Freescale Semiconductor
Application Note

Document Number: AN3888
Rev. 0, 08/2009

Advanced Development with
Microsoft®.NET Micro Framework 2.0

by Multimedia Applications Division
Freescale Semiconductor, Inc.
Austin, TX

This document describes how to perform advanced
development tasks to create applications using an i.MX
platform and the M icrosoft® .NET Micro Framework.
These tasks (with examples) are as follows:

» GPIO pin configuration

» Working with threads, events, and persistent data

* Working with GUI elements

* Working with Windows® SideShow® applications
Before reading this document, it is suggested that users read
the Development with Microsoft® .NET Micro Framework
2.0 (AN3887) Application Note, which providesinformation

and examples for the keyboard, certain interrupts, and the
graphical user interface.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

11
12
13.

21
2.2

31
3.2
33

4.1.
4.2.
4.3.
4.4.

51
52
53.

6.1.
6.2.

Contents
GPIO Pin Configurationc.covvuvunn. 2
Identify CPUPINS 2
Configure PlatformPins 2
Example: Serial Communicationswith GPIO 6
Threads 7
Multithreading ..., 7
ImplementaThread 7
Bvents 8
Definethe Delegate and Variable 9
Implement and Assign the Function 9
Example: Events, Threads, and GUI Usage 10
PersistentData ..o 14
Create StorableData 15
Example: PersistentData 15
CresteaFlashReference 16
FlashReferenceClass 16
GUI Applications ..., 17
Standard Ul Elements 18
UsingUlIElements 18
Usethe ScreenasaBitmap.................... 24
SideShow Applicationst 28
SideShow Enhanced Display Types 28
Example: SideShow Applications 28

B POWERED
®

ARM

freescale"

semiconductor

|
y

'
A

GPIO Pin Configuration

1 GPIO Pin Configuration

Genera Purpose Input/Output (GPIO) ports are sets of single-bit I/O pinsthat are used for input or output.
Embedded applications use GPIOs for controlling items such as switches, LEDs, as well as for handling
button presses. This section describes how to program the GPIOs and provides an example for each
concept.

1.1 Identify CPU Pins

Pin configuration is performed using the I nputPort, I nterruptPort and OutputPort classes, located in
the Microsoft.SPOT.Har dwar e namespace. Each classis specific to its required pin configuration. Pin
information is provided by thei.MX board manufacturer through a static class called Pins, which contains
multiple Cpu.Pin constant definitions that are used to associate specific pins with aunique pin ID.

Pin identification numbers (IDs) are consecutive, where:
e GPIO Port A Pin 0-31 numbers are 0-31
e GPIO Port B Pin 0-31 numbers are 32—-63
* GPIO Port C Pin 0-31 numbers are 64-95
e andsoon

If pin number isneeded that is not defined in the Pins class, update the Pins class by adding the definition
of the pin and associating its corresponding 1D as defined above.

1.2 Configure Platform Pins

Freescale recommends configuring the pins for a particular platform in a separate <Platfor m>Pins class
where <Platfor m> refersto the name of the platform. For example, the MXSDVK platform contains a
class called MxsdvkPins, which is defined as follows:

public static class MxsdvkPins {
/] Buttons
public const Cpu.Pin leftButton = Pins. GPl O PORT_B_17;
public const Cpu.Pin rightButton = Pins.GPl O PORT_B_15;
public const Cpu.Pin upButton = Pins.CGPIO PORT_B_14;
public const Cpu.Pin downButton = Pins.GPl O PORT_B_16;
public const Cpu.Pin selectButton = Pins. Gl O PORT_B_18;
public const Cpu.Pin rewindButton = Pins. Gl O PORT_A 12;
public const Cpu.Pin fastforwardButton = Pins.GPl O PORT_A 13;

/1 LEDs

publi ¢ const Cpu. Pin greenKeypadLed = Pins. GPl O PORT_D 9;
}
The M xsdvkPins class substitutes user-provided names for the available GPIO pins on the MXSDVK
platform. This enables, for example, usersto refer to the Left Keypad Button pin as
MxsdvkPins.leftButton, rather than by the cryptic term Pins.GPIO_PORT_B_17.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

2 Freescale Semiconductor

GPIO Pin Configuration

1.2.1 Configure an Input Pin

The InputPort classin the Microsoft.SPOT.Har dwar e namespace configures apin as an input pin with
an optional glitch filter and pull up/down resistor. The glitchfilter isused to avoid the bounce effect caused
when the pin is connected through a path with mechanical state changes. Examples of mechanical switches
include keyboards, push buttons, and relays.

