
1 Introduction
This application note describes flash programming routines for
the HC9S08 and the ColdFire V1 family MCUs. These
programming routines can be used to program and erase the flash
memory. Because of differences between the 8-bit and 32-bit
MCUs (flash module and address space) two software versions
were created:

• The first version is for 8-bit MCUs. The HC9S08 family
• The second version is for 32-bit MCUs. The ColdFire V1

(MCF51JM, MCF51QE, MCF51AC, MCF51EM, and
MCF51CN)

This application note describes how to call each routine in the
user software, performance, and return confirmation of the
routine execution. The software files are available in the zip file
AN3942SW, on the Freescale Semiconductor website,
www.freescale.com.

There are basic structures of the flash memory on the HCS08
and ColdFire V1 MCUs. The flash memory is divided into
several smaller memory blocks that can be erased. These blocks
are the smallest possible erasable areas. The size of these blocks
depend on the individual implementation of the MCU families.
For example the HCS08JM60 has 512 bytes and the
MCF51JM128 has 1024 bytes block size.

The most important part of the program is the correct location
of the code sequence that executes the main flash
programming.This code cannot run from the same flash memory
because the flash module cannot write and read simultaneously.

© Freescale Semiconductor, 2009 – . All rights reserved.

Document Number: AN3942Freescale Semiconductor
Rev. 0, 12/2009Application Note

Flash Programming Routines for the
HCS08 and the ColdFire (V1)
Devices

Pavel Krenekby:
Application Engineering
Roznov CSC, Czech Republic

Contents
Introduction...11

API Functions..22

HCS08 Version..22.1

ColdFire Version ..32.2

Adding the Flash Driver to the Application..........43

Application Example...54

References...75

For this reason the function doonstack that copies the relevant program sequence to the RAM memory was implemented. The
code starts here and is executed.

2 API Functions
This section describes the structure and behavior of the API functions. These functions are available for the user and should be
implemented in your main program. The API functions are described in detail in following chapter. Two different types of flash
programming software was created for the API functions. These functions can be found in files doonstack.h.

2.1 HCS08 Version
• FlashErase(const unsigned char * flash_destination);

• FlashProg(const unsigned char * flash_destination, unsigned char data);

• FlashProgBurst(const unsigned char * flash_destination, unsigned char * ram_source, unsigned
 char length);

DoOnStack.h

DoOnStack.asm

FlashBurstProgFlashProgFlashErase

FlashErase

FlashBurstProg

FlashProg

Figure 1. Architecture of API functions for HCS08 MCUs

2.1.1 FlashErase
Syntax:

• void FlashErase(const unsigned char * flash_destination);

Parameters:

• flash_destination—This pointer shows the block address that will be erased

Description:

• This function provides erasing the required memory block. The first address of the erasing block is shown by the pointer
"flash destination."

2.1.2 FlashProg
Syntax:

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
Freescale Semiconductor, Inc.2

API Functions

• void FlashProg(const unsigned char * flash_destination, unsigned char data);

Parameters:
• flash_destination—This pointer shows the block address that will be programed
• data—Here, variable data is saved that can be programed to the flash memory. The maximum length of the data is 1 byte.

Description:

• This function provides programming only one byte of memory block.

2.1.3 FlashBurstProg
Syntax:

• unsigned char FlashProgBurst(const unsigned char * flash_destination, unsigned char *
ram_source, unsigned char length);

Parameters:

• flash_destination—This pointer shows the first address of the memory block that can be programmed
• ram_source—The source of the data array that is programmed to the flash memory
• length—Length of the programed data array

Description:

• The burst program function can be used to program a block of flash memory while crossing row boundaries within the
flash array. This command has a 50% faster programming time than the basic program command.

• The burst command saves the flash memory because the flash module starts only at the beginning of each cycle and is
switched off at the end of this cycle.

2.2 ColdFire Version
These functions can be found in the files doonstack.h for the HCS08, and doonstack_CFV1.h for the ColdFire MCUs.

• PageErase(unsigned int * flash_destination);

• BurstProg(unsigned int * flash_destination, unsigned int * ram_source, unsigned char
length);

DoOnStack_CFV1.h

DoOnStack_CFV1.asm

FlashErase FlashProg

_FlashErase _FlashProg

Figure 2. Architecture of API functions for ColdFire MCUs

2.2.1 FlashErase
Syntax:

• void FlashErase(unsigned int * flash_destination);

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
3Freescale Semiconductor, Inc.

API Functions

Parameters:

• flash_destination—This pointer shows the block address that can be erased

2.2.2 FlashProg
Syntax:

• void FlashProg(unsigned int * flash_destination, unsigned int * ram_source, unsigned char
 length);

Parameters:

• flash_destination—This pointer shows the block address that can be programed
• ram_source—The source of the data array that can be programmed to the flash memory
• length—Length of the programed data array

3 Adding the Flash Driver to the Application
This section shows implementation of the driver files to the main application.

