:0] Pixel Blue Component

The definitions of the signalsreferred in Table 2 are as follows:

HSYNC Horizontal synchronization signal, also known as FPLINE or LP, indicates
to the LCD that a line has ended and the following valid pixels are part of
the next line.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 5

Synchronous Display Interface

VSYNC Vertical synchronization signal, also known as FPFRAME, FLM, SPS or
TV. Whenthissignal isactive, it indicatesto the LCD that the current frame
has ended. The LCD display must then restart the line index to zero to draw
the next valid data in the first line of the panel.

DRDY When data ready (DRDY) or data enable (DE) is active, it indicates to the
LCD that the datain the RGB busis valid and must be latched (latching
happens using the PIXCLK signal). While data enable is active, every
PIXCLK pulse makesthe LCD draw apixel using the color described in the
RGB bus. Thewidth of this signal should store all pixels (that is, aslong as
the sum of all pixel clock cyclesarein asingleline).

PIXCLK Pixel clock signal specifies when RGB datais placed on the bus. There are
two possibilities. The first option iswhen data is written by i.MX35 to the
RGB busonfalling edges. In this case, datais stable and ready to belatched
by the LCD panel on the rising edges, aslong as data enable is active. This
behavior corresponds to a high PIXCLK polarity. The second option is
called low PIXCLK polarity and it means that i.MX35 writes RGB datain
rising edges, and the data are latched by the LCD panel on the falling edges.

RGB Data Thei.MX35 can internally use different bit depths per pixel, such as
RGB565, RGB666, RGB888, RGBA8888 and so on. In the same manner,
the display interface could be configured to support more than one color
depth. The 1.M X35 processors can use up to 24 data lines (RGB888) as
display interface bus. If the color depth used internally is bigger than the
display interface, then aRGB to RGB conversion is performed where least
significant bits are removed from the pixel, and the remaining bits are sent
directly to thedisplay interface. Dithering or filter actions are not performed
during this process. The remaining RGB data lines can be used for other
purposes including GPIO.

2.1 Extra Signals

There are also some other lines that are usually included on the panel interface. These signals are not part
of the 28-line display interface, but they are required for afully functional module. For example, itis
common for some panelsto have areset signal, aswell asinitialization commands. These commands are
usually sent through a serial interface such as 1°C or SPI. Display panels sometimes have touch panels
embedded in them and have a backlight source, which requires additional signals.

2.2 SPI Interface

Some LCD displays require an initialization routine through a serial interface, 3-wire, 4-wire, or 5-wire.
Even when thei.M X35 IPU has aserial interface (SD_D_CLK, SD_D 10 and SD_D _1), thisinterface
should not be used to send serial commandsto the LCDs. Thisinterfaceisnot intended for general purpose
usage, instead, it isused only by the IPU when the Asynchronous Display1 or Display?2 are configured to
use seria interface.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

6 Freescale Semiconductor

Synchronous Display Interface

2.3 Synchronous Display Interface Examples

Some of the examples of a synchronous display interfaces are described in the following sections.

2.3.1 i.MX35 PDK Chunghwa 5.7" VGA LCD Interface
Figure 4 shows an interface between i.MX 35 and Chunghwa CLAA057VAO1CTV GA Panel.

DISPE_DATA[7:12] RO-R&
DISPE_DATA[1 6] GO-G5 RGEGGE B0
DISPE_DATALS:0] BD-B5
RGEAGH
DISPE_D2_WS¥NC YETNE
DISPE_D3_HEYNC HEYNC
Chunghwa
DISPE_O2_CLE DCLE ke
DISPE_D3_OROY DE 450
MCIM33S
LR
i (1]
GHD :
Backlight Touch Panel
ADJ s owz| wi] vz
Contrast | DISPB_CONTRAST
[2C_CLE
- hAC 13602
12C_DATA ATLAS LITE

Figure 4. LCD Interface Between i.MX35 and Chunghwa CLAA057VA01CTVGA Panel

Asshown Figure 4, the LCD panel requiresHSYNC, VSYNC, DE, PIXCLK and the complete RGB data
interface (DISPB_DATA[17:0]). Additional signalssuch as RESET signal or seria interfaceinitialization
routine commands (SPI or 12C) are not required. The backlight unit is controlled by using a PWM signal
generated by thei.M X35 (Contrast). The touch panel interface is handled by the MC13892 ATLASLITE
chip.
NOTE
Touch Panel functionality is not covered in this application note.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 7

Synchronous Display Interface

Each panel hasits own interface and requirements, but in general terms, Figure 4 illustrates a typical
synchronous panel interface. Determining the typicality of LCD panelsis difficult, but the idea shown in
Figure 4 can be used as a base for panel interface. The base interface ideais useful when there are many
panels which do not use the compl ete interface. For example, some panels do not require HSYNC or
VSYNC signa, or neither of them. Only DRDY, PIXCLK and RGB data are used. Also, many panels do
not require a RESET signal or a serial initialization routine to handle display signals. When there is no
seria interface, thetiming, signals, porches and polarities are specified (fixed). The panels expect that the
microprocessors complies with these waveforms, as such panels cannot handle a different interface.

2.3.2 i.MX35 PDK Chunghwa CLAAQ70VCO01 7" WVGA LCD Interface
Figure 5 shows a L CD interface between i.M X35 and Chunghwa CLAAQ70V CO1CWV GA Pandl.

DISPE_OATA[7:12] RO-RS

DISPB_DATA[1:6] G0-G5 R GEGEE 200
DISPB_DATAS:D] BO-BS
R GBGGE
CHUMGHinin,
OISPE_DO3_CLE OCLE CLARADT OVCOT 420
MC M35 DISPBE_DS_OROY DE

DISPB_CONTRAST A0
Contrast Brightness control for LED B/L

Figure 5. LCD Interface between i.MX35 and Chunghwa CLAA070VC01 WVGA Panel

This LCD is shipped with the i.M X35 PDK, and it shows a very simple display interface where HSYNC
and VSYNC signals are not used. Both HSYNC and VSY NC can be used for other purposes, including
GPIO.

The SPI interface is not required as there is also a Chip Select (CSPI1_SS2) available for other devices.
Additionally, the power booster for the backlight unit isincluded in the modul e, which meansthat Contrast
signal isdirectly connected to the Display connector. This display module does not include a touch panel,
S0 it is necessary to add an external touch screen to the LCD panel.

In Figure 5 asin the previous 5.7" VGA LCD interface, only 18 RGB data lines are required,
DISPB_DATA[17:0]. Theremaining RGB datalinesDISPB_DATA[23:18] can be used for other purposes
such as GPIO or any other alternate function that each pin can perform.

Another drawback of this module is, the display cannot be turned off, since it does not have aRESET
signal or SPI interface. Thisfeatureis particularly important for mobile devices where power consumption
isanissue. If the energy used by the LCD has to be controlled, then external circuits should be used to
control the energy. In case of PDK, power ON/OFF settings are handled by an external 8-bit
Microprocessor driven by the i.MX35 through an I%C bus.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

8 Freescale Semiconductor

Synchronous Display Interface

Based on the above observations, the complete LCD circuit for the i.M X35 PDK system |ooks as shown
in Figure 6.

DISPE_DATA[7:12] RO-RS

DI5PB_DATA[1:6] G0-G5 R GHEG6G 200
DI5PB_DATALS:0] BO-B5
F: (G BEGG
CHUNGHW
DI5PBE_D3_CLE OCLE CLAAOTONCOY 430
DISPBE_D3_ORDY OE
eSS External Touch Pamel
DISPE_CONTRAST ADJ
Contrast Brightniess control for LED BYL WCT
YO MO W1 ¥
I2C_CLE
MC13892
|2C_DATA ATLAS LITE
12C1_CLKE Pawer Enable MDSEET
1201 DATA hAC8 508 D250

Figure 6. LCD Interface Between i.MX35 and Chunghwa CLAA070VC01VWGA Panel + Touch Panel

The previous examples can be helpful for selecting an LCD display, to determine the advantages and
disadvantages of a particular panel.

2.4 Synchronous Display Timing and Signals

This section describesthetiming and signal waveformsfor configuring theminthe LCD panel andi.M X35
Display interface. Before selecting a LCD panel, refer the datasheet. This datasheet must show the pin
interface, the initialization routine, and the timing charts for the RGB interface as well as the serial
interface, if needed. Sometimes, a shorter version of the datasheet is also received, where not all
information is given. In such situations, request the full documentation from the supplier. Many times, the
document is received with a big watermark in every pagetelling that it is a preliminary datasheet, and
having the final version is recommended.

NOTE

There are not many modifications between a preliminary version of LCD
datasheet and the final version.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 9

Synchronous Display Interface

2.4.1 Timing Concepts

The timing concepts that form the basisfor LCD timing are explained below:

Horizontal Back Porch (HBP)Number of PIXCLK pulses between HSY NC signal and thefirst valid pixel
data.

Horizontal Front Porch (HFP)Number of PIXCLK between last valid pixel data in the line and the next
HSYNC pulse.

Vertical Back Porch (VBP) Number of lines (HSYNC pulses) from when aVSYNC signal is asserted
and the first valid line.

Vertical Front Porch (VFP) Number of lines (HSYNC pulses) between last valid line of the frame and

the next VSYNC Pulse.

VSYNC pulse width Number of HSYNC pulses when aVSY NC signal is active.

HSY NC pulse width Number of PIXCLK pulseswhen a HSYNC signal is active.

Active Frame width The Horizontal Resolution, which means the number of pixelsin oneline.
For example, for aWV GA display (800H x 480V), the frame width isequal
to 800 pixels.

Active Frame Height The Vertical Resolution of the LCD, using the same WV GA (800H x 480V)
for example, the value of the frame height is 480 lines.

Screen Width Number of pixel clock periods between the last HSY NC and the new

HSYNC. So, this value includes the valid pixels and a so the Horizontal
Back and Front porches.

SCREEN_WIDTH = ACTIVE_FRAME_WIDTH + HBP + HFP Eqn. 1

Screen Height Number of linesbetween VSY NC pulses. Itincludesall valid linesand aso
the Vertical, Back and Front porch.

SCREEN_HEIGHT = ACTIVE_FRAME_HEIGHT + VBP + VFP Eqn. 2

VSYNC polarity It isthe value that VSY NC takesto indicate the starting of a new frame. It
can be ACTIVE LOW when valueis0 or ACTIVE HIGH wheniitis 1.

HSYNC polarity It isthe value which the HSY NC takes to indicate the starting of anew line.
It can be ACTIVE LOW when valueis0 or ACTIVE HIGH wheniitis 1

24.2 Timing Charts

This section reviews the following charts to clarify the timing issuesin aLCD interface. Any datasheet
should include this kind of information. In general, three different charts are available as given below:
» Thefirst one should cover the vertical timing.
» The second one specifies the horizontal timing.
* A third one with the pixel clock characteristics.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

10 Freescale Semiconductor

Synchronous Display Interface

Additionally, if the display uses a serial interface, then a chart describing the serial interface and RESET
isavailable. Thisinformation must be extracted from the datasheet when support for a new LCD panel
should be added to a BSP. For example, when aVGA (640H x 480V) LCD panel is used instead of a
Chunghwa CLAAO57VAOLCT, see Figure 5, then the display uses complete RGB interface: RGB666,
VSYNC, HSYNC, Data Enable and Pixel clock.

2.4.2.1 Vertical Timing

Vertical Timing can be categorized as VGA vertical timing and WV GA vertical timing. These vertical
timings are discussed in the following sections.

3.4.2.1.1 VGA Vertical Timing
Figure 7 shows vertical timing chart for a hypothetic synchronous display VGA (640H x 480V).