Use these steps to configure an input pin:

1. Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to select an available (non-protected) GPIO.

2. Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the following example, PORTC pin 5 is associated
with pin ID 69 on the device:

public const Cpu.Pin GPIO PORT_C 5 = (Cpu.Pin)69;
3. Update the <Platfor m>Pins class and add an intuitive name for the pin:
public const Cpu.Pin sensorlnput = Pins. Gl O PORT_C 5

4. Declare the object that references the InputPort. It istypically defined as private for the classin
which they are used:

private |nputPort sensorl nputPin;

5. Definethe object and configure the pin. Initialization options vary depending on the pin

requirements:
sensor | nput Pi n = new | nput Port (MkswdvkPi ns. sensor | nput, true, Port.Resi storMde. Pul |l Up);
NOTE
The glitch filter can be enabled if the input pinis connected to a mechanical

switch.

The resistor mode can be specified based on the normal state required for
the pin. However, if the i.MX does not support the specified resistor mode,
then the resistor mode has no effect on the pin. Define the resistor mode that
minimizes current draw to the circuitry around the pin. Select the resistor
mode carefully, because the read value on the pin may be inaccurate if the
pin is connected to isolated or high impedance circuitry.

Attempting to configure a pin that is already configured causes an
exception. To reconfigure a pin, first call the Dispose() method.

6. Read the pin using the Read() method of the I nputPin object:
if (sensorlnputPin. Read()) runlnputAction();

7. Deallocate resources to disable the pin for a port and mark it as available for reuse:

sensor | nput Pi n. Di spose();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 3

GPIO Pin Configuration

1.2.2

Configure an Interrupt Pin

The InterruptPin classis derived from the I nputPort class. In addition to the characteristics and
behaviors inherited from the InputPort class, the InterruptPort class publishes an event that can be
configured to trigger on a change of the level or edge of the pin.

Use these steps to configure an interrupt pin:

1.

Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to determine an available (non-protected) GPIO.

Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the following example, PORTC pin 6 is associated
with pin ID 70 of the device:

public const Cpu.Pin GPIO PORT_C 6 = (Cpu.Pin)70;

Update the <Platform>Pins class and add an intuitive name for the pin:
public const Cpu.Pin leftButton = Pins.GPl O_PORT_C 6

Declare the object and define an object where the pin isreferenced in the code:
InterruptPort |eftButtonPin;

Define the object and configure the pin. Initialization options vary depending on the pin
requirements:

leftButtonPin = new I nterruptPort(MswdvkPins. | eftButton, true,
Port. Resi st or Mode. Pul | Up, Port.InterruptMde. |Interrupt EdgeHi gh);

See Section 1.2.1, “Configure an Input Pin,” for important information about the glitch filter,
resistance mode, and accidental pin re-configuration. Select the interrupt mode carefully. Takeinto
account the resistor mode in order to avoid false interrupts.

Configure the interrupt handler. Create a function of type GPIOIlnterruptEventHandler, and
then add this function to the event Onl nterrupt of the leftButtonPin object.

| eft Butt onPi n. Onl nterrupt += new GPl O nt errupt Event Handl er (I ef t Butt onPi n_onl nterrupt);

NOTE

Multipleevent handlers can be assigned to aparticular event. The+=and—=
operators are used to subscribe and unsubscribe events, respectively.

Define the event handler:

void | eftButtonPi n_onlnterrupt(Cpu.Pin port, Bool ean state, TinmeSpan tinme) ({
Debug. Print ("l eftButtonPin interrupt fired");

}

Clear the interrupt. If alevel interrupt event is configured in Step 4, call the Clear I nterrupt()
method of the object:

leftButtonPin.Clearlnterrupt();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor

0.

