
Freescale Semiconductor
Application Note

Document Number: AN3928
Rev. 0, 08/2009

Contents

Introduction . 1
Introduction to Web Server . 2

2.1 Hardware Implementation . 2
2.2 Principle of Operation . 3
Introduction to the Web Server Software. 5

3.1 Server Side Include (SSI) Support 5
3.2 Asynchronous JavaScript and XML (AJAX) 7
3.3 Common Gateway Interface (CGI) 9
3.4 Tasks Status . 10
3.5 SD Card Support . 10
3.6 Limitations . 11
3.7 Principle of Operation . 11
Web Server Software . 11

4.1 Software Architecture . 11
4.2 Software Hierarchy . 12

4.2.1 Hardware Abstraction Layer (HAL) 13
4.2.2 Fast Ethernet Controller (FEC) Handling . . 13
4.2.3 Hardware Independent Layer (HIL) 14

4.3 Socket Interface . 14
Web Server API. 15
Customization . 16
Conclusion. 17
Considerations and References 18

Web Server Using the MCF51CN Family
and FreeRTOS
by: Paolo Alcantara

Applications Engineering
RTAC Americas
1 Introduction
This document describes a web server using the
MCF51CN128, the open source RTOS FreeRTOS ®
V5.3.0, and the TCP/IP stack lwIP V1.3.0.

This document discusses the following implementations
on the MCF51CN128:

Web server with:

• Dynamic content

• AJAX

• DHCP

• File system (FAT16)

This document is intended to be used by all software
development engineers, test engineers, and anyone else
who needs to use an embedded web server.

1
2

3

4

5
6
7
8

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Introduction to Web Server
2 Introduction to Web Server
This web server software allows you to post information to the world wide web (WWW) that is easily
viewable by a standard web browser. It does not require a deep knowledge of Ethernet or TCP/IP to use
or change it. Figure 1 shows web server features:

Figure 1. Web server implemented in MCF51CN family providing HTTP services

2.1 Hardware Implementation
This application note works with the MCF51CN128 reference design and the Tower System. For more
information about the MCF51CN128 reference design, go to the MCF51CN128 Product Summary Page.
For Tower System information, visit www.Freescale.com/tower.

A hardware block diagram of the MCF51CN128 reference design is presented for clarity.

Figure 2. Hardware block diagram of MCF51CN128 reference design board

For the MCF51CN128 reference design hardware, jumpers must remain in the same position. The board
is then ready to use as it is. Board schematics, layout, and Gerber files are provided in case a customization

51CN128
48-pin QFN

PHY

RJ45

25MHz
crystal

Non-standard
BDM

RST

RS232

DB9 -
Female

RS485 uSD card
reader

Temp
Sensor

(i2c)

POT BDM

Accelerometer
(SPI)

Button
2

Button
1

+5.5V

Power
Jack

+3.3V

LDO

Minimal
System

RS485 -
Connector

Cut

Traces
for

Power
Selector

DEMO
System
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor2

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2
http://www.freescale.com/webapp/sps/site/overview.jsp?code=TOWER_HOME&tid=vantower
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2

Introduction to Web Server
is required in the hardware for specific use of the web server, like removing additional components besides
Ethernet.

For the TWR-MCF51CN Tower Rev C, the default jumper configuration must be used.

2.2 Principle of Operation
The web server works with common web browsers like Internet Explorer or Mozilla Firefox. One way to
know the IP address assigned if using dynamic IP assignation is to use a PC network protocol analyzer like
Wireshark. Type the following in the expression filter option of the tool:
eth.src == 00:CF:52:35:00:07 || eth.dst == 00:CF:52:35:00:07

All the LAN packets with this Ethernet address are then shown. You must connect the web server hardware
in the same network hub or network switch of the PC using Wireshark.

As soon as the web server address is known, this can be typed as follows in the web browser:

http://192.168.1.82/

If the web page does not appear, check Proxy settings. When using a direct connection from a PC to the
web server, use a crossover cable or if using through a hub, use a straight cable.

For details on how to change MAC parameters, refer to application note Serial-to-Ethernet Bridge Using
MCF51CN Family and FreeRTOS (document AN3906).

The software accompanying this application note can be obtained by the IP address using the dynamic host
configuration protocol (DHCP). The DHCP can be enabled by changing a MAC parameter. Figure 3
shows mac.shtml DHCP selector stored in the web server.

Figure 3. Static or dynamic IP address selector

The web server starts with the following configuration, but can be changed at runtime using a
configuration web page viewable through a web browser.