F 9

SCREEM HEIGHT = 420 + 8P +/FP =I

WS HC width
WEYHNC polarty = LOWY ACTIWE

\
wnie | | iy

HSYHC

Data Enable polarty = POSITIVE ‘
i e

i
OE 1

Iq_ WHP [Lines) —je —— WEFP [Lines) _pl
RIN[E:0]
GIM[E:0]

BIN[S0]

Line Line Line Line Line Line Lne Lne Lnoe
1 z 3 4 476 477 478 479 480

& ACTIWVE FRAME HEIGHT =480 —

Figure 7. VGA Vertical Timing Example

It isimportant to mention how signals appear during aV SYNC period. The VSYNC period involves a
complete frame cycle. Every pixel of each line in the frame is sent to the panel during this period. The
beginning of the frame is asserted by the VSYNC signal (in this case, when the signal goeslow). Then,
HSY NC immediately marks the beginning of thefirst line (in thisexample, it iswhen HSY NC goeslow).
But, in order to meet the LCD timing requirements, thefirst lines are designated for the VBP. During VBP,
data enable signal is not present, and the pixel data on the bus during these linesisignored by the panel.
After VBP, DE signal appears inside the boundaries of the HSY NC period. Detailsabout DE during aline
cycle are described in the next section. DE appears consequently during all valid lines (Vertical resolution

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 11

Synchronous Display Interface

=480V). During thistime (ACTIVE FRAME HEIGHT), the LCD panel latchesthe RGB dataon all lines
and drawsit on the screen. Thefinal stagein theframecycleisthe VFP, where extralines (HSY NC cycles)
appear. During thistime, DE remains inactive and again the panel discards any information on the RGB
bus. The frame ends when VSY NC signal is asserted again (goes low).

Along with the chart, a table showing the range of the timing parameters can be seen as shown in Table 3.
Table 3. Timing Parameters Range

Parameter Symbol Min Type Max Unit
Screen Height or Vertical period | VP 515 525 560 Line
VSYNC pulse width VSW 1 1 1 Line
Vertical Back Porch+VSYNC VBP 34 34 34 Line
Vertical Front Porch VFP 1 11 46 Line
Active Frame Height VDISP — 480 — Line
Vertical refresh rate FV 55 60 65 Hz

From the above table, the timing features can be verified. In the first waveform, it is shown that VSYNC
polarity is ACTIVE LOW, which means that vertical synchronization is normally high, but goes low to
indicate the beginning of the new frame. Another feature that can be checked isthe VSY NC width (VSW).
Timing has certain flexibilities, so timing could be set using more than one value. It is highly
recommended to use the typical values, or any values close to them, so use one line as VSY NC width.

VBP and VFP are also shown. Note that these values are measured in Lines or which translatesin HSYNC
pulses. In thisexample, VBP could be 34 lines, and VFPis 11 lineswide. Also note that VSYNC widthis
included into the VBP stage. This means that VBP starts when VSYNC is asserted, and not when the
VSYNC returnsto the normal state. Using the values described above, the Screen height or Vertical cycle
is525 lines. In some cases, the value of the VBP and VFPis not given in lines; instead it is expressed in
nanoseconds or milliseconds. In such cases, additional cal culations have to be done to find the number of
lines needed to meet those timings.

3.4.2.1.2 WVGA Vertical Timing

If an LCD panel like the hypothetical WV GA (800H x 480V) shown in Figure 6 and Figure 7, where
HSYNC and VSYNC signals are not used, then the waveforms should be analyzed using another
perspective.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

12 Freescale Semiconductor

Figure 8 shows an example of WV GA Vertical timing.

F

SCREEM HEIGHT (WF) = 420 + WBE

L 4

Synchronous Display Interface

e PCTIVE SCREEM HEIGHT QWDIEP) = 480 g
— VHK — “ VEE

DE
RIM[&:0]
GIN[0] _| | B
BIN[50] Line Line Lne Lne Line Lne Line Lne Line

0 1z 3 AT 472 479 430 1
DCLE

Figure 8. WVGA Vertical Timing Example

Table 4 shows the range of timing parameters.

Table 4. Timing Parameters Range

Parameter Symbol Min Type Max Unit
Screen Height or Vertical Cycle |VP 90 500 520 Line
Vertical Blank VBK 10 20 40 Line
Active Frame Height VDISP 480 480 480 Line
Vertical Refresh Rate FV 55 60 65 Hz

In such cases, VSY NC width, VSYNC polarity, VBP and VFP are not given in the chart. Even when

VSYNC isnot used, thevaluesarerequired to be configured thei.M X35 Display Interface. Thiswaveform
can be used to understand vertical cycle behavior. For thei.M X35, the sequence remainsthe same: vertical
cycle starts with the VSYNC signal, and then the rest of the VBP follows, then the active frame area, and

finally the VFP appears, until the next VSYNC is asserted.
The VSYNC width, VBP and VFP can be found out based on the events occurring during the Vertical

Blank Period.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor

13

3
4

y
A

Synchronous Display Interface

Figure 9 shows an example of WV GA vertical timing.

4— SCREEN HEIGHT (WP)= 480 + WVEP +%FP

— “wHP |q_ — “HP |-|_

Imaginary J‘\\ J
WEYHE Imaginary W5 NC polarty = ACTIWE LOWY Imaginary %5 NC width
— -— —p WFF —
WFP
g WK g VBK
DE
RIN[5:0]
GIM[E:0] __| o
BIM[5:0] Line Line Lne Lne Line Lne Lne Lne Line

420 1 2 3 477 472 479 420 1

DCLE

Figure 9. WVGA Vertical Timing Example with VSYNC Signals

The VSYNC signal can be used as abase to calculate the VFP and VBP. Since it is nhot used, any polarity
can be set. However, setting VSYNC as ACTIVE LOW isrecommended. VSY NC width is not strict
either, but in these cases VSYNC is usually one line long (VSW=1). Now, to find VBP and VFR, it is
important to not that the goal isto meet the Vertical Blank period, so the VBK period can be split into two
parts. Thefirst part isfor the VFPR, before VSYNC is asserted and the other part isfor the VBP, including
VSYNC. The sum of these values must be equal to the VBK period. Here any division works, but, leave
animaginary VSY NC in the middle of the Blank Period. This means that both VBP and VFP should be
equal or almost equal .

Using this example and considering that VBK is 20 lines (typical), VBP+V SYNC could be 10 lines (and
equal to VFP). Based on the information described above, vertical timing table is created as shown in
Table 5.

Table 5. Vertical Timing Table

Parameter Symbol Min Type Max Unit
Screen Height or Vertical cycle | VP 490 500 520 Line
VSYNC Pulse Width VSW 1 1 1 Line
Vertical Back Porch+VSYNC VBP 1 10 40 Line
Vertical Front Porch VFP 0 10 39 Line
Vertical Blank VBK 10 20 40 Line

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

14 Freescale Semiconductor

Synchronous Display Interface

Table 5. Vertical Timing Table (continued)

Parameter Symbol Min Type Max Unit
Active Frame Height VDISP 480 480 480 Line
Vertical refresh rate FV 55 60 65 Hz

2.4.2.2 Horizontal Timing

Horizontal Timing can be categorized as VGA horizontal timing and WV GA horizontal timing. These
horizontal timing are discussed in the following sections.

3.4.2.2.1 VGA Horizontal Timing
Figure 10 shows an example of line period datasheet chart.

g SCREEN WIDOTH (Horizontal cycle) = G40 + HBP + HFP

A

"l

HS YN width

HE ¥ NC polarity = LOWW ACTIVE

\
o]| I)

Oata Enable polarty = POSITIVE

- ~

.

PIKCLE
].q- HEP (pixels] —p t}—— HFP (pixels]) —pl
RIM[E:0]
GIM[5:0]
BIM[S:0]
Pixel Pixel Pixel Pixel Pixel Pixel Pimel Pixel Pixel
1 2] 4 G36 637 G238 639 640

Figure 10. VGA Horizontal Timing Example

Theline cycle beginswhen HSY NC is asserted, in this case when the signal goes|ow, then the HBP stage
continues. During this time, the Data Enable signal remains inactive. After that the horizontal active area
(ACTIVE FRAME WIDTH) begins. This stage starts when data enable is asserted. Because in this case,
DE is active high, it starts when DE signal goes high. While DE is active, the panel latches the RGB data
placed on the bus and draw anew pixel on the screen -in the current line-, for every pixel clock pulse. Data
enable width is always equal to the horizontal resolution of the panel. In this example DE is 640 pixels
long. After the active area, the HFP occurs, by thistime, DE isinactive again and all the pixelsin theline
have been drawn. The line cycle ends when the new HSY NC pulse is asserted.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 15

Synchronous Display Interface

Similar to vertical timing, Table 6 shows horizontal timing characteristics (PIXCLK refersto pixel clock
pulses).
Table 6. Horizontal Timing Characteristics

Parameter Symbol Min Type Max Unit
Screen Width or Horizontal cycle HP 750 800 900 PIXCLK
HSYNC Pulse width HSW 1 1 1 PIXCLK
Horizontal Back Porch+HSYNC HBP 46 46 46 PIXCLK
Horizontal Front Porch HFP 64 114 214 PIXCLK
Active Frame Width HDISP — 640 — PIXCLK

3.4.2.2.2 WVGA Horizontal Timing

The chart and table available for the WV GA (800H x 480V) datasheet is similar to the one shown in
Figure 11.

14_ SCREEN WIDTH (HFY= 800 + HBK = ool

——p| ACTIVE SCREEM WIDTH (HOISP) = 300 lg—
——— HEK —p —— HBK —p

DE

RIM[E0]

GINGD] | |

BIM[E:0] Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel
aoo 1 2 3 TAF7 Ta4E TO9 300 1

DCLE

Figure 11. WVGA Horizontal Timing Example

Table 7 shows the WV GA horizontal timing.
Table 7. WVGA Horizontal Timing

Parameter Symbol Min Type Max Unit
Screen Width or Horizontal cycle HP 850 900 950 PIXCLK
Horizontal Blank Period HBK 50 100 150 PIXCLK
Active Frame Width HDISP 800 800 800 PIXCLK

The approach followed in WV GA vertical timing section should be followed here to calculate HYNC
width, HBP and HFP. See Section, “3.4.2.1.2 WV GA Vertical Timing,” for information on WVGA
Vertical timing.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

16 Freescale Semiconductor

b -

The imaginary HSYNC signal issimilar as shown in Figure 12.

—»

g

HEF 117

SCREEMN WIDTH (WF) = 800 + HBP + HFF

ACTIVE SCREEN
WADTH (HOISP) = 200

—

E—

Synchronous Display Interface

HEP]4_

Imaginary HEYHNC /_'.I_l

HSYHC Palarty = ACTIVE LOWE

-—

DE

HBE

— N\

DE iz active HIGH

RIM[5:0] TP
BIM[5:0]

Pixel
200

Pixel Pixel Pixel
1 2 3

Pixel Pisel Pixel Pisel
Yo7 798 TO9 800

DCLE

Figure 12. WVGA Horizontal Timing Example with Imaginary HSYNC Signals

Table 8 showsthe WV GA horizontal timing.
Table 8. WVGA Horizontal Timing

Parameter Symbol Min Type Max Unit
Screen Width or Horizontal cycle |HP 850 900 950 PIXCLK
HSYNC Width HSW 1 1 1 PIXCLK
Horizontal Back Porch+HSYNC HBP 1 50 150 PIXCLK
Horizontal Front Porch HFP 0 50 149 PIXCLK
Horizontal Blank Period HBK 50 100 150 PIXCLK
Active Frame Width HDISP 800 800 800 PIXCLK

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor

17

Synchronous Display Interface

24.2.3 Pixel Clock Timing
The VGA, WV GA pixel clock timings and the data polarity are explained in the following sections.