GPIO Pin Configuration

NOTE

The ClearInterrupt() method istypically called at the beginning of the
event handler code in order to enable the interruption immediately. For a
level interrupt configuration, the execution of the Clear I nterrupt() can be
delayed to create more complex event handling mechanisms. For example,
when akey is pressed, the event handler code could process the key
immediately and then start an asynchronous timer to delay the execution of
the Clear Interrupt() function. This allows usersto set an interval for key
press repetition.

Read the pin using the Read() method of the inputPin object:

if (sensorlnputPin. Read()) runlnputAction();

10. Dedllocate resources of the pin to disable the pin for a port and mark it as available for reuse:

1.2.3

sensor | nput Pi n. Di spose();

Configure an Output Pin

The OutputPort class of the Microsoft.SPOT.Har dwar e namespace sets the value of a GPIO pin by
gpecifying the initial state of the pin. Configure the state of the pin in runtime by calling the Write()
function of the pin object.

Use these steps to configure an output pin:

1.

Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to select an available (non-protected) GPIO. Select the pin based on ease
of identification, access bility, and value of the current. Thei.MX microprocessors limit the current
provided to the pins.

Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the example below, PORTC pin 7 is associated with
pin 1D 71 on the device:

public const Cpu.Pin GPIO PORT_C 7 = (Cpu.Pin)71;
Define an object where the pin isreferenced in the code:
Qut put Port out put Pi n;

Initialize the object and configure the initial value for the pin. Initial states should be true for
logic 1 and false for logic O:

out put Pin = new Qut put Port (Pins. GPl O PORT_C_7, false);

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 5

GPIO Pin Configuration

NOTE

The OutputPort class provides a constructor for additional pin
configuration options, such as the glitch filter and resistor mode.
Configuration is similar to the configuration of InputPort. The
recommended initial state isfalselogic O, to prevent lack of current at the
start up and in extreme situations damage of the i.M X due to the current
demand. Attempting to configure apin that is already configured causes an
exception. Call the Dispose() method prior to reconfiguring a pin.

5. Read the pin using the Read() method of the outputPin object:

1.3

if (outputPin.Read()) runQutputAction();

Write the pin. To force avalue on the pin, use the Write() method of the outputPin object, where
true represents alogical 1 and falserepresents alogical 0.

outputPin.Wite(true);
Deallocate resources of the pin to disable the pin for a port and mark it as available for reuse:

sensor | nput Pi n. Di spose();

Example: Serial Communications with GPIO

This example describes the initialization, configuration, and use of three GPIO pins. Thefirst pinis
configured as an input, the second as an interrupt input, and the third as an output.

1. Add areference to the namespace that contains the classes to be used:

using M crosoft. SPOT. Har dwar e;
Define the objects that are used in this example:

I nput Port i nput Pin;
InterruptPort |eftButtonPin;
Qut put Port out put Pi n;

Initialize and configure the pin objects:

inputPin = new InputPort(Pins. GPlO PORT_C 5, true, Port. ResistorMde. Pull Up);
|l eftButtonPin = new I nterruptPort(Pins.GPl O PORT_C 6,

true, Port. ResistorMde. PullUp, Port.InterruptMde.Interrupt EdgeH gh);
out put Pin = new Qut put Port (Pins. GPl O PORT_C_7, false);
| eft Butt onPin. Onl nterrupt +=

new GPl Ol nt errupt Event Handl er (i nput Pi nlnterrupt _onlnterrupt);

The inputPininterrupt_onlnterrupt function is defined as follows:

private void i nputPinlnterrupt_onlnterrupt(Cpu.Pin port, Bool ean state, TineSpan tinme) {
Debug. Print ("inputPinlnterrupt interruption");
//leftButtonPin.Clearlnterrupt();

NOTE

The Clear I nterrupt() method is not needed in this case, because the
leftButtonPin is configured as an edge interrupt.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor

Threads

4. Usethe objects. Use Read mode for the three pin objects of this example and Write mode (only)
for the outputPin object. For the leftButtonPin object, use the interrupt(s) assigned to the
leftButtonPin object:

if (inputPin.Read()) ...
if (!leftButtonPin.Read()) ...
out put Pin. Wite(!outputPin. Read());

5. Dispose of the objects:

String | egend = "Data saved no: " + devi celLog. Log. Count. ToString();
devi ceLog. AddToLog(new Devi ce((byt e) devi ceLog. Log. Count, |egend));

6. Savethe object in Flash:

devi ceLogFl ash. save(devi celLog) ;

2 Threads

In development, the term thread means a thread of execution. Threads are away for aprogram to fork (or
split) itself into two or more, simultaneously (or pseudo-simultaneously) running tasks. Threads and
processesdiffer from one operating system to another but, in general, athread is contained inside aprocess,
and different threads in the same process share some resources, while different processes do not.

2.1 Multithreading

Although the .NET Micro Framework can execute only one application at atime, it provides a
multithreading functionality that allows execution of multiple threads in parallel. The .NET Micro
Framework assigns CPU time to the threads depending on the priorities specified for the threads
themselves, and for the priorities of the threads that execute the call. Additionally .NET Micro Framework
provides ways to suspend, resume, and sleep the thread.

2.2 Implement a Thread

Threads are managed through the Thread class in the System.Threading namespace. The Thread class
creates and controls a thread, setsits priority, and getsits status. This section explains how to create,
prioritize, start, deep, suspend or stop, and verify the state of threads.

2.2.1 Create a Thread

To create athread, assign afunction (without parameters or return data) to the creator of the thread object.
The created function contains the code for the thread. The thread code can call other functions and
reference shared data, such as global variables, registers, GPIOs, or serial ports.

Thread t1 = Thread(new ThreadStart (threadl));
The thread object is managed through t1 and the thread codeisin the thread1() function.

For shared data in threads, implement a synchronization process (such as flags, semaphores, mutex,
gueues) in order to read/write valid data.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 7

Events

2.2.2 Prioritize a Thread
Assign a priority to the thread in order to assign more MCU time to one thread than another:

tl.Priority = ThreadPriority. Hi ghest;

Itisrecommended to assign higher priority to threadsin critical processes, or to threadswhich haveaquick
process requirement.

2.2.3 Start a Thread

After defining athread object for the function to run as a thread, execute the thread using the Start()
function:

tl.Start();

224 Sleep a Thread

The Thread.Sleep method suspendsthe current thread for aspecified time. A running thread can typically
deep for aperiod of time because it has no processes to perform. To suspend the thread, use the deep()
static function. A static dleep function affects only the running thread. Use dleep to suspend the main
application. For example:

Thread. Sl eep(5000) ; /'l Sleep current thread for 5 seconds
Thread. Sl eep(0); // Exit fromthe current thread until next MCUtine assigned
Thread. Sl eep(Ti meout. Infinite); /'l Sleep current thread forever

2.2.5 Suspend a Thread

To suspend athread for an indeterminate amount of time, use the suspend and resume functions of the
thread object:

t1. Suspend();
t1l. Resune();

The Suspend function takes effect in the next sequentia execution of the thread. That is, if the Suspend
function is called, the thread code continues executing until the M CU time dedicated to that thread ends.
To exit the thread, execute the Thread.Sleep(0) instruction after the Suspend() instruction.

2.2.6 Verify the State of a Thread

Verify the state of athread through the ThreadState property of the thread object. For more information
about available states and invocations, see the NET Micro Framework Help.

if ((tl. ThreadState & ThreadSt at e. Suspended) == ThreadSt at e. Suspended)
/1 do sonething

3 Events

An event is an interruption to the system. The source of the interruption varies: key press, timeout, data
received, network found, information request, and so forth. An event is captured and processed by the

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

8 Freescale Semiconductor

Events

system to take a corresponding action. To use events, specify the functions to initiate when an action
occurs. For example, assign afunction at the application level to be called when serial dataisreceived and
decoded.