Table 1. Default MAC parameters

MAC Parameters

MAC Address 00:CF:52:35:00:07

IP Address 192.168.1.3 for static implementation

Mask Address 255.255.255.0

Gateway Address 192.168.1.1

Server Address to Connect to an Address 192.168.1.3

Static or Dynamic Address Static
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 3

Introduction to Web Server
For example, the following web page is the home page displayed when the assigned IP address is typed in
the web browser. It also allows navigation to all the web pages stored in the MCF51CN128 internal ROM
memory.

Figure 4. Home webpage

The web server is able to manage the following web services. For this particular application note, a list of
web services is presented with their respective applications:

• HTTP 2.0 — Persistent connections or keep-alive sessions are useful to avoid opening new TCP
connections for each file, thereby increasing HTTP response performance. This feature is needed
to use the AJAX method.

• SSI — Server side include (SSI) directives that give dynamic content to a web page. For example,
a string previously defined as "IP_ADDRESS" in HTML code can be replaced with "10.81.64.38"
when it is requested by a client. In this application, the SSI shows MCU settings stored on the ROM
at runtime.

• AJAX — Displays web page changes without refreshing all the contents on the web page. From
an AJAX perspective, the web server needs to support only SSI directives. The web client must
support JavaScript to request information in background mode and does not refresh the entire page.
The web client is responsible for requesting this information at regular times. This application uses
AJAX to update counters every millisecond.

• FORMS (POST request) — A web-form is a friendly scheme in which you can send information
to the web server. MCU settings that can be changed are present in a web-form.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor4

Introduction to the Web Server Software
• CGI (POST request) — For this application, a common gateway interface (CGI) is used to run a
predefined routine inside the web server (MCU) and generate a new web page in response. In this
application, a CGI is run when a web-form is sent for processing.

NOTE
The web server also presents a webpage showing what RTOS tasks are
running and what their stack consumption is for a better customization.

3 Introduction to the Web Server Software
The web server is implemented using lwIP TCP/IP stack. To access the socket interface, the lwIP uses
three levels. These levels are sorted based on ease of use but with more ROM and RAM usage.

• BSD Socket Interface — Is a friendly API that accesses network sockets with the well-known
socket interface popularized by several TCP/IP stacks.

• Netconn Interface — Is a low-level implementation of the socket interface targeted for
low-memory MCUs. It requires more cooperation from the application than BSD sockets, but it
remains easy to use and thread-safe. This interface was used for the web server as a balance
between low-memory code and user-friendly API.

• Raw API Interface — Is near the TCP layer and contains a set of callbacks in which the TCP/IP
stack needs application cooperation to read/write network sockets.

The HTTP or web services work in two communication sides, server and client. The server executes client
requests. These HTTP requests can be as long as 800 bytes. A standard web server application receives
this information by copying it from the TCP/IP stack to the RAM area. Because RAM is a valuable element
in the MCF51CN128, the web server takes the received request by reference or in a non-copy fashion. The
received request is managed as a linked list of the packet’s segments and each can go up to a configurable
number. In this application note, the TCP/IP packet's segments are limited to 256 bytes. The lwIP has a
memory management that handles packets better than the application layer. The web server then reads the
client request from a linked list that requires more bytes of ROM but avoids RAM segmentation at the
application layer.

The web server is able to show static content. Content can be of any length and the TCP/IP is responsible
of splitting it on necessary HTTP (TCP packets) responses from the server to the client.

3.1 Server Side Include (SSI) Support
The web server is also able to send internally-generated web pages based on some runtime-replaced strings
using SSI directives.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 5

Introduction to the Web Server Software
For example:
<!--#echo var="GREETING"-->

This text is replaced by a standard string if the following is true:

• GREETING is a valid string that executes a function to replace the complete SSI string with a new
one.

• Web page extension ends with .FSL or .SHTML

In this example, GREETING is replaced by a standard greeting that depends on the web browser language
requesting the web page.
Accept-Language: en

This request is sent during GET request and as soon as the GREETING request is received, it is replaced
by "Hello" (English). By finding:
Accept-Language: fr

The GREETING string is replaced by "Salut" (French) and so on.