3.4.2.3.1 VGA Pixel Clock Timing

Pixel clock waveform characteristics in the datasheet is similar to the one shown in Figure 13.

RIN[ED]

E:rﬁ[[ﬁﬁ::nn]] Irrealid Data Pixel 1 Pixel 2 Pixel 3

Figure 13. VGA Pixel Clock Timing Example

Table 9 shows the pixel clock frequency parameter.
Table 9. Pixel Clock Frequency Parameter

Parameter Symbol Min Type Max Unit

Pixel Clock Frequency |PCLK 23 25 30 MHz

Pixel clock frequency is directly related with the frame refresh rate. Also, it isimportant as it determines
when RGB datais latched by the panel. Thisis significant because i.M X35 prepares the data one edge
before the LCD panel latches the datafrom the bus. A similar chart isusually included in the datasheet. In
thiscase, dataislatched by the LCD panel on DCLK rising edges, soi.M X35 should be configured towrite
the RGB datato the bus on the (previous) falling edge. In this manner, the datais ready and stable when
the LCD panel readsit. This waveform in Figure 13 shows the typical inverse clock polarity. Clock
polarity isset in the DI_DISP_SIG_POL i.MX35 register, under the D3_CLK_POL bit-field.

NOTE

The maximum display clock rate cannot be greater than aquarter of the high
speed processing clock rate.

TheHSP_CLK inthei.M X35 PDK BSPis 133 MHz, so the maximum pixel clock is133MHz/4=33.25
MHz. However, most LCD displays can work with lower frequencies than the typical values.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

18 Freescale Semiconductor

Synchronous Display Interface

3.4.2.3.2 WVGA Pixel Clock Timing

The pixel clock chart is similar to the one shown in Figure 14.

DCLE

DE

RIN[ED]

EIIH[[ﬁﬁ::IIJJ]] Irrealid Data Pimel 1 Pixel 2 Pixel 3

Figure 14. WVGA Pixel Clock Timing Example

Table 10 shows Pixel Clock Frequency Parameter.
Table 10. Pixel Clock Frequency Parameter

Parameter Symbol Min Type Max Unit

Pixel Clock Frequency |PCLK 25 27 32 MHz

In contrast to the VGA panel, the WV GA display latches RGB data on DCLK falling edges, so i.M X35
should be configured to write the RGB data to the bus on therising edge. The dataisready and stable when
the panel readsit. The waveform in Figure 14 shows the straight clock polarity.

3.4.2.3.3 Data Polarity

The Data Polarity feature isthe value of the active signalsin the RGB buswhich the LCD recognizes. For
example, consider that i.MX35 istrying to draw ared pixel (only red component), using an RGB565
interface and the LCD uses straight polarity of the value in the bus would be 0xF800. Then it means that
all Red hitsarein high and other bits arein low. However, if the LCD utilizes inverse Data Polarity, the
value would be 0x07FF, which means Red bitsare in low and other bits are in high. Both values represent
thered color, and the difference in the value is caused by the data polarity onthe LCD panel. Thisfeature
is configured using the D3_DATA_POL bit-field onthe DI_DISP_SIG_POL i.MX35 register.

243 Custom LCD Timing

The examples given in this application note does not require extrasignalsfor LCD functionality. But if the
LCD requiresa RESET signal or initialization routine through a synchronous serial interface, then a
similar chart as shown in Figure 17 can be found.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 19

Synchronous Display Interface

2.4.3.1 Reset
The Reset and Serial Command interface are explained in the following sections.

3.4.3.1.1 Reset

Many L CD panelsinclude an L CD controller which requires an external systemreset. If the LCD mentions
the signal usage, then the timing required for this pulse should be found out.

Figure 15 shows an example of Reset signal.

—»] TRR ’q—
l4 TR WH
HRESET /
WL

Figure 15. Reset Signal Example

L 2

Table 11 shows the Reset parameters.
Table 11. Reset Parameters

Parameter Symbol Min Type Max Unit
Reset Width TRW 15 — — ns
Reset Rising time TRR — — 10 ns

Based on the above chart, the important fact that can be observed isthat the RESET signal isACTIVE
LOW. It means RESET signal must be in high during normal operation, and also that it must be LOW for
at least 15 nsto ensure that it was avalid reset. This waveform restricts the rising time of the signal to 10
ns. For this reason, it is recommended not to use a RC circuit to provide this signal. Generally thispin
would be driven by ani.MX35 GPIO.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

20 Freescale Semiconductor

Synchronous Display Interface

3.4.3.1.2 Serial Command Interface

When aL CD panel hasa serial command interface, then a chart similar to the one shown in Figure 16 has
to be included in the datasheet.

I [
it

DOIN

A C7 CAE CF C4 C3 CX C1 Co A P? PG P5 P4 P3 P F1 PO

—p 0 fg—o Command - y— Parameter —— g

Figure 16. SPI Command Interface Sighal Example

Although it isimportant to understand how to initialize LCD, this application note does not review all
serial interfaces of the LCD.

The protocols and data format are described in the datasheet. The user should have prior knowledge in
using synchronous seria interfaces to program these settings. See Chapter 16: Configurable Serial
Periphera Interface (CSPI) of the MCIMX35 Multimedia Applications Processor Reference Manual for
more information.

2.5 LCD Panels Supported by the i.MX35

The i.M X35 processor supports up to four smultaneous displays handled by the Display controllers
DISPO, DISPL1, DISP2 and DISP3.

Table 12 shows the details of the display controllers.
Table 12. Display Controllers

Display Display Type Interface
DISPO Asynchronous Parallel Interface Only
DISP1 Asynchronous Serial and Parallel Interface
DISP2 Asynchronous Serial and Parallel Interface
DISP3 Asynchronous RGB Interface (HSYNC, VSYNC, PIXCLK, up to RGB888)

Only one of the LCD display controllers on the i.MX35 is synchronous (dumb display). This document
focusses on the DISP3 controller. Note that the DISP3 RGB interface is multiplexed with other
asynchronous parallel interfaces. It means that the data can be sent to a synchronous display (DISP3) and
also to another parallel display device at the same time. But, the i.M X35 sends data to the asynchronous
panel (smart display) while the synchronousinterface isinactive (during Horizontal and vertical back and

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 21

Display Configuration in Linux

front porches). Asaresult, the frame rate of smart displays can be affected when multiple displays are
attached to the i.M X35.

The synchronous LCD interface on thei.MX35isvery flexible. It can handle many types of LCD devices,
as long as these devices have the following characteristics.

» Synchronous Display (Dumb Display).

* RGB interface (RGB888 maximum).

* Resolution upto SVGA.

» Utilization of at |east data enable and pixel clock to latch RGB Data (some LCDs need HSYNC
and VSYNC signals also, which are aso supported by the i.MX35).

» Maximum pixel clock frequency of 33.25 MHz.

In addition, the i.M X35 can handle dumb displays with a SHARP interface, but its support is limited to
certain models. See Section 4.7.13.2 Interface to Sharp HR-TFT Panelsin i.MX35 (MCIMX35)
Multimedia Applications Processor s datasheet for information regarding the timing restrictions.

Asthisapplication noteis only intended for nonsharp dumb displays, smart displays and SHARP displays
interfaces are not covered.

3 Display Configuration in Linux

This section describes how to add anew panel to Linux. It also describesthe general display infrastructure
in Linux and analyzesthe i.MX family implementation.

3.1 Linux Framebuffer

The framebuffer device provides an abstraction for the graphics driver. It represents the frame buffer of
some video hardware, and allows application software to access the graphic hardware through a
well-defined interface. The advantage is that the software does not need to know anything about the
low-level interface.

The framebuffer is a concept related to the video controller for a graphics display. The framebuffer isa
memory buffer for the video controller that contains adata frame. This data frame is shown as an
information on the display. Theinformation provided to the frameisbasically, color valuesfor each pixel.

Some of the advantages of the Framebuffer infrastructure are its ease-of -use and the user applications can
access video memory directly (using mmap). As Framebuffer isimplemented as a character device, user
applications can interface with the device using common system callssuch asopen() , read() ,wite() and
ioct1 (). All these functions are part of the file operations interface that every character device should
contain.

However, the framebuffer has the advantage of mmap() . Thisfunction, by definition, mapsfiles or devices
to program memory. Inthis case, the video buffer areaistheresource that is mapped. So, the user can apply
mmep() to get the user space memory equivaent of the hardware video frame buffer.

Theresult isthat the user gets apointer to the framebuffer memory and the changes made to this memory
is reflected on the display.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

22 Freescale Semiconductor

Display Configuration in Linux

A similar procedure can be doneusingwite() and seek() operations. However, this procedure istime
consuming, as these functions may need to be called several times to cover a particular area of the
framebuffer, or the whole display area.

3.1.1 Linux Framebuffer Structures

The Framebuffer in Linux providesaset of structures (some of which are used for user-space applications)
that are important elements to be taken into consideration while developing anew panel driver.

The important data structures are:
» fb_fix_screeninfo

« fb_bitfield
o fb_ops
» fb_info

» fb_videomode

These definitions are available in thefile.. . /i ncl ude/ 1'i nux/ f b. h. In the following paragraphs, these
structures are briefly described. See . . . /i ncl ude/ 1'i nux/ f b. h file for more information and definition of
each structure.

struct fb_fix_screeninfo Thisstructure containsthe fixed parametersfor the graphics card/controller.
One of these fixed parameters is the start of the framebuffer memory
(unsigned long smem_start). Thisstructure can be used in user applications.
Other important elements are:

_u32 snem.len: Length of the franmebuffer nmenory.
__u32 type: Pixel fornat

struct fb_var_screeninfo This structure contains the parameters for the graphics card/controller that
can be modified. These are the features that the user configures such as
resolution, number of bits per pixel (__u32 bits_per_pixel). It also contains
astructure that defines the length and bit offset for each color (struct
fb_bitfield). Thisstructure can be used in user applications. Other important
elements are:

_u32 xres: Visible resolution in x

_u32 yres: Visible resolution iny

_u32 xoffset: Ofset fromvirtual to visible in x axis.