A common example of event implementation isfound in the serial communications process of encoding
and decoding data into frames at different layers. While many solutions are possible, events and threads
areuseful in allowing the main loop of the program to focus on the application, while del egating the serial
communications to a communications module. Thus, the module interrupts the main loop only when
required, such aswhen datais received and decoded.

The .NET Micro Framework functionality makesit easy to use events and threads to develop a
system-independent module for serial communications and frame specifications. Libraries (DLLS) are
used to include events and threads in an application.

In event communi cation, adel egate (comparable to afunction pointer type) identifiesthe object or method
that receivesthe event. The delegate isaclassthat can hold areference to amethod, and specifiesthe event
parameters. Event usage is a two-part process. define the delegate and variable, and then implement and
assign the event function.

3.1 Define the Delegate and Variable

Use these steps to define the delegate and variable:

1. Definethe delegate. Delegate definitions accept common .NET Micro Framework delegates or
custom delegates. For custom delegates, specify the parameter types and return values. For
example:

del egate void InterruptDel egat e(Obj ect sender, String description);

2. Definethe event variable using the event word. Event variable definitions accept common .NET
Micro Framework delegates or custom delegates. For example:

event InterruptDel egate OnLoad;

3. Apply the event variable to execute the assigned event code. Apply the event variable in athread
to execute the event code as a separate task. For example:

if (OnLoad !'= null) OnLoad(this, "Loaded all the nunbers");

3.2 Implement and Assign the Function

Use these steps to implement and assign the event function:

1. Definethe event function with the same parameter and return types specified in the delegate (the
parameter names may differ). For example:

voi d OnLoadEvent (Obj ect sender, String description) {
Debug. Print (description);
}

2. Assign the event. Use the += operand described in Section 1.2.2, “Configure an Interrupt Pin.”
For example:

OnLoad += new I nterrupt Del egat e(OnLoadEvent);

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 9

Events

3.3 Example: Events, Threads, and GUI Usage

This example, which includes threads, events, and GUI standard usage, uses the following classes:
* Program class starts a hard mathematical order process in the Har dM athEvaluation class

» HardMathEvaluation class uses eventsto notify the Program class at the end of each part of the
process

3.3.1 HardMathEvaluation Class

The Har dM athEvaluation class defines one del egate and two events. The objectiveisto create and order
abuffer of semi-random numbers. The class generates the numbers, exits the corresponding event, orders
the numbers, and again exits the corresponding event.

The following steps show how the classis built:
1. Include namespaces for the class:

using System
usi ng M crosoft. SPOT;
usi ng System Threadi ng;

2. Define datatypes and variables to use:

public del egate void InterruptDel egate(Object sender, String description);
public event InterruptDel egate OnGener at ed;

public event InterruptDel egate OnOrder ed;

private int[] buffer;

private Thread thread;

private int ordered;

public int Ordered {get { return ordered;}}

— InterruptDelegate defines the structure of the functions for the events OnL oad and
OnFinish.

— Thebuffer variable storesthe array of numbers (el ements) and the ordered variable (accessible
as property through Ordered) contains the number of elements already ordered.

— Thethread variable is used for a process that takes a long time to run as another task.
3. Use aconstructor to define the number of e ements to order and the size of the buffer variable:

publ i c HardMat hEval uation(int nunEl enents) {
buffer = new int[nunEl enents];

}

4. Generate the numbers. The generateNumber s method creates athread to work into the process as
another task:

public void generat eNunbers() {
ordered = 0;
thread = new Thread(new ThreadSt art (generat eNunbers_process));
thread. Start();
}
private voi d generateNunbers_process() {
for (int i =0; i < buffer.Length; i++)
buffer[i] = Mcrosoft.SPOT. Mat h. Randon{ | nt 32. MaxVal ue) ;
if (OnGenerated != null) OnGenerated(this, "Cenerated all the nunmbers");

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

10 Freescale Semiconductor

Events

NOTE

Definethe Random method inthe M ath classwith the namespace, because
thereisanother classwith the same namein the System namespace. Specify
which classto use.