A web file stored in the internal memory is not limited to a specific number of SSI directives. A web page
sent from the server to the client needs to include a content-length header showing the exact number of
bytes of the web page. The web page length cannot be known when SSI directives are included. Due to the
limited RAM memory on this MCU, the whole web page cannot be replaced and stored to find out the
exact number of bytes to be sent to the client. This is resolved by using the transfer-encoding HTTP header
option which is configured as "chunked". The content can be divided into chunks. Each chunk is prefixed
by its size in bytes. A zero size chunk indicates the end of the response message.

As an example, Figure 5 shows values stored in the FLASH memory and requested by the HTML code
using SSI directives. The information is replaced at runtime with the correct string stated in the http_ssi.h
file.

Figure 5. SSI directives on original HTML source code
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor6

Introduction to the Web Server Software
Figure 6. Web page with replaced string using SSI method

3.2 Asynchronous JavaScript and XML (AJAX)
The web server implementation supports Asynchronous JavaScript and XML (AJAX). It is a web method
that allows web page content to be updated in the background, or without updating the whole page. The
web browser is responsible for regularly requesting a small file with the information that is required to be
updated and shows it on specific parts of the web page. The web contentappears to be dynamic and
changing at runtime. For this web server implementation, these small files must have an FSL extension
and are written in SSI directive format, so they can be updated at runtime.

For this implementation, the web browser (client) must process all the transactions. The client requests the
background file at regular times (1 second on this implementation) and the server must be able to supply
this file.

The following steps must be followed to use AJAX:

• The HTML source code stored in the web server must have AJAX sentences. Go to ajax.htm for
details on JavaScript language specific implementation.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 7

Introduction to the Web Server Software
• The requested file needs to be written in SSI directives, therefore the response to the client is
correctly replaced inside the web server, hiding the details of replacement to the client.

• The web server must support the HTTP persistent connection feature present in the lwIP TCP/IP
stack.

Figure 7 shows the SSI directives that are replaced for this specific AJAX implementation.

Figure 7. ajax.fsl file requested in background using AJAX method

Figure 8 shows how the information is dynamically updated on a web browser using AJAX.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor8

Introduction to the Web Server Software
Figure 8. AJAX web page dynamically updated in background

3.3 Common Gateway Interface (CGI)
The web server supports CGI to run client requests by the server. The CGI functionality appears while
executing a web-form action. See Figure 9 for details. The web-form is sent after pressing the SEND
button.

Figure 9. CGI interface using web-form buttons
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 9

Introduction to the Web Server Software
NOTE
To reset the board using the web page interface the following must be
checked:

• Software is working in a standalone way (not using the debug interface).

• A single POR must be executed after each programming of the MCU to
allow the system to support software resets.

Not following these steps before executing a web-form reset can lead to an
unresponsive system that is allowed to resume operation only after an
on-board reset.

3.4 Tasks Status
By typing [assigned IP address like http://10.81.64.38]/tasks.htm, the task status is viewable. This web
page is useful to know the task stack consumption. The stack column shows the number of long words that
are available for each task stack. If one of these numbers is near to zero, then the respective stack is near
to overflow. Most of the time, an overflow in the stack means an overflowed area is overwriting other
memory areas and the error can affect the whole system in unknown ways.

The following FreeRTOS port does not support a dedicated interrupt stack when switching to interrupts.
Then the sum of all the interrupt stacks must be considered as delta and needs to be considered in each
task, besides its own task stack space. A future version of FreeRTOS for ColdFire will provide
user/supervisor support present in ColdFire architecture. This will allow switching to a dedicated interrupt
stack during interrupt handling. The delta needs to be considered as part of the interrupt stack only,
therefore reducing RAM consumption per task.

Figure 10. Tasks' status on the MCF51CN128

3.5 SD Card Support
The web page is implemented in a way that a file system can be added with an SD card. A file stored in
the SD memory can then be displayed on a regular web browser window.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor10

Web Server Software
3.6 Limitations
Due to limited RAM memory, only one client must be connected to the web server at the same time. One
way to manage multiple clients is to create a task for each new client. However, per each new task, a
considerable amount of RAM memory is required for stacking purposes. If multiple clients are required,
an upgrade to the MCF5223x or MCF5225x must be considered.

3.7 Principle of Operation
The software was developed for the MCF51CN128 reference design hardware to demonstrate low cost and
small board size. But, it can also be used in the Tower board selection between either the M51CN128RD
or V1TOWER C-macros inside the m51cn128evb.h file.

Figure 11. Code snippet for hardware change

4 Web Server Software

4.1 Software Architecture
Figure 12 shows how the web server is divided and what software blocks are used for this implementation.