3.1 HCS08 Implementation
• Copy the files doonstack.asm, doonstack.h, and doonstack.inc to the Sources directory for the project you are using.
• Add the doonstack.asm, doonstack.h, and doonstack.inc driver files to the project.
• Add the line #include "doonstack.h" to the main application program file.
• Add the relevant function (FlashProgBurst, FlashErase, or FlashProg) to the main application.

char source_data[]={0x54, 0x45, 0x53, 0x54, 0x49, 0x4E, 0x47, 0x20, 0x58, 0x44}

void Clock_Init(void)
{ // this is example of clock initialization for JM60
 MCGC2 = 0x00;
 MCGC1 = 0x06;
 MCGC3 = 0x01;

 /* bus clock 10 MHz */
 while(!MCGSC_LOCK){} /* wait until FLL is locked*/
}

void Flash_Clock_Init(void)
{
 FCDIV = 0x49; // flash clock must be set up in the range (150-200 kHz)
}
void main(void)
{
 Clock_Init();
 Flash_Clock_Init();

 length_data = 10; // the length of the data is 10 bytes
 adress = 0x2000; // the source data will program to this address

 DisableInterrupts;
 FlashErase(address); // erase the flash block
 FlashProgBurst(address, source_data, length_data)
 EnableInterrupts;
}

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
Freescale Semiconductor, Inc.4

Adding the Flash Driver to the Application

3.2 ColdFire Implementation
• Copy the files doonstack_CFV1.asm, doonstack_CFV1.h, doonstack_CFV1.inc, and doonstack_CFG.inc to the Sources

directory for the project you are using.
• Add the doonstack_CFV1.asm, doonstack_CFV1.h, doonstack_CFV1.inc, doonstack_CFG.inc, and doonstack_CFG.inc

driver files to the project.
• Add the line #include "doonstack_CFV1.h" to the main application program file.
• Define the target MCU and parameter size in the file doonstack_CFG.inc. You can choose between two types of MCU

groups. The first group includes the MCF51(JM, QE, AC, and CN) and the second group the MCF51(128 and 256). These
two groups were created for different internal flash structures. For example, the MCF51EM256 MCU has two separate
flash blocks (2 x 128 Kbytes) with two groups of flash module registers. This problem was solved by using a conditional
compilation.

; MCU = 1 -- MCF51(JM,QE,AC,CN)
; MCU = 2 -- MCF51(128(2x64kB),256(2x128kB))

MCF51_JM_QE_CN_AC .EQU 1
MCF51EM .EQU 2
MCU .EQU MCF51_JM_QE_CN_AC
SIZE .EQU 256

• Add the relevant function (FlashErase, FlashProg) to the main application.

int source_data[]={0x54454554, 0x45454545, 0x54545312, 0x54545454, 0x45445459, 0x4745457E,
 0x54545447, 0x64545620, 0x24545158, 0x74545544};

void Clock_Init(void)
{ // this is example of clock initialization for JM60
 MCGC2 = 0x00;
 MCGC1 = 0x06;
 MCGC3 = 0x01;
 MCGC4 = 0x02;
 /* bus clock 24 MHz */
 while(!MCGSC_LOCK){} /* wait until FLL is locked*/
}
void Flash_Clock_Init(void)
{
 FCDIV = 0x4E; // flash clock must be set up in the range (150-200 kHz)
}

void main(void)
 {
 Clock_init(); // initialization of clock source on JM128
 Flash_Clock_Init(); // initialization of flash clock frequency

 length_data = 10; // the length of the data is 10 bytes
 adress = 0x2000; // the source data will program to this address

 DisableInterrupts;
 FlashErase(address); // erase function
 FlashProg(address, source_data, length_data); //program function
 EnableInterrupts;

 }

4 Application Example
This section discusses several examples that demonstrate how programming and erasing operations are performed on the HCS08
flash and ColdFire MCUs. All source code is written in assembler for minimum flash occupation. The source code for the
HCS08 is about 350 bytes and for ColdFire about 900 bytes.

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
5Freescale Semiconductor, Inc.

Application Example

4.1 HCS08 Flash Routines and ColdFire Flash Routines

In the following code blocks the flash programming routines for erase and burst programming are shown. These short functions
 are situated permanently in the flash memory and serve for reading the address and setting flash parameters. These functions
are executed before programing and erasing.

FlashErase:
 ; see Errata: SE133-FLASH : Unexpected Flash Block Protection Errors
STA ,X ;latch the unprotected address from H:X
NOP ;brief delay to allow the command state machine to start
STA ,X ;intentionally cause an access error to abort this command

 psha ;adjust sp for DoOnStack entry
lda #(mFPVIOL+mFACCERR) ;mask
sta FSTAT ;abort any command and clear errors
lda #mPageErase ;mask pattern for page erase command
bsr DoOnStack ;finish command from stack-based sub
ais #1 ;deallocate data location from stack
rts

 Before every program cycle there must be a flash block that can be programmed to completely erase the flash memory.