__u32 yoffset: Ofset fromvirtual to visible iny axis.

struct fb_bitfield <color> Color bitfields for red, green, blue and
transparency (four of these are declared).

struct fb_bitfield This structures contain the details of each color in apixel. Thefieldsarethe
offset (beginning of a bitfield __ u32 offset) the length (__u32 length) and
the most significant bit flag. One of these structures is declared for each
color (red, green, blue and transparency) inside fb_var_screeninfo.
struct fb_bitfield <color> {
__u32 offset; /* beginning of bitfield*/

_u32 length;/* length of bitfield*/
_u32 neb_right;/* '=0: Mst significant bit is */

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 23

Display Configuration in Linux

/[* right */
i

For example, in a configuration where the mode is RGB888, the pixel width is 3 bytes. This means:

red.legth= 8 - red. offset= 24
green.length= 8 - green.offset = 16
blue.l ength= 8 - blue.offset = 8

struct fb_ops This structure contains function pointers to framebuffer operations. The
operations range from basic or common functionsfor adriver, such asopen
and release, to functions oriented to the parameter settings or ioctl calls.
Some of the functions are:

int (*fb_open)(struct fb_info *info, int user)

The operation for opening afb device that is passed as an argument to a
fb_info structure pointer.

int (*fb_set_par)(struct fb_info *info)

The operation for setting the video mode and other parameters, according to
the content of the var (fb_var_screeninfo) element from the fb_info
structure pointer that is passed as an argument.

int (*fb_blank)(int blank, struct fb_info *info)

The operation to blank the display, passed as an argument to an fb_info
structure pointer.

int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,unsigned long arg)

The function for input output operations such as performing request of
structure values, or configuring structure values passed as an argument to a
fb_info structure pointer and a command to perform.

int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma)

The operation for executing mmap instruction passed as an argument to a
fb_info structure pointer and a pointer to a virtual memory area struct.

struct fb_videomode This structure is used when the user wants to add support for anew panel.
This structure gives specific information about the new panel such as name,
resolution, pixel clock, timings for synchronization, margins and other
variablesthat were described in previous sections, regarding LCD timings.
The structure filling is described in the panel sections.

struct fb_videonode {
const char *name;/* optional */
u32 refresh;/* optional */
u32 xres;

u32 yres;

u32 pixcl ock;

u32 left_margin;

u32 right_margin;

u32 upper _mar gi n;

u32 | ower _mar gi n;

u32 hsync_| en;

u32 vsync_| en;

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

24 Freescale Semiconductor

Display Configuration in Linux

u32 sync;
u32 vnode;
u32 flag;

i
struct fb_info Thisis an important structure in the framebuffer framework. It is the place
where al the previously mentioned structures are declared. Other structures
and elements are also included, such as pointers to a device, to an event
gueue, or current display device specifications. It also contains structures
that are enabled depending on conditional building. For example, when the
support for backlight is enabled.

When aframebuffer driver getsregistered with thekernel, it makes use of apointer to thistype of structure,
containing the information (in several different structures) for the current specific hardware panel. This
structure isvisible only to the kernel.

struct fb_info {

struct fb_var_screeninfo var;/* Current var */
struct fb_fix_screeninfo fix;/* Current fix */
struct fb_nonspecs nonspecs;/* Current Monitor specs */
struct work_struct queue;/* Franmebuffer event queue */

struct fb_cmap cmap;/* Current cmap */
struct fb_videonode *node;/* current node */

struct fb_ops *fbops;
struct device *device;/* This is the parent */
struct device *dev;/* This is this fb device */

)
Framebuffer implementation is available in the following file:
.ldrivers/video/fbmemc

Thefollowing section, see Section 3.2, “Linux Framebuffer for i.MX,” describesthisfileand all thei.MX
framebuffer implementation sources. It also describes the important functions and structures and ageneral
flow chart for the initialization process.

Summarizing the framebuffer framework:

» For using the framework in user-space, the framebuffer deviceislike as dev/ mem (/ dev/f b* char
devi ce), SO file operations used for any character devices can be used (open, read, write, mmap).

* A good example of aframebuffer driver isthe virtual framebuffer that is located at
.l drivers/videol vfb. c. Thisimplementation follows some actions that should befollowed for the
development of any framebuffer driver like: filling the fix and var structures contained in the
fb_info structure targeted to the current panel; filling the file operations structure and then the
driver information for the fb_info structure. The following step isto initialize hardware and the
memory area, and finally the registration of the framebuffer driver using a pointer to the current
fb_info structure

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 25

Display Configuration in Linux

3.2 Linux Framebuffer for i.MX

The LCD driver and the framebuffer implementation for thei.MX family requires the framebuffer
framework. This framework is used to have hardware access ability and to create an abstraction layer for
the software, so it does not need to know about the low level.

Once the driver isloaded (if it was marked on the kernel configuration screen, under device drivers >>
graphics support), the hardware can be accessed using specia nodes (like any other character device) that
arelocated in the/ dev directory of the root. As mentioned earlier, the nodes are availablein / dev/ f b*.

The usage of the nodes (/ dev/ f b*) as an access mechanism allows someioctls to interact, set, or get
information from the device. Some of the ioctl functions are as follows:

* Request information such as name, organization, addresses, length.

* Request and change variable information about the hardware such as geometry, depth, color or
timing.

» Get and set parts.

The following section describes the i.MX framebuffer implementation that interacts with the generic
framebuffer driver. A general description of the initialization processis also provided and aflow chart that
shows the different stages of the framebuffer implementation is also provided.

3.2.1 Initialization Process

As any other driver initialization process, the framebuffer contains several sections. In each section,
specific functionsto initialize resources and probe or testing hardware are used. All filesthat are important
part of the framebuffer startup should initialize and pass through the binding process. Therefore, functions
likeinit and probe are described constantly, because these functions consume most of the time during the
fb startup.

Kernel Start up (mx35_3Stack.c)

The initialization process of the framebuffer starts early, when the kernel
calls the functions associated with the configuration of the board (in this
case, the i.M X35 3-Stack Board). Thisfunction, called mxc_board _init, is
basically theinitialization of theimportant subsystemson theboard. Among
these systems, the framebuffer is started by registering a platform device
containing some data relevant to the driver such as name, dmamask, and so
oNn (mxc_init_fb).

Framebuffer Initialization (fomem.c)

Thisistheinitialization of the framebuffer driver but it isnot attached to any
specific platform. By default, it startsthe resources and important structures
(most of the structures are described in the previous section) using the
fbmem_init function (it registers the fb char device).

IPU initialization (ipu_common.c)

The next step is setting up the |PU modulefrom the | PU generic parameters,
to its registration as a device on the system, and the initial configuration of

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

26 Freescale Semiconductor

Display Configuration in Linux

processes and associated modul es, such as Synchronous Display Controller
(SDC).

i.MX Framebuffer Initialization (mxcfb.c)

After the IPU getsregistered as adevice, initialized, and probed, the next
layer of software related to the implementation of the frame buffer for the
i.MX family isinitialized and tested with its components. The framebuffer
carriesout theinitialization and other activities, and callsthe IPU functions.
Theinitialization process coverstheregistration of the framebuffer fori.MX
as aplatform driver. Most of the processis covered by the probe function,
where (among other resources settings) the framebuffer getsregistered. The
probe function for the framebuffer, in general, executes tests related to the
IPU such as initializing modes for the SDC module, tests for IPU_IRQ,
enabling channels, disabling channels, and registering the framebuffer.

Specific Panel Driver (mxcfb_claa wvga.c, mxcfb_epson_vgaor similar)

Thedriver for thei.M X platform can be termed as a generic driver that can
work for several panels (see mxcfb_modedb.c file for information on the
available panel configurations). However, anew panel requires a specific
driver, asit can have adifferent interface. In such cases, thedriver issmilar
to the mxcfb.c; but, is more specific. The usage of the initialization and
probe functions are also similar. This driver does not replace the mxcfb.c,
but it iscomplementary toit. So, to enable proper functionality of the pand,
both files should be built into the system.

Video 4 Linux Initialization (mxc_v4l2_output.c)

All elements to set up the framebuffer and to get the display working have
been set. If video usage is required, then an extra step is needed. The BSP

contains generic driversthat follow the v4|2 specification, for capture and

output. These drivers are loaded after all the framebuffer and IPU setup is

complete. The output driver makesuse of IPU post-processing functionsfor
its operation. It also contains an initialization routine and a probe routine.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 27

Display Configuration in Linux

3.2.2 Initialization Flow Chart

Figure 17 shows theinitialization flow chart.

Femeal Initialzation

l

Board Initialization pl M35 Astackc = muxc_int fb Ll mx35 Astack.e = mec init_lod

r

r

Ganaric Framabuffar fomeam.c = fomam _init

Initialzation
r
IPL Initialization o ipu_common.z = ipu_gen _nit = ipu_probs
ipu_device.c = mgister_ipu_device
b
i.MX Framabuffer o mxcfbhe = mxcfboinit = mxc_probs
Initialzation

IPL channeldisablevenable = IPL IR
Tasting = Framebuffar Registar

b

Panel Specific o mrxc_=panel=c 2 =pansl=_init 2 <panals=_probs
I nitializaticn l

IPU channel disable/fenable = IPL IR
Testing

Va2 COutput
Initialzation

mxc_val2 output.c = mxc_vdlZout init = mxc_vdlEout poks

Figure 17. Initialization Flow Chart

3.2.3 Files and Important elements

This section provides more details on the files mentioned earlier in Section 3.2, “Linux Framebuffer for
i.MX,” and other files.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

28 Freescale Semiconductor

Display Configuration in Linux

3.2.3.1 mx35_3stack.c
Location: / arch/ ar i mach- nx35/ nx35_3st ack. ¢

Generalities: Thisfile contains theinitialization and set up routines for the i.MX35 3-Stack Board. Itis
called during kernel start up. The most important function is mxc_board_init, asit calls several different
module specific routines, mxc_init_fb among them, which registers the framebuffer as a platform device.
Not alot of information is provided. It givesaname, DMA mask, and some platform data (achar with the
type of panel). The mxc_board_init sets the clocks, GPIO modules, the PMIC, and so on. Also, thereisa
small initialization of a LCD structure in the function mxc_init_lcd. This registers a platform device
structure for the LCD.

static struct platformdevice |cd_dev = {
.namre = "lcd_claa",
.id =0,
.dev = {
.rel ease = nxc_nop_rel ease,
.platformdata = (void *)& cd_data,
H
}
static void mxc_init_Icd(void)
{
pl atform devi ce_register(& cd_dev);
}
#i f defi ned(CONFI G_FB_MXC_SYNC _PANEL) || defi ned(CONFI G_FB_MXC_SYNC_PANEL_MODULE)
/* mxc lcd driver */
static struct platformdevice mxc_fb_device = {

.name = "nxc_sdc_fb",

.id =0,

.dev = {
.rel ease = nxc_nop_rel ease,
.coherent _dnma_mask = OxFFFFFFFF,
}

b

static void mxc_init_fb(void)

{

(voi d) pl atform devi ce_regi ster(&mwxc_fb_device);

}

#el se

static inline void mxc_init_fb(void)

{

}

#endi f

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 29

|
y

'
A

Display Configuration in Linux

mx35_3stack Flow Chart:
Figure 18 shows the mx35_3stack flow chart.

Board Initialization

r

mx25 Astack.c 2 mxc boamd init

mx35_ Astack.c = mxc_init_fb

Device Registration for the
framabuffer and LCD

mxA5 Astack.c = mxc_init_lked

Figure 18. mx35_3stack Flow Chart

3.2.3.2 fbmem.c
Location: /dri vers/vi deo/ f bmem ¢

Generalities: Thisfile containsinitialization of the framebuffer subsystem for Linux. Apart from the
initialization, it also includes the file operations (fops) common for a char device plus the usage of the
mmep() function, which iswidely used in this case (and not always used in other char devices). There are
also general routines for the panel framebuffer drivers like register and unregister framebuffer devices.
Functions that display the logo during the booting processis also availablein thisfile.