5. Order the numbers. The order Number s method creates a thread to work into the process as
another task:

public void order Nunmbers() {
thread = new Thread(new ThreadSt art (order Nunbers_process));
thread. Start();
}
private voi d orderNumbers_process() {
int tenp, j;
for (int i =1; i < (buffer.Length); i++) {
=i
while ((j >= 0) && (buffer[j] > buffer[i])) j--;
if (buffer[j+1] > buffer[i]) {

=ity
tenp = buffer[i];
for (int k =i; k >j; k--) buffer[k] = buffer[k - 1];
buffer[j] = tenp;
}
ordered =i + 1;

}
if (OhOrdered !'= null) OnOrdered(this, "Done! all the nunbers are ordered");

3.3.2 Program Class

The Program classisbased on the sample Program class provided by the Microsoft Visual Studi o® 2005
development system, which is used to create a new project in the following folder:

C#/ . Net M crof ramewor k/ Wndow Appl ication
The following steps show the changes made to the provided Program classin order to run this example:
1. Include the needed namespaces:
using System Threadi ng;
2. Definethe types of data and variables to use:

private HardMat hEval uation order Num

private Text text1;

private Text text2;

private del egate void Updat eText Del egat e(Text | UEl enent, String text);
private Thread t1;

— order Num object is the reference to the HardM athEvaluation class that defines and applies
the events.
— textl and text2 are the objects that display text in the screen.

— UpdateTextDelegate defines the structure of the asynchronous function to be executed for
correct screen updating. For more information, see Section 5.1, “ Standard Ul Elements.”

— Thevariable t1 isused to run the update screen process as a separate task.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 11

The Main() method remains unchanged.

Initialize the variables. This step:

— Modifies the CreateWindow method to create a panel object of type Panel
— Initializes the Text objects

— Addsthe Text objectsto the panel

— Assigns the pandl as child of the mainWindow object

— Initializes the order Num object

— Assigns the events functions

With these changes, the new Cr eateWindow method containsthe foll owing code (some comments

areremoved to save space):

public W ndow Creat eW ndow() {
mai nW ndow = new W ndow() ;
mai nW ndow. Hei ght = Systemetrics. ScreenHei ght;
mai NW ndow. Wdth = System\vetrics. ScreenW dt h;

Panel panel = new Panel (); // Create a panel control.
textl = new Text();
text 1. Font = Resources. Get Font (Resour ces. Font Resour ces. smal |) ;

text 1. Text Content = Resources. Get String(Resources. StringResources. Stringl);

text 1. Hori zontal Ali gnment =
M crosof t. SPOT. Presentati on. Hori zont al Al i gnrment . Center;

textl. Vertical Alignnent = M crosoft. SPOT. Presentation. Vertical Alignment. Center;

text2 = new Text();
text 2. Font = Resour ces. Get Font (Resour ces. Font Resour ces. smal |) ;
text 2. Hori zontal Ali gnment =

M crosof t. SPOT. Presentati on. Hori zont al Al i gnrment . Center;

text2.Vertical Alignment = M crosoft. SPOT. Presentation. Vertical Ali gnment. Top;

panel . Chil dren. Add(text1);
panel . Chil dren. Add(text 2);
mai nW ndow. Chil d = panel ;

mai nW ndow. AddHand| er

(Buttons. Butt onUpEvent, new Butt onEvent Handl er (OnBut t onUp), fal se);
mai NW ndow. Visibility = Visibility.Visible;
But t ons. Focus(mai nW ndow) ;

/1 Create the HardMat hEval uati on control and assign its events.
order Num = new HardMat hEval uati on(1000);
or der Num OnGener ated +=

new Har dMat hEval uati on. | nt errupt Del egat e(OnGener at edNunEvent) ;
or der Num OnOr dered +=

new Har dMat hEval uati on. | nt er rupt Del egat e(OnOr der edNunEvent) ;
return mai nW ndow,

NOTE

Compiling the code at this point produces errors because the methods with
the OnGener atedNumEvent and OnOrderedNumEvent events code are
not yet defined.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