FlashProgBurst:
 pshx ;save source address - low byte
 pshh ;save source address - high byte
 psha ;save length of data
lda #(mFPVIOL+mFACCERR) ;mask
sta FSTAT ;abort any command and clear errors
ldhx #SpSubEndBurst ;point at last byte to move to stack;
SpMoveLoopBurst:
 lda ,x ;read from flash
psha ;move onto stack
aix #-1 ;next byte to move
cphx #SpSubBurst-1 ;past end?
bne SpMoveLoopBurst ;loop till whole sub on stack
tsx ;point to sub on stack
tpa ;move CCR to A for testing
and #$08 ;check the I mask
bne I_setBurst ;skip if I already set
sei ;block interrupts while FLASH busy
jsr ,x ;execute the sub on the stack
cli ;ok to clear I mask now
bra I_contBurst ;continue to stack de-allocation
I_setBurst:
 jsr ,x ;execute the sub on the stack
I_contBurst:
 ais #SpSubSizeBurst+3 ;deallocate sub body + H:X + command ;H:X flash pointer OK
 from SpSub
rts ;to flash where DoOnStack was called

These functions are copied to the RAM memory before every programing and erasing cycle. These functions serve for starting
 the flash module and mainly flashing procedures.

SpSub:
 ldhx LOW(SpSubSize+4),sp ;get flash address from stack
sta 0,x ;write to flash; latch addr and data
lda SpSubSize+3,sp ;get flash command
sta FCMD ;write the flash command
lda #mFCBEF ;mask to initiate command
sta FSTAT ;[pwpp] register command
nop ;[p] want min 4~ from w cycle to r
ChkDone:
 lda FSTAT ;[prpp] so FCCF is valid
lsla ;FCCF now in MSB
bpl ChkDone ;loop if FCCF = 0
SpSubEnd:

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
Freescale Semiconductor, Inc.6

Application Example

 rts ;back into DoOnStack in flash
SpSubSize: equ (*-SpSub)

SpSubBurst:
lda FSTAT ;check FCBEF
and #mFCBEF ;mask it
beq SpSubBurst ;loop if not empty
ldhx LOW(SpSubSizeBurst+4),sp ;get source address from stack
lda 0,x ;load source data byte
aix #1 ;increment source address
sthx (SpSubSizeBurst+4),sp ;save new source address to stack
ldhx LOW(SpSubSizeBurst+8),sp ;get destination address from stack
sta 0,x ;write to flash Latch
aix #1 ;increment destination address
sthx (SpSubSizeBurst+8),sp ;save new destination address to stack
lda #mBurstProg ;load Burst program command
sta FCMD ;write the flash command
lda #mFCBEF ;mask to initiate command
sta FSTAT ;[pwpp] register command
nop ;[p] want min 4~ from w cycle to r.
lda FSTAT ;load FSTAT to check ERRORs
and #$30 ;check only FPVIOL and FACCERR
beq FlashWriteOk
 lda #255 ;set up error flag
 rts ;back into FlashProgBurst in flash
FlashWriteOk:
dbnz SpSubSizeBurst+3,sp,SpSubBurst
ChkDoneBurst:
lda FSTAT ;[prpp] so FCCF is valid
lsla ;FCCF now in MSB
bpl ChkDoneBurst ;loop if FCCF = 0
clra
SpSubEndBurst:
 rts ;back into DoOnStack in flash
SpSubSizeBurst: equ (*-SpSubBurst)

4.2 Examples of Memory Allocation in Linker Files

In the following code block the flash memory allocation in the linker command file LCF in the MCF51JM128 is shown.

// EXAMPLE OF FLASH ALLOCATION IN lcf FILE ON MCF51JM128
#Memory ranges

 MEMORY{
 vectors (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000200
 code (RX) : ORIGIN = 0x00000410, LENGTH = 0x0003FBEF
 userram (RWM) : ORIGIN = 0x00800000, LENGTH = 0x00003FFF
 }

In the following code block the flash memory allocation in the linker file PRM in the HCS08JM60 is shown.

// EXAMPLE OF FLASH ALLOCATION IN PRM FILE ON HCS08JM60

SECTION
 ROM = READ_ONLY 0x1960 TO 0xFFAD
END

5 References
For more information, see the devices Reference Manual and the documentation lists in the following table.

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
7Freescale Semiconductor, Inc.

References

Table 1. References

TitleDocument

M68HCS08 Microcontrollers Reference ManualHCS08RM

ColdFire® Family Programmer’s Reference ManualCFPRM

MCF51QE128 ColdFire® Integrated Microcontroller Reference ManualMCF51QE128RM

MCF51CN128 ColdFire® Integrated Microcontroller Reference ManualMCF51CN128RM

MCF51EM256 ColdFire® Integrated Microcontroller Reference ManualMCF51EM256RM

MCF51JM128 ColdFire® Integrated Microcontroller Reference ManualMCF51JM128RM

Flash Programming Routines for the HCS08 and the ColdFire (V1) Devices, Rev. 0, 12/2009
Freescale Semiconductor, Inc.8

References

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN3942
Rev. 0, 12/2009

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc.2009. All rights reserved.

	Introduction
	API Functions
	HCS08 Version
	ColdFire Version

	Adding the Flash Driver to the Application
	Application Example
	References