Important Functionsor Sructures: The module definition and registering functions are explained
below:

struct fb_info *registered fb[FB_MAX] __ read_mostly

This can be seen asthe global fb_info structure for the framebuffer system.
int num_registered_fb __read_mostly

int is used to hold the frambuffers registered in the system.
gtatic int __init fomem_init(void)

Initialization of the framebuffer subsystem as achar driver, passing thefops

table as a parameter (with the pointers to each one of the file operation
functions). It also creates a class for graphics.

static void __exit fomem_exit(void)R

Releases the char driver and deletes the graphics class.
int register_framebuffer(struct fb_info *fb_info)

Registers a framebuffer device taking the fb info structure as an argument.
int unregister_framebuffer(struct fb_info *fb_info)

Unregistersaframebuffer devicetaking thefb info structure asan argument.

file_operations fb_fops This structure contains the file operations for the frame buffer subsystem
implemented as a char driver. The common read, write, open and ioctl are
available, but mmap is aso an important member.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

30 Freescale Semiconductor

Display Configuration in Linux

static const struct file_operations fb_fops = {
.owner =THI S_MODULE,
.read =fb_read,
.wite =fb_wite,
.ioctl =fb_ioctl,
#i f def CONFI G_COMPAT
.conpat _ioctl = fb_conpat_i octl,
#endi f
.mmap =fb_nmmap,
.open =fb_open,
.release =fb_rel ease,
#i f def HAVE_ARCH_FB_UNMAPPED_ AREA
. get _unnmapped_area = get_fb_unmapped_ar ea,
#endi f
#i f def CONFI G_FB_DEFERRED_ | O
.fsync =fb_deferred_i o_fsync,
#endi f
b
static int fb_ioctl(struct inode *inode, struct file *file, unsigned int cmd,unsigned long arg)

A regular ioctl function for a character device, where the command to
execute is passed as an argument and acts depending on the case selected.
Some of the casesare: FBIOGET _VSCREENINFO and
FBIOGET_FSCREENINFO that collects information about the variable or
fixed valuesin the fb_information structure.

static int fb_mmap(struct file *file, struct vm_area_struct * vma)
mmap implementation for the framebuffer char driver.
fbmem.c Flow Chart:

Figure 19 shows the fomem.c flow chart.

Genaric Framabuffar o fomem.c = fomem _init
Initializ aticn

h 4

fbmam.c = file oparation s (fops)

fops and registration opemtions
upcn demand

Figure 19. fomem.c Flow Chart

Some of the IPU files are discussed in the following sections.

3.2.3.3 ipu_common.c
Location: drivers/ nxc/ i pu/i pu_conmon. ¢

Generalities: Thisfile contains the common software routines for IPU functionality such as channdl,
buffer, and IRQ management. It also containsthe platform_driver structure implemented for the IPU, init,
and exit functions for the module

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 31

Display Configuration in Linux

Important Functionsor Sructures: The module definition and registering functions are explained
below:

platform_driver mxcipu_driverThis structure contains the power management pointers to the routines for
testing the platform driver and behavior in low power modes.
static struct platformdriver nmxcipu_driver = {
.driver = {
.name = "nxc_i pu",

1
. probe = ipu_probe,
.suspend = i pu_suspend,
.resume = ipu_resune,
b
int32_t __initipu_gen_init(void)
Thisisan initialization routine for the IPU platform driver. It registersthe
mxcipu_driver.
static void __exit ipu_gen_uninit(void)

Thisexit routineisused for the |PU platform driver. It releasesthe | PU IRQs
and unregisters the mxcipu_driver.

static int ipu_probe(struct platform_device * pdev)

Thisis Probe function for the mxcipu_driver and it is called when the
registration is made. It sets IRQ request and clocks for the IPU. It also
registers the IPU device (seeipu_device.c).

Common I PU functions: The common IPU functions are explained below:

ipu_request_irq This function registers an interrupt handler for the specified interrupt lines
that are defined in the enumeration ipu_irg_line (located in theipu.hfile).

ipu_disable irq This function disables the interrupt for the specified interrupt line.

ipu_enable irq This function enables the interrupt for the specified interrupt line.

ipu_init_channel_buffer Thisfunction is called to initialize a buffer for alogical 1PU channel. The
parameters entered as inputs are physical addresses for the buffers, type of
the buffers, logical channel 1D, width and height in pixels and so on.

ipu_select_buffer Thisfunction is used to mark a channel's buffers as ready. The channel ID
and buffer type are passed as parameters.
ipu_init_channel Thisfunction is called to initialize alogical IPU channel. It uses alogical

channel ID and a union with channel initialization parameters
(ipu_channel_params_t included inipu.h).

ipu_uninit_channel Thisfunction is used to uninitialize alogical 1PU channel.

ipu_link_channels This function links 2 channel s together for automatic frame
synchronization. There are 2 parameters, one isthe logical channel 1D for
the source and the other isthe logical channel 1D for the destination, the
output of the source channel islinked to the input of the destination channel.

ipu_unlink_channels This function unlinks two channels and disables the automatic frame
synchronization.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

32 Freescale Semiconductor

Display Configuration in Linux

ipu_enable_channel This function enables alogical channel taking the channel 1D as inpuit.
ipu_disable_channel Thisfunction disablesalogical channel taking the channel 1D as input.
ipu_common.c Flow Chart:

Figure 20 shows the ipu_common.c flow chart.

[PU Initialization » ipu_common.c = ipu_gen_init

:

ipu_commeon.c — ipu_probe

:

ipu_device.c = register_ipu_device

Figure 20. ipu_common.c Flow Chart

NOTE

Many IPU functions that are widely called from framebuffer and v4l2
drivers (such asipu_init_channel) are defined in ipu_common.c.

3.2.34 ipu_device.c
L ocation: dri vers/ nkc/ i pu/ i pu_devi ce. ¢

Generalities: Thisfile contains the structure and functions for the fops operations related to the mxc_ipu
device. It also contains a generic interrupt handler for the IPU related IRQs

Important Functionsor Sructures. The registering and other important functions areexplained below:

int register_ipu_device() This function registers the mxc_ipu as a char device, providing fops table
and name. It also creates aclassin the device model structure. Thisfunction
is called from the probe() functionini pu_comon. c

static irgreturn_t mxc_ipu_generic_handler(int irg, void *dev_id)
Thisfunction is ageneric handler for any IRQ that the IPU should process.
file_operations mxc_ipu_fopsThis structure contains the file operations for the mxc_ipu device.

static struct file_operations mxc_ipu_fops = {
.owner = TH S_MODULE,
.open = nKxc_i pu_open,
. mrap = nxc_i pu_mrap,
.release = nxc_i pu_rel ease,
.ioctl = mxc_ipu_ioctl

b

static int mxc_ipu_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)

ioctl function for the mxc_ipu device. Thisfunction Processes commands
passed as arguments. Most commands are specific functions described

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 33

Display Configuration in Linux

earlier in the section ipu_common.c such as IPU_INIT_CHANNEL,
IPU_LINK_CHANNELSand so on.

ipu_device.c Flow Chart:
Figure 21 showstheipu_device.c flow chart.

r

ipu_device.c — register_ipu_device

|

ipu_device.c = mxc_ipu_ioct

IPL! registration

IPU ioctl:

;Jsc?unest ipu_commeon.c = [PU_INIT_CHANMNEL

b

ipu_common.c = [PU_LINK_CHAMNMELS

b

ipu_common.c = [PU_ENAELE CHANMEL

b

ipu_commeon.c = [PU_ENAELE IRQ

b

Figure 21. ipu_device.c Flow Chart

Other important filesfor the IPU structure are explained below:

3.2.3.5 ipu_sdc.c
L ocation: dri vers/ nkc/ i pu/i pu_sdc. ¢

Generalities: Thisfile containsroutines related to the SDC module on the IPU. The examplesrange from
the sdc_init to routines for setting apha blending modes or color keys for the SDC plane.

3.2.3.6 ipu_ic.c
L ocation: drivers/ mxc/ipu/ipu_ic.c
Generalities: Thisfile contains routines for color conversion and resizing the sub modules of the | PU.

3.2.3.7 mxcfb_modedb.c
L ocation: dri ver s/ vi deo/ nkc/ mxcf b_nodedb. c

Generalities: Thisfile contains the declaration of an array of fb_videomode structures related to the mxc
framebuffer implementation. The elements are Sharp-VGA, NEC-VGA, TV out modes and so on. The
data available on each structure refers to the important elements that describes each panel such as

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

34 Freescale Semiconductor

Display Configuration in Linux

resolution, timing and so on. See include/linux/fb.h for more information for the parameters contained in
the structure.

3.2.3.8 mxcfb.c
Location: dri ver s/ vi deo/ mxc/ mxcf b. ¢

Generalities: Thisdriver contains registering and initialization routines for the implementation of the
framebuffer oriented to thei.M X Family. The structurerelated to the framebuffer, functionsfor registering
the driver and setting up the frame buffer system for the normal framebuffer data structuresfor the overlay
areinitialized if they are enabled.

Important Functionsor Sructures: The module definition and registering functions are explained
below:

platform_driver mxcfb_driverThe Structure created for the framebuffer driver implementation contains
the pointers to functions related to power management callbacks such as
probe or suspend.
static struct platformdriver nmxcfb_driver = {
.driver = {
. name = MXCFB_NAME,
¥
. probe = mxcfb_probe,
.suspend = nxcfb_suspend,
.resunme = nxcfb_resune,
b
mxcfb_data The Structure that encapsulates two fb_info structures. The first structure
actsfor the normal framebuffer and the second one for the overlay. This
structure also contains other flags.
struct mxcfb_data {
struct fb_info *fbi;
struct fb_info *fbi_ovl;
volatile int32_t vsync_fl ag;
wai t _queue_head_t vsync_wg;
wai t _queue_head_t suspend_wg;
bool suspended,;
int backlight_Ilevel;

b
int _init mxcfb_init(void) The entry function for the framebuffer. It registers the platform driver
structure containing callback functions for power management and
shutdown conditions.

void mxcfb_exit(void) Thisis an framebuffer exit function. Its functions are: unmaps the video
memory of the framebuffer structures, unregistersthe fb_info structure of
the framebuffer. These activities are carried by the fb_info structure for the
framebuffer and the overlay. It aso unregistersthe platform driver structure
of the framebuffer.

static int mxcfb_probe(struct platform_device * pdev)

Thisisthe function member of the platform driver structure pointers. The
probe function should verify if the specified device hardware exists. Several

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 35

Display Configuration in Linux

processes are executed in the probe function such as framebuffer
initialization, memory allocation, framebuffer registration (fb_info
structuresfor normal and overlay structures) and also IPU initialization that
involves setting the transparent color key for SDC graphic plane and the
foreground/background alpha blending modes.

static struct fb_info *mxcfb_init_fbinfo(struct device *dev, struct fb_ops * ops)

Thisfunction is called by mxc_probe. It alocates memory for the fb_info
structure and fills information such as color mapsand so on inthefieldsthat
are related to this structure.

platform_set_drvdata(pdev, & mxcfb_drv_data)

This function is used to pass the address and information available in the
mxcfb_drv_data structure to the platform device.