Figure 12. Software segmentation

For more information regarding memory footprint or details regarding FreeRTOS or lwIP, refer to
application note Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS (document AN3906).
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 11

Web Server Software
4.2 Software Hierarchy
Figure 13 shows the software files hierarchy.

Figure 13. File implementation

WEB
SERVER

main.c

HAL SERVICES APPLICATIONS

RTOS

FreeRTOS SSI WEB
SERVER CGIHILBSP SelectorFECGPIO

MAC Constants lwIP TCP/IP
Stack

Hardware Abstraction Layer

gpio.c
gpio.h

fec.c
fec.h

cf_board.h FreeRTOSC
onfig.h

http_ssi.c
http_ssi.h

http_server.c
http_server.h
static_web_p
ages.c

http_cgi.c
http_cgi.h

Apps

lwipopts.hconstants.cmac_rtos.c
mac_rtos.h

Hardware
Independent
Layer
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor12

Web Server Software
4.2.1 Hardware Abstraction Layer (HAL) Implementation

The HAL is defined as the collection of software components that gives direct access to the hardware
resources, such as peripherals, configuration registers, optimized assembler routines (with their
appropriate prototypes), pre-compiled object code libraries, or any other hardware dependent resource,
through the HAL – HW Interface.

Figure 12 is a representation of the software blocks that are most important for the HAL. The HAL uses
modules available in the MCF51CN128 MCU.

4.2.2 Fast Ethernet Controller (FEC) Handling

Due to reduced memory footprint, a single Tx buffer is used to transmit data and two Rx buffers are used
to receive information. For details on fast Ethernet controller (FEC) handling, refer to application note
Serial-to-Ethernet Bridge Using MCF51CN Family and FreeRTOS (document AN3906).

Table 2. Software file descriptions

Layer File Name Description

Main main.c Enable and disable the tasks running on the MCF51CN128 MCU: in
this case, the web server

HAL gpio.c Routines that use pins directly for the selected MCU

gpio.h Points all the modules to a specific pin for the selected MCU

fec.c Low level Init for FEC driver

fec.h Number and length of RX/TX buffers

cf_board.h HAL layer to use with this Serial Bridge

HIL mac_rtos.c MAC driver used by lwIP TCP/IP stack

mac_rtos.h MAC driver header

constants.c Structure containing all the default parameters after reset

lwipopts.h lwIP options to enable or disable services

FreeRTOSConfig.h FreeRTOS options to enable or disable services

Applications http_cgi.c Selector between different CGIs

http_cgi.h CGIs defined by the user and application

http_ssi.c Parser to replace SSI directives at runtime

http_ssi.h SSI defined by the user and application

http_server.c Manages GET and POST requests

http_server.h RTOS tasks’ status and error messages

static_web_pages.c Contains web pages in an array form
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 13

Web Server Software
4.2.3 Hardware Independent Layer (HIL) Implementation

To maintain hardware independence, software components that belong to this layer can access the
controller's resources only by means of HIL components. Therefore, they shall refrain from directly
accessing the resources of the controller on which they are running. This feature allows for components
from this and the layers sitting above to run on different controllers without further change.

Figure 14 and Figure 15 are representations of the software blocks that are more important for the HIL.
The HIL is the nearest software layer to applications using HAL software layers.

4.3 Socket Interface
Figure 14 shows the socket flow from the server and client perspective.

Figure 14. Netconn socket flow diagram

Figure 15 shows the web server flow diagram. It uses a non-blocking accept function to switch from one
HTTP session to another. HTTP sessions are important because a single web browser can connect to the
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor14

Web Server API
web server port 80 by using more than one connection or session at the same time. This improves
performance and takes advantage of keeping connections open by using the keep-alive feature.

Figure 15. Webserver flow diagram

5 Web Server API
This section shows the main functions used for the web server application. This task needs to be added
using the thread support (sys_thread_new) of lwIP instead of using the task creation of FreeRTOS
(xTaskCreate).
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 15

Customization
The way the web server task must be called is as follows:
(void)sys_thread_new("WEB", HTTP_Server_Task, NULL, WEBSERVER_STACK_SPACE,
HTTP_TASK_PRIORITY);

Details about the function are provided:

Syntax:
void
HTTP_Server_Task(void *pvParameters)

Description:
/**
 * Start an embedded HTTP server Task: 1 client and multiple files per transfer
 *
 * @param none
 * @return none
 */
Starts the Web server

The web server is capable of supporting GET and POST requests from a web client. The support given to
these requests is enough and must not be changed.