12

Freescale Semiconductor

Events

4. Start the process. The process is defined to start when any button is pressed. For this purpose,
additional lines are added to the OnButtonUp method. The changes are moved into an IF
condition, to avoid the casein which aprocessisrunning, akey is pressed, and the processtriesto
run again without having finished theinitial run. ThisIF condition verifiesthe value of the thread
variable, and is used for the screen update.

if (t1 == null)

The added lines start the hard mathematical order process, which continues through the
gener ateNumber s method, and then starts the screen update thread content in the t1 variable:
or der Num gener at eNunber s() ;
t1 = new Thread(new ThreadSt art (updat eW ndow));
tl.Start();
With the changes, the OnButtonUp method contains the following code (some comments are
removed to save space):
private void OnButtonUp(object sender, ButtonEventArgs e) {

Debug. Print (e.Button. ToString());

if (t1 == null) {

or der Num gener at eNunber s() ;

t1 = new Thread(new ThreadSt art (updat eW ndow));
tl.Start();

NOTE

Compiling the code at this point produces errors because the thread
updateWindow method is not yet defined.

5. Define the window update code. To correctly update the window content and view the screen
changes, the instructions for visual changesin functions must be called asynchronously.
Therefore, UpdateTextDelegate is used as a parameter in the asynchronous calls, and is defined
with two parameters. Thefirst parameter identifies the user interface text object to update, and the
second represents the text to update.

6. Definethe UpdateText method as follows, respecting the parameters and returning types defined
by the delegate UpdateTextDelegate:

private void UpdateText (Text | UElement, String text) {
| UEl enent . Text Content = text;

}
NOTE
Any function that respects the parameters and returns the types defined by
the UpdateTextDelegate can be afunction of that type.

7. Implement the updateWindow thread method. The updateWindow thread method is
implemented to update the text2 object with the number of elements already ordered. The call to
the UpdateText method is made through the Dispatcher.l nvoke method. Because this thread
method must be running forever to update the text, the code isin awhi | e(true) loop.

private void updateW ndow() ({
while (true) {

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 13

Persistent Data

4

text 2. Di spatcher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eText Del egat e(Updat eText),
new object[] { text2, orderNum Ordered. ToString() + " ordered" });

}
}

— The TimeSpan parameter representsthe .NET Micro Framework delay between the execution
of the Invokeinstruction and the UpdateText method. In this caseit is one second.

— The object[] parameter represents the parameters of the UpdateText method in array form.

Define the events code. There are two eventsin this example. One event is exited when the buffer
isfilled with semi-random number values. The second event is exited when the ordering process
is complete.

The OnGeneratedNumEvent event method is assigned to the order Num object for the
OnGener ated event in Step 3. Implement the function that starts the ordering process and updates
amessage on the screen. The function looks like this:

private void OnGenerat edNunEvent (Obj ect sender, String description) {
Debug. Print (description);
or der Num or der Nunmber s() ;
text 1. Di spatcher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eText Del egat e(Updat eText),
new object[] {textl, Resources. GetString
(Resources. StringResources. Stringl)+":"+description});

}

The OnOrderedNumEvent event method isassigned to the or der Num object for the OnOrdered
event in Step 3. Implement the function that updates a message on the screen and suspends the t1
thread, which updates the window with the numbers ordered. The function looks like this:

private voi d OnOrderedNunEvent (Obj ect sender, String description) {
Debug. Print (description);
text 1. Di spatcher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eText Del egat e(Updat eText),
new object[]{textl, Resources. GetString
(Resources. StringResources. Stringl)+":"+description});
t1. Suspend();
tl = null;
}

After suspending the t1 thread, the variable is set to null to allow the system to run again by
pressing any button. Thisis also donein Section 2.2.3, “Start a Thread.”

Persistent Data

Persistent dataisthat datastoredin Flash memory for restoration as needed, such as configuration options,
profiles, and control variables. This section explains how to maintain persistent datain .Net Micro
Framework at the managed layer.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

14

Freescale Semiconductor

Persistent Data

4.1 Create Storable Data

To be storable, datamust be defined as serializable. Such storable datadefinitionsinclude Sring, int, byte,
ArrayList, and so on. A serializable class can aso be created in order to enclose the storable data. Flash
memory can be erased and saved afinite number of times. It isrecommended to create a serializable class
with the storable data, and save the memory only when necessary.