Some of the file operations are discussed below.

fb_ops mxcfb_ops

This structure contains the pointers to the functions that can be used by the
framebuffer driver to perform functions such as rectangle filling or cursor
definitions. This structure is used for the normal framebuffer
implementation.

static struct fb_ops mxcfb_ops = {

b
fb_ops mxcfb_ovl_ops

.owner = THI S_MODULE,

.fb_set_par = nxcfb_set_par,
.fb_check_var = nxcfb_check_var,
.fb_setcolreg = mxcfb_setcol reg,
.fb_pan_di spl ay = nxcfb_pan_di spl ay,
.fb_ioctl = mxcfb_ioctl,
fb_fillrect
.fb_copyarea
.fb_imageblit = cfb_i mageblit,
.fb_bl ank = mxcfb_bl ank,

cfb_fillrect,
cf b_copyar ea,

This structure contains the pointers to the functions that can be used by the
framebuffer driver to perform functions such as rectangle filling or cursor
definitions. This structure is used for the overlay framebuffer
implementation.

static struct fb_ops mxcfb_ovl _ops = {
.owner = THI S_MODULE,

.fb_set_par

= nxcfb_set _par,

.fb_check_var = nxcfb_check_var,
.fb_setcolreg = mxcfb_setcol reg,
.fb_pan_display = nxcfb_pan_di spl ay,

.fb_ioctl

mxcfb_ioctl _ovl,

.fb_mmap = nxcfb_mmap,
fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_i mageblit,

. fb_bl ank

mxcf b_bl ank_ovl,

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

36

Freescale Semiconductor

Display Configuration in Linux

static int mxcfb_mmap(struct fb_info *fbi, struct vm_area_struct *vma)

This function used to handle the mmap function for the mxc framebuffer.
static int mxcfb_ioctl_ovl(struct fb_info *fbi, unsigned int cmd, unsigned long arg)
static int mxcfb_ioctl(struct fb_info *fbi, unsigned int cmd, unsigned long arg)

These functions are used to handleioctl commands for the framebuffer. The
first function isused for the normal framebuffer structure and the other isfor
the overlay structure.

static int mxcfb_set_par(struct fb_info *fbi)

This function is used to set the parameters (most of them from the
videomode structure) to the processor's registers and calls
ipu_sdc_init_panel. Thisis also used to change the operating mode.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 37

Display Configuration in Linux

mxcfb.c Flow Chart:

Figure 22 shows the mxcfb.c flow chart.

i.MX Framabuffar
Initialization

_|.| mxcfbe = mxcfb_init |

v

| mxcfh.c = mxcfh_probe |

—hI mxcfbe = mxcfb_init fhinfo I

_.I ipu_sde.c = ipu_sde_set global_apha |

I ipu_sdo.c = ipu_sdc_sat color keyl

—DI mxcfb.e = mxcfb_sat_par |

_.l ipu_common.c = i testing and request |

.l ipu_common.c = initialzation and channal enabling I

—i1 ipu_common.c = irg and channel disabling |

.l ipu_common.c = initialization of channel |

—pl ipu_sdc.c = ipu_sdc_init_panel |

—l-l ipu_common.c = sekection and channalenabling |

_.I Registaring framebu fiar

pl mxcfhe = maxcfhinit fhinfo for ovl (overlay) |

—

mxcfb.c = mxcfb_set par

ipu_common.c =+ i testing and request |

ipu_common.c = initialzation and channelenakbling |

ipu_common.s = initialization of channal bufier |

Lol Reqistaring cvl framebuffer |

—ll mxcfbc = platfiorm _set_drvdata |

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Figure 22. mxcfb.c Flow Chart

38

Freescale Semiconductor

Display Configuration in Linux

3.2.3.9 mxc_v4l2_output.c
Location: driver s/ nedi a/ vi deo/ nxc/ out put/ nxc_v4l 2_out put . ¢

Generalities: Thisfile containsthe implementation of the v412 standard for output devices targeted to the
i.MX family. The file contains the common char driver infrastructure elements such as an initialization
routinefor registering the driver, aprobe function and the standard file operations (fops) related to the v4l 2
implementation. It also includes the functions that enable or disable the playback of video.

Important Functionsor Sructures: The module definition and registering functions are explained
below:

platform_driver mxc_v4l2out_driver

Thisisthe platform_driver structure for the v4l2 output driver containing
pointers to functions related to power management such as probe and

remove.
static struct platformdriver mxc_v4l 2out_driver = {
.driver = {

.name = "MXC Vi deo Qutput",

. probe = mxc_v4l 2out _probe,
.renpve = nxc_v4l 2out _renove,
}
platform_device mxc_v4l2out_device
Thisisthe platform_device structure for the v4l2 output driver containing
the name and id of the device.

static struct platformadevice mxc_v4l 2out _device = {
.nane = "MXC Video Qutput",
.id =0,
b
static int mxc_v4l2out_init(void)
Thisisused for initializing the driver where the registration of the platform
driver and platform device is made.
static void mxc_v4l2out_clean(void)
Thisis an exit function from the driver where the platform device and
platform driver are unregistered. A video device is also unregistered.

static int mxc_v4l2out_probe(struct platform_device * pdev)

Thisisaprobe function for the v412 driver. It contains the register of the
video device with video_register_device, setup of the outputs and cropping
commands.

The Fops operations are discussed below.
file_operations mxc_v4l2out_fops

Thisisthefile operations structure for the mxc_v4l2_output. It containsthe
pointers to common functions such as open, close, ioctl. It aso contains the
mmap implementation for this driver.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 39

Display Configuration in Linux

static struct file_operations nmxc_v4l 2out_fops = {
.owner = THI S_MODULE,
.open = nxc_v4l 2out _open,
.rel ease = nxc_v4l 2out _cl ose,

.ioctl = nxc_v4l 2out_ioctl,
.mmap = nxc_v4l 2out _mmap,
.poll = nxc_v4l 2out _pol I,

}i
static int mxc_v4l2out_mmap(struct file *file, struct vm_area_struct *vma)

Thisfunction is used for mmap implementation for the v4l2 driver anditis
part of the file operations.

static int mxc_v4l2out_do_ioctl(struct inode *inode, struct file *file, unsigned int ioctlnr, void *arg)

Thisfunction is called by video_usercopy that in turn is called by
mxc_v4l2out_ioctl. Thisfunction performs the commands sent by the
application when trying to perform some specific ioctls.

Other operations are as follows:
static int mxc_v4l2out_streamon(vout_data* vout)

Thisfunction isused to start the playback to the framebuffer/display. It uses
many calls and modifications directly to the IPU. These calls refer to the
usage of the IPU channels such as selecting buffers, initializing channels,
enabling IRQs and so on.

static int mxc_v4l2out_streamoff(vout_data * vout)

Thisfunctionisused to stop the playback. It usestheimplemented functions
in the lower layer of the IPU configuration such as uninitializing and
unlinking channels and disabling IPU IRQs.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

40 Freescale Semiconductor

Display Configuration in Linux

mxc_v4l2_output.c Flow Chart:

Figure 23 shows the mxc_v412 output.c flow chart.

VAE cutput o mxc vAE outputc = mxc vdlBout init
initializaticon l

mxe_ vdl2 outputc = mxe v4BRout probe
WAE output o mxc_ v4E outputo = mxc v4Rout do oot
playback l

mxz_vaZ2 outputc = mxc vdlEout streamon

_.l ipu_common.c = ipu_init_channel

ipu_common.c = ipu_init_channal_buffar

_.I ipu_common.e = ipu_ salect buffer
o

ipu_common.c = ipu_snable_channel

l

mxz_valZ2 outputs = mxc vdBEout streamoff

— ipu_common.c = ipu_disabla_irg

—l ipu_common.c = ipu_disable_channeal

_.l ipu_common.c = ipu_uninit_channsl

Figure 23. mxc_v412 output.c Flow Chart

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 41

Display Configuration in Linux

3.3 Panel Configurations

Implementation of a new driver into the Linux kernel isimportant for a system with anew LCD pandl,
which does not have adriver. To enhance the performance of the application, hardware such asi.MX's IPU
can be used.

3.3.1 Case: VGA
The LCD pandl configurations are explained in the following sections.

3.3.1.1 Panel Generalities

CLAAO57VAOLCT is5.7" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module
composed of LCD panel, driver ICs, control circuit, and LED backlight.

The 5.7" screen produces a high resolution image that is composed of 640x480 pixel elementsin a stripe
arrangement. It can display 262K colors by means of a 6 bit per channel RGB signal inpui.
Horizontal Timing Parameters

Table 13 provides horizontal timing parameters.
Table 13. Horizontal Timing Parameters

Parameter Symbol Min Type Max Unit
Screen Width or Horizontal Cycle |HP 750 800 900 PIXCLK
Horizontal Blank Period HBK 110 160 260 PIXCLK
Active Frame Width HDISP 640 640 640 PIXCLK

Vertical Timing Parameters

Table 14 provides vertical timing parameters.
Table 14. Vertical Timing Parameters

Parameter Symbol Min Type Max Unit
Screen Height or Vertical Cycle VP 515 525 560 Line
Vertical Blank VBK 35 45 80 Line
Active Frame Height VDISP 480 480 480 Line
Vertical Refresh rate FV 55 60 65 Hz

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

42 Freescale Semiconductor

Pin Connections

Display Configuration in Linux

Table 15 provides the pin connection details of LCD panel.
Table 15. LCD Panel Pin Connection

Pin Number Symbol Description
1 u/D Up or Down Display Control
2 NC Customer non-connect ; initial pull high =DE mod
3 Hsync Horizontal SYNC
4 VLED Power Supply for LED
5 VLED Power Supply for LED
6 VLED Power Supply for LED
7 Vce Power Supply for LCD
8 Vsync Vertical SYNC
9 DE Data Enable
10 X2 TSP Control (Left)
11 Y1 TSP Control (Up)
12 ADJ Adjust for LED brightness
13 B5 Blue Data 5 (MSB)
14 B4 Blue Dat a4
15 B3 Blue Data 3
16 Vss Power Ground
17 B2 Blue Data 2
18 B1 Blue Data 1
19 BO Blue Data 0
20 Vss Power Ground
21 G5 Green Data 5 (MSB)
22 G4 Green Data 4
23 G3 Green Data 3
24 Vss Power Ground
25 G2 Green Data 2
26 G1 Green Data 1
27 GO Green Data 0 (LSB)
28 Vss Power Ground
29 R5 Red Data 5 (MSB)
30 R4 Red Data 4
31 R3 Red Data 3

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor

43

Display Configuration in Linux

Table 15. LCD Panel Pin Connection (continued)

Pin Number Symbol Description
32 Vss Power Ground
33 R2 Red Data 2
34 R1 Red Data 1
35 RO Red Data 0 (LSB)
36 X1 TSP Control (Right)
37 Y2 TSP Control (Down)
38 DCLK Clock Signals
39 Vss Power Ground
40 /R Left / Right Display Control

3.3.1.2 Panel Configuration

Configuring f b_vi deonode Structure of a new panel isrequired to create a new driver. This structure
containsinformation about the timings, resol ution, name and configurationsfor the panel to work properly.
The code below shows the parameters to be filled.

struct fb_videonode {
const char *nane; - = CLAA-VGA
u32 refresh; - = Refresh rate in Hz
u32 xres; > =resolution in x
u32 yres; = =resolutioniny
u32 pi xclock; - = Pixel clock in picoseconds
u32 left_margin; - = Horizontal Back Porch
u32 right_margin;, - Hori zontal Front Porch
u32 upper _mar gi n; Vertical Back Porch
u32 |l ower_margin;, - Vertical Front Porch
u32 hsync_len; - = Hsync pul se width
u32 vsync_len; - = Vsync pul se width
u32 sync; - = Polarity on the Data Enable
u32 vrode; - = Video Mde
u32 flag; » =0

)
T

b
The parameters are available in the section 3.2 of panel datasheet. Take a quick look at the timing

parameters shown in panel generalities and use the typical values (recommended). Some L CD datasheets
only provide Blank Periods instead of Porches.

The following section discusses what to do in such cases. However, as this datasheet provides both Blank
Periods and Porches, use the values available in the Porches section of the timing specification table.

const char *name Thisisjust aname, so any parameter with a descriptive name between " "
suffice.
u32 refresh Thisistherefresh rate. The valueis given in Hz. Generally, it provides

refresh rate or vertical refresh rate. In this case, 60Hz is used.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

44 Freescale Semiconductor

u32 xres

u32 yres

u32 pixclock

u32 left_margin

u32 right_margin

u32 upper_margin

u32 lower_margin

u32 hsync_len

Display Configuration in Linux

Thisisthe resolution in the x axis. This value can be got easily asitisone
of the most important and descriptive parametersin the LCD. It isalso
available as number of horizontal pixels (H).