6 Customization
For customization, only the following files must be modified for a change in software or hardware:

For a standard web server, only the following files are required to be changed:

• Static_web_pages.c — This C file contains each file on an array-scheme. To add or remove new
files, the array contains only the file's data. The HTTP header is generated at runtime, therefore
there is no need to create it at the compile time.

• http_ssi.h — To add new SSI directives, SSI_CMD_CHANNEL0 must be followed as a guide. The
first element states the string to be used as ID and the second function to be called when the string
is found in the HTML source code. This function must return the string to be used to replace the
ID string. Finally, add it to the array of SSI directives called SSI_CMD_ARRAY.

Table 3. Customization

File Names Description

cf_board.h Used to point to a new BSP, new HAL software drivers

lwipopts.h lwip configuration file. Enable/disable tcp/ip options

gpio.c/gpio.h Change GPIO used for all modules in the MCU

FreeRTOSConfig.h FreeRTOS user configuration file. Enable/Disable features

static_web_pages.c Contains web pages

http_server.h Presents error messages

http_ssi.h The list of SSI directives and their string replacements

http_cgi.h The list of CGI applications
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor16

Conclusion
Figure 16. Example Code 1 — SSI Example

• http_cgi.h — To add new CGI routines, CGI_RESET_CONFIGURATION must be followed as a
guide. The first element states the name of the CGI to be used for the POST request and the second
element states the function to be called for the found CGI. This function will receive as a parameter,
the request received from the POST request. Finally, add it to the array of CGI routines called
CGI_CMD_ARRAY.

Figure 17. Example Code 2 — CGI Example

• cf_board.h — If a change of the MCU is required to upgrade to MCF5223x or MCF5225x,
cf_board.h must point to the new low level drivers to be used by the application. Use
MCF51CN128 for details on how MCU selection is used on the CodeWarrior project.

Additional customizations are not required because the web server has enough services with the provided
RAM memory. The application is fine-tuned to provide good performance with limited resources.

7 Conclusion
This document described how a web server can be implemented in the MCF51CN128 using only internal
memory in the smallest package (48-pin QFN). The document also described some HTTP services like:
SSI, Forms, Ajax, and Dynamic replacement using lwIP as the TCP/IP stack and FreeRTOS as the RTOS.
The software showed that all web services mentioned can be implemented in less than 128 KB of ROM
and 24 KB of RAM.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 17

Considerations and References
8 Considerations and References
Find the newest software updates and configuration files for the MCF51CN128 on the Freescale
Semiconductor home page, www.freescale.com:

• MCF51CN128 Reference Design and Tower System were the hardware used to test the
AN3928SW.

• For more information on FEC, refer to MCF51CN128 Reference Manual (document
MCF51CN128RM) at www.freescale.com.

• To learn more about the Tower System, refer to www.freescale.com/tower.

• To learn more about the MCF51CN128 Reference Design details, refer to MCF51CN128 Product
Summary Page.

• The BridgeSoftwareDemo software was developed and tested with CodeWarrior for ColdFire
V6.2.1.

• Download the source files for AN3928SW.zip from www.freescale.com.

• For more information regarding software or hardware refer to www.freescale.com/support.
Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor18

www.freescale.com/support
www.freescale.com
www.freescale.com
www.freescale.com
www.freescale.com/tower
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCF51CN128&nodeId=0162468rH3YTLC00M924B2

Web Server Using the MCF51CN Family and FreeRTOS, Rev. 0

Freescale Semiconductor 19

THIS PAGE IS INTENTIONALLY BLANK

Document Number: AN3928
Rev. 0
08/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Introduction to Web Server
	2.1 Hardware Implementation
	2.2 Principle of Operation

	3 Introduction to the Web Server Software
	3.1 Server Side Include (SSI) Support
	3.2 Asynchronous JavaScript and XML (AJAX)
	3.3 Common Gateway Interface (CGI)
	3.4 Tasks Status
	3.5 SD Card Support
	3.6 Limitations
	3.7 Principle of Operation

	4 Web Server Software
	4.1 Software Architecture
	4.2 Software Hierarchy
	4.2.1 Hardware Abstraction Layer (HAL) Implementation
	4.2.2 Fast Ethernet Controller (FEC) Handling
	4.2.3 Hardware Independent Layer (HIL) Implementation

	4.3 Socket Interface

	5 Web Server API
	6 Customization
	7 Conclusion
	8 Considerations and References