Thisistheresolution inthey axis. It is provided in the data sheet asthe
vertical resolution or number of lines (V).

Thisisthe pixel clock. It can be found in the datasheet as dot clock or just
clock. Thevaueisusually givenin MHz. However, sometimes the inverse
valueisrequired so that it can be entered in the structure in picoseconds. In
thiscaseit is 25 MHz, so 1/25M= 40000 ps.

Theleft marginisequivalent to the Horizontal Back Porch (HBP) described.
Some LCD datasheets provide this parameter. However, some provide a
total that is the sum of the HBP, HFP and hsync pulse width termed as
Horizontal Blank Period. When this happens, the fill this value using the
procedure described in Section , “3.4.2.2.2 WV GA Horizontal Timing,”
aternatively, HBP and the hsync pul se width can be used (and leave HFP at
0). The sum of both should add up to the Horizontal Blank Period (with
typical value of 160 in this case). There could be some variation in the
values of hsync pulse width and HBP, but both of them should add to
Horizontal Blank Period (160). This valueis provided in pixel clock units.
In this case the value is 45.

Thisright marginisequivalent to the Horizontal Front Porch. Inthiscase, if
the procedure to avoid this parameter as described in the u32 left_margin
descriptionisfollowed, then the valuewould be 0 (and left margin would be
around 159). However, if the datafrom the datasheet is used, then thetypical
value of 114 isused. Thisvalueis provided in pixel clock units.

This upper margin is equivalent to the VBP. It is a case similar to the left
margin. Some datasheets show the VFP, VBP and the vsync pul se width.
Others provide only avaluethat coversthe sum of the 3 periods. The name
of the sum is Vertical Blank Period (in this case with atypical value of 45).
Avoiding one of the porchesis possible, so only the VBP and the vsync
pulse would be used. The division of the value between both parameters
could vary, but they must add up to the Vertical Blank Period (in that case,
avaueof 44 isselected). However, thetypical value of 33isused. Thevaue
is provided in horizontal lines.

This lower margin refersto the Vertical Front Porch. Aswith u32
right_margin and for similar reasons (that is,. if the datasheet only provides
Blank Periods), thevaluefor this parameter can be selected asO. Inthiscase,
the typical value of 11 isused.

Thisisthe hsync pulse width. Some LCD datasheets provide this value but
others only provide aHorizontal Blank Period, as described above. The
Horizontal Blank Period onthisLCD is 160. So if the left marginis set to
159, thenthevalueisset to 1 pixel clock pulse. Using the selected value (the
typical ones from the data sheet) value 1 is set.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor

45

Display Configuration in Linux

u32 vsync_len Thisisthe vsync pulsewidth. Asin the hsync case, some datasheets provide
the value, but others only provide a Vertical Blank Period. The sum of the
upper margin and this value should be equal to the Blank Period (45 linesin
this case). If the upper margin value is selected as 44, this parameter would
have avalue of 1. Using the selected values (typical) we value 1 is set.

u32 sync Thisvalue refersto the display interface clock polarity for display 3. Inthis
case the value is O (as opposed to FB_SYNC_CLK_LAT_FALL), SO the clock
polarity isinverse. Datais considered as valid after data enable goesHIGH,
and each pixel isread on the rising edges of the clock.

u32 vmode This value determines the video mode. The Linux kernel defines more
modes such as FB_VMODE_I NTERLACED Of FB_VMODE_DOUBLE, among others.
But, for i.MX using TFT panels, set thisto FB_VMODE_NONI NTERLACED.

u32 flag Thisvalueisnot used, usually leftin O.
The structure looks as shown in the following code:

static struct fb_vi deonode video_nodes[] = {
{
/* 640x480 @60 Hz , pixel clk @25MHz */
const char *nane; - "CLAA-VGA',
u32 refresh; - 60,
u32 xres; - 640,
u32 yres; — 480,
u32 pi xcl ock; - 40000,
u32 left_margin; > 45,
u32 right_margin;, - 114,
u32 upper_nargin; - 33,
u32 lower_margin; - 11,
u32 hsync_len; - 1,
u32 vsync_len; - 1,
u32 sync; - 0,
u32 vnode; — FB_VMODE_NONI NTERLACED,
u32 flag; - O,
}

The fb_videomode structure for the panel isdeclared in the VGA panel driver. The information is passed
to afb_var_screeninfo structure inside the lcd_init_fb function (which is called by probe). In the fb.h
definition, the pixclock parameter should be passed in pico seconds. The datainthat var structureis passed
to the general info structure viathe fb_set var function, also called in lcd_init_fb.

Finally whenthefunctionipu_sdc_initiscalled, many parametersarefinally set to configure at the register
level (in the last stage of that process).

A particular setup is made when passing the valuesfor the timing and porchesto the registers of thei.MX
processor. i.M X 35 manages the porches, active dimensions and sync signals asasingle parameter for each
dimension. So, intheipu_sdc_init function, these values are added and then passed to the
SDC_HOR_CONF register for the horizontal case (SCREEN_WIDTH field) and SDC_VER_CONF for
the vertical case (SCREEN_HEIGHT field).

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

46 Freescale Semiconductor

Display Configuration in Linux

HSY NC+Horizontal Back Porch and VSY NC+Vertical Back Porch are also added into g_h_start_width
and g_v_start_width, respectively, and then they are written into SDC_BG_POS/'SDC_FG_POS by the
ipu_disp_set_ window_pos function

Figure 24 shows th fb_videomode flow chart.

fb videomede || mxc_claa wvgac — lod_probe
flow

v

mxc_claa_wvga.c = led_init_fb (for BG)

mxc_claa_vvga.c = fb videomode to_var (passing to var structure)

mxc_claa_wvga.c — fb_set_var (passing to info structure)

v

fbmem.c = th_set var = mxcth_set_par (from mxetb.c)

ipu_common.c = IPL functions

ipu_sde.c = ipu_sdc_init_panel (setting some values to i, MX registers)

Figure 24. fb_videomode Flow Chart

3.3.1.3 Driver Development Process

This section describes how anew driver is made. Important functions and main differences that make this
driver unique and where these differences should be addressed are al so discussed. The genera procedure
and elements to be considered when creating a panel driver are also discussed.

A new panel may have differences such as interface and connection, voltage level management and so on
(apart from the default difference in resolution, when that is the case). So, anew file creation to cover the
specific needs of this panel may be required. Some of these changes are addressed in thisfile, and other

changes such as pin setup and registration of the LCD panel device structure are addressed in other files.

A new panel driver issimilar in terms of structureto the mxcfb.cfile. In many ways, we could say that the
new file could be seen as a subset of mxcfb.c. The panel driver in general terms should contain:

An fb_videomode structure with the timing and configuration data for the panel.

Char driver standard functions for initialization and cleanup (usually for registering/unregistering
aplatform driver structure).

Platform driver structure with standard functions (probe, suspend, resume) pointers and these
functions' implementations.

If using notifier chain facility for event processing, function and structure related to this topic.

Functions for communicating and enabling the flow of information between panel structures and
framebuffer generic structures.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 47

|
y

'
A

Display Configuration in Linux

* Interface and voltage related functions (called by other functions) for the LCD panel power
management.

Many elements that are discussed earlier can be found in the following file.

3.3.1.4 mxcfb_claa_wvga.c
Location: dri vers/ vi deo/ mxc/ mkcfb_cl aa_wga. ¢

From the above file, the following file can be created:

3.3.1.5 mxcfb_claa_vga.c
L ocation: drivers/video/mxc/mxcfb_claa vga.c

Voltage levels and RGB bus width are same for the VGA CLAA057VAOLCT and the WV GA
CPT_CLAAOQ70VCO01 that comes with the PDK. So, minor modification is required. A hypothetical
mxcfb_claa vga.c file would be virtually identical to mxcfb_claa wvga.c, with the exception of the
fb_videomode and the FB_EVENT_BLANK case. Note that gpio_lcd_active already has entries for
VSYNC and HSYNC signals, even though the 7" screen does not require them.

NOTE
5.7" connector has to be populated to connect the panel to the 3 stack board
Generalities: Thisfileis used to register the driver and to test the probe functionality. It also providesthe

timingsin thefb_vi deonode Structure and contains some functions for interaction with the panel related to
events and ON/OFF functionality.

Important Functions or Sructures: The module definition and registering functions are explained
below:

platform_driver lcd_driver This Structure contains the pointers to power management and binding
functions such as probe, suspend or resume targeted to this panel.

static struct platformdriver lcd_driver = {

.driver = {
.name = "lcd_claa_vga"},
.probe = | cd_probe,
.remove = __devexit_p(lcd_renove),
.suspend = | cd_suspend,
.resume = | cd_resune,
b
static int init claa_lcd_init(void)

This function registersthe LCD_driver structure of type platform driver.
static void exit claa Icd_exit(void)

This function unregistersthe LCD_driver structure of platform driver type.
static int devinit lcd_probe(struct platform_device * pdev)

Thisfunction is called when adevice isinstalled. Thisfunction takes care
of setting voltage levels, callsfunctionstoinitializethe LCD, turnsit on and

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

48 Freescale Semiconductor

Display Configuration in Linux

finaly callsafunction to notify the kernel that anew event happened (inthis
case the installation of the LCD driver).

static void Icd_init_fb(struct fb_info *info)

Thisfunction iscaled by LCD_probe. It fills the memory for the
fb_var_screeninfo structure that contains specific details about the panel
(fb_videomode structure --> resolution, size, timings), and converts the
information from the fb_videomode structure to parameters for the
fb_var_screeninfo structure.

Power and Event related functions
static void Icd_poweron(void) This function turns on the panel.
static void Icd_poweroff(void) This function turns off the panel.

fb_register_client(&nb) Thisfunction is called from the LCD_probe function. It registers a client
notifier that containsanotifier block structure. Thisstructure contain details
such as a pointer to the function called when a LCD driver event occurs.

static int lcd_fb_event(struct notifier_block *nb, unsigned long val, void *v)

Thisfunctioniscalled when aLCD driver event occurs. It registersthe event
occurred.

Some critical elements for the panel that are not discussed are located in other files. These elements are
related to pin configuration (for the LCD connection) and the initialization of an LCD device structure.
Thefollowing section describesthe LCD flow to beinitialized. Also, some comment on the elements that
are part of the panel driver are given.

Similar to the general framebuffer initialization, the driver for the LCD also starts at avery early point

during the kernel loading process. As mentioned earlier in another section, the registration of the LCD

panel as a platform device structure is made in the mx35_3stack.c file. From there, both the LCD panel
and the framebuffer are registered as platform device elements.

The next stageisto cover the processor pin setup, so the LCD can have aproper connection. All these tasks
are developed in the mx35_3stack_gpio.c located in the ..Li nux- 2. 6. 26/ ar ch/ ar m mach- nx35/ folder.
Among other features, there is afunction called gpi o_I cd_act i ve that sets all the pins used by the panel
with the help of thefunction mxc_request_iomux and passed as a parameter (pin by pin) the characteristics
that the user wants to get from every specific signal.

void gpio_lcd_active(void)

{
mxc_request _i omux(MX35_PI N_LDO, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD1, MJX_CONFI G_FUNC);
mxc_request _i omux(MX35_PI N_LD2, MJX_CONFI G_FUNC);
mxc_request _i omux(MX35_PI N_LD3, MJX_CONFI G_FUNC);
mxc_request _i omux(MX35_PI N_LD4, MJX_CONFI G_FUNC);
mxc_request _i omux(MX35_PI N_LD5, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD6, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD7, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD8, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD9, MJX_CONFI G_FUNC);
mxc_request _i omux(MX35_PI N_LD10, MJX_CONFI G_FUNC) ;
mxc_request _i omux(MX35_PI N_LD11, MJX_CONFI G_FUNC) ;

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 49

Display Configuration in Linux

mxc_request _i omux(MX35_PI N_LD12, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_LD13, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_LD14, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_LD15, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_LD16, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_LD17, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_D3_VSYNC, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_D3_HSYNC, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_D3_FPSHI FT, MJX_CONFI G_FUNC) ;

mxc_request _i omux(MX35_PI N_D3_DRDY, MJX_CONFI G_FUNC);

mxc_request _i omux(MX35_PI N_CONTRAST, MJX_CONFI G_FUNC) ;

}

Once the pins are set properly, the following stages occur from the loading of the generic framebuffer
infrastructure (fbmem.c) to the loading and registering of the structures and functionsrelated to this panel.
Most of the process has already been described. First, it goesto the fomem.c file. Then it loads the |PU
module. Next the framebuffer implementation for i.MX family by registering the framebuffers (normal

and overlay) begins and concludes with the panel driver.

The panel driver also hasinitialization routines for registering the platform driver, but most of the
initialization procedure is made by the probe function. The actions that occur are: alocation of memory
for the structures related to this panel, passing of the f b_vi demode Structure with this panel's data to the
var_screen_info structure of thef b_i nf o structure. The panel driver also has functions for turning the
panel ON/OFF, for regulating voltage levels using functions from the regul ation framework, and
registering an LCD event for the kernel notifier chain register.

Thefunctioni cd_i ni t _f b inthe panel driver can be seen asthe function where all the flow of information
(of fb_vi deonode Structure) and turning on events happen. In f bmem ¢, afunction called f b_set _var isa
link to the mxcf b_set _par function in mxcfb. ¢ (mxcfb_set _par isactually part of thefile operations
structure of the f b_i nf o Structure), that is, it's the implementation of the f b_set _par for thei.MX
framebuffer. In mxcf b. ¢, the function, i pu_sdc_i ni t _panel is called having as arguments with many
elements of the f b_vi denode Structure. Thisfunction is the place were all these elements are eventually
passed to the processor registers for the SDC module.

Theicd_init_fbiscalledtwicein the probe function of the panel driver and the i pu_sdc_i ni t _panel
function is accessed only once. Thisis because the function detects when the configuration performed
should be made for the background or foreground. In this case, it only accessesthe SDC init panel function
when the configuration is made for the background.
()
if (mxc_fbi->ipu_ch == MEM SDC_BG {

menset (&sig_cfg, 0, sizeof(sig_cfqg));
()
The above code checksif the logical 1PU channel that isused at that timeis employed for the background
case. If that istrue, then thei pu_sdc_i ni t _panel functioniscalled, elseit skips that section.

After that section, the panel's probe function callsi cd_power on (when background only), using functions
from voltage and current regulator frameworks (such as regulator_enable).

The panel's probefunction usesthe f b_regi st er _cli ent function. A notifier block structure with apointer
is passed as an argument to al cd_f b_event function. Thisfunction is called whenever an LCD event
happens (such as when Qtopia starts).

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

50 Freescale Semiconductor

mxcfb_claa_vga Flow Chart:

Display Configuration in Linux

Figure 25 shows the mxcfb_claa vgaflow chart.

LM VGA L mxc claa vga.c = claa_ked_init
Framebuffer
Initia liza tion ¥
mxe cla wjac = lod probs
¥
mxc_clha voac = lod init_fb (for BG)
mxc_claa_vgac = fb_videomode to var (passing to var structure)
g mxz_clha _vogac = fb_set var (passing to info structure)
fbmem.c = fb_sot_var = mxcfb_sat par, in mxcfb.c
ipu_common.c =+ IPL functions
ipu_stke.c = ipu_sde_init_panel (ssetting some values to
i.MX registars for tha BG)
- mxc_claa_wgac = kd_powanon
- mxc_claa_wga.c = kd init_fb (for FG)
mxe_cla voac = fb videomoda to var ipassing to var structu e
— mxc_claa_wgac = fb_sat var (passing to info structure)
fbmeme = fb_sot_var = mxefb_sat par, in mxcfb.c
ipu_common.c =+ IPL functions
S-Y mxc_claa_wga.c = fb_edistar_client
LMX NV GA S mxc_claa_wvga.c = kd fb_event
Framabuffar
Event

Figure 25. mxcfb_claa_vga Flow Chart

Linux voltage and current regulator Framework is used to have an interface that can work in the Linux
Kernel 2.6 for controlling voltage and current levels. It also provides information to the user through a
sysfsinterface. The framework is made by Liam Girdwood from Wolfson Microelectronics.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor

51

References

See http://opensource.wolfsonmicro.com/node/15 for moreinformation. Theframework workswith some
power management |Cs (PMIC) such as MC13787 from Freescale or the Wolfson WM8350.

The functions provided in the panel driver comefromthe ..Li nux-2.6.26/ drivers/regul ator/reg_core.c
file. Insdethe ..Li nux-2. 6. 26/ dri vers/ regul at or/ directory thereis a subdirectory containing the code
for the PMIC used inthei.M X35 3-Stack board (MC13892). Some of the functionsused in the panel driver

are: regul ator _get, regul at or_set_vol t age, regul at or _enabl e.

Another topic that is also present on the panel driver isthe notifier chain or notifier block. The notifier
chain is an information mechanism where different elements notify asynchronous eventsto the kernel.

The basic element is the notifier block structure (the definition can be found in
.Linux-2.6.26/include/linux/notifier.h file). Among the elements on the notifier block structureisa
pointer to the event. In the panel driver there isadeclaration of anotifier block having as an event
argument thefunction | cd_f b_event . At theend of the probe function, iswheretheregistration of the event
ismade by thefb_regi ster_client that isholding as an argument the notifier block, containing as an
element thel cd_fb_event pointer function. Thefb_regi ster_client functionisinside the
.Linux-2.6.26/drivers/video/ fb_notify.c file. It callsafunction in charge or assembling the notifier
block passed as an argument to the notifier chain. In other words, with the registration function, a callback
is registered when a change happensin the LCD.

4 References

This application note has been written using the following references:

* i.MX35(MCIMX35) Multimedia A pplications Processor Reference Manual - IMX35RM- Rev. 2,
3/20009.

e [.MX35PDK 1.0 Linux Reference Manual - Rev. 2, 3/2009.

» Embedded Linux Systems Design and Development, Raghavan P, Lad Amol, Neelakandan
Sririam, Auerbach Publications, 2006, Chapter 9: Embedded Graphics 309-340 for Section 4.1.

» Different Display Configurations oni.MX31 Linux PDK, Olmedo, L ech; Corona, Ernesto,
Freescale Semiconductor, 2008

5 Revision History

Table 16 provides arevision history for this application note. Note that this revision history table reflects
the changes to this application note template, but can also be used for the application note revision history.
Table 16. Document Revision History

Rev.]
Number Date Substantive Change(s)
0 01/2010 |Initial release.

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

52 Freescale Semiconductor

http://opensource.wolfsonmicro.com/node/15

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 53

N

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

54 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Different Display Configurations on i.MX35 Linux PDK, Rev. 0

Freescale Semiconductor 55

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3974
Rev. 0
01/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

B POWERED

ARM
freescale"

semiconductor

	Different Display Configurations on i.MX35 Linux PDK
	Figure 1. IPU Functional Diagram
	1 LCD Principles
	1.1 LCD Basics
	1.1.1 Resolution
	Table 1. Common Video Resolution Standards
	Figure 2. Portrait and Landscape Orientation
	Figure 3. Rotated Frames on Portrait and Landscape Orientation
	1.1.1.1 Size
	1.1.1.2 Color Spaces

	1.2 LCD Types
	1.2.1 Synchronous Panel (Dumb Display)
	1.2.1.1 Asynchronous Panel (Smart Displays)

	2 Synchronous Display Interface
	Table 2. 28-Line Interface
	2.1 Extra Signals
	2.2 SPI Interface
	2.3 Synchronous Display Interface Examples
	2.3.1 i.MX35 PDK Chunghwa 5.7" VGA LCD Interface
	Figure 4. LCD Interface Between i.MX35 and Chunghwa CLAA057VA01CTVGA Panel

	2.3.2 i.MX35 PDK Chunghwa CLAA070VC01 7" WVGA LCD Interface
	Figure 5. LCD Interface between i.MX35 and Chunghwa CLAA070VC01 WVGA Panel
	Figure 6. LCD Interface Between i.MX35 and Chunghwa CLAA070VC01VWGA Panel + Touch Panel

	2.4 Synchronous Display Timing and Signals
	2.4.1 Timing Concepts
	2.4.2 Timing Charts
	2.4.2.1 Vertical Timing
	Figure 7. VGA Vertical Timing Example
	Table 3. Timing Parameters Range
	Figure 8. WVGA Vertical Timing Example
	Table 4. Timing Parameters Range
	Figure 9. WVGA Vertical Timing Example with VSYNC Signals
	Table 5. Vertical Timing Table

	2.4.2.2 Horizontal Timing
	Figure 10. VGA Horizontal Timing Example
	Table 6. Horizontal Timing Characteristics
	Figure 11. WVGA Horizontal Timing Example
	Table 7. WVGA Horizontal Timing
	Figure 12. WVGA Horizontal Timing Example with Imaginary HSYNC Signals
	Table 8. WVGA Horizontal Timing

	2.4.2.3 Pixel Clock Timing
	Figure 13. VGA Pixel Clock Timing Example
	Table 9. Pixel Clock Frequency Parameter
	Figure 14. WVGA Pixel Clock Timing Example
	Table 10. Pixel Clock Frequency Parameter

	2.4.3 Custom LCD Timing
	2.4.3.1 Reset
	Figure 15. Reset Signal Example
	Table 11. Reset Parameters
	Figure 16. SPI Command Interface Signal Example

	2.5 LCD Panels Supported by the i.MX35
	Table 12. Display Controllers

	3 Display Configuration in Linux
	3.1 Linux Framebuffer
	3.1.1 Linux Framebuffer Structures

	3.2 Linux Framebuffer for i.MX
	3.2.1 Initialization Process
	3.2.2 Initialization Flow Chart
	Figure 17. Initialization Flow Chart

	3.2.3 Files and Important elements
	3.2.3.1 mx35_3stack.c
	Figure 18. mx35_3stack Flow Chart

	3.2.3.2 fbmem.c
	Figure 19. fbmem.c Flow Chart

	3.2.3.3 ipu_common.c
	Figure 20. ipu_common.c Flow Chart

	3.2.3.4 ipu_device.c
	Figure 21. ipu_device.c Flow Chart

	3.2.3.5 ipu_sdc.c
	3.2.3.6 ipu_ic.c
	3.2.3.7 mxcfb_modedb.c
	3.2.3.8 mxcfb.c
	Figure 22. mxcfb.c Flow Chart

	3.2.3.9 mxc_v4l2_output.c
	Figure 23. mxc_v412 output.c Flow Chart

	3.3 Panel Configurations
	3.3.1 Case: VGA
	3.3.1.1 Panel Generalities
	Table 13. Horizontal Timing Parameters
	Table 14. Vertical Timing Parameters
	Table 15. LCD Panel Pin Connection

	3.3.1.2 Panel Configuration
	Figure 24. fb_videomode Flow Chart

	3.3.1.3 Driver Development Process
	3.3.1.4 mxcfb_claa_wvga.c
	3.3.1.5 mxcfb_claa_vga.c
	Figure 25. mxcfb_claa_vga Flow Chart

	4 References
	5 Revision History
	Table 16. Document Revision History