4.2 Example: Persistent Data

In this example, the Device classis defined as a serializable class with two variables, name and id. The
application stores the data of these variablesin Flash. If the application needs to store the information for
more than one Flash device, create alog for the datausing an ArrayList object, located in the
System.Collections namespace, as the manager of the data.

[Serializable]
public class Device {
private String name;
private byte id;
public String Nanme {
set { nane = val ue; }
get { return nane; }
}
public byte Id {
set { id = value; }
get { returnid; }
}
public Device(byte Id, String Nane) {
id = 1d; nane = Nane;
}
}

The Devicel og class showed below, can be used to store a stack of data. The Devicel og class can be
updated with search functionsto allow searching for a device by name or ID.

[Serializable]
cl ass DevicelLog {
private ArraylList log = new ArrayList();
private Device |astDeviceUsed;
public ArraylList Log {
get { return log; }
}
publi ¢ Devi ce LastDevi ceUsed {
get { return |astDeviceUsed; }
set { | astDeviceUsed = val ue; }
}
public void AddToLog(Device device) {
l og. I nsert (0, device); /1 this to have the | ast el ement added at the start
}
publi ¢ void RenoveFromLog(Devi ce device) {
| og. Renpve(devi ce);
}
public void ClearLog() {
l og. Clear();
| ast Devi ceUsed = nul | ;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 15

Persistent Data

4.3 Create a Flash Reference

The ExtendedWeak Reference class in the Microsoft.SPOT namespace is used as reference to the data
to be stored in and recovered from Flash.

To save and recover datafrom Flash, use these steps:
1. Add areference to the namespaces where the classes to use are located:
usi ng M crosoft. SPOT;
2. Definethe object that is used for the process:
Ext endedWeakRef er ence fl ashRef erence;
3. Load the objects to recover the data from Flash, or create the object in Flash:

fl ashRef erence = Ext endedWeakRef er ence. Recover Or Cr eat e(

t ypeof (Progranj, /1 marker class

id, /1 id nunber in the marker class

Ext endedWeakRef er ence. c_Sur vi vePower down) ; /1 flags
fl ashRef erence. Priority = (Int32)ExtendedWakReference. PrioritylLevel.|lnportant;
Obj ect data = flashReference. Target; /'l recovering data

Data isnull if thisisthefirst timeit isused, or if the datais damaged.
4. Savethedatain Flash:

fl ashRef erence. Target = data;

To clear the saved data, use null instead of using the data.

4.4 FlashReference Class

The FlashRefer ence class encloses the basic functionality of the ExtendedWeak Reference class. The
FlashReference class only needs a unique identifier for the object to |oad/save Flash:

public class Fl ashReference {
private ExtendedWakReference fl ashReference;
private uint id;
public Fl ashReference(uint 1d) {
id=1d;

}
public Object load() {
fl ashRef erence = Ext endedWeakRef erence. Recover Or Cr eat e(

t ypeof (Progran, /'l marker class

id, /!l id nunber in the marker cl ass

Ext endedWeakRef er ence. c_Survi vePower down) ; /1 flags
fl ashRef erence. Priority=(lnt32) ExtendedWeakRef erence. PrioritylLevel.Inportant;
Obj ect data = fl ashRef erence. Target; /'l recovering data

return data;

}
public void save(Object data) {

fl ashRef erence. Target = dat a;

}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

16 Freescale Semiconductor

GUI Applications

4.5 Example: FlashReference Class

The following example uses the FlashRefer ence, Devicel og and Device classes used in Section 4.2,
“Example: Persistent Data,” and Section 4.4, “FlashReference Class.” This exampleillustrates the use of
the FlashReference class for the following tasks:

» Store serializable data in the Flash memory for the first time
* Recover the data from Flash
* Update the data
» Savedatain the Flash again
To perform this example, use these steps:
1. Add areference to the namespaces where the classes to use are located:

Devi ceLog devi celog;
FI ashRef erence devi ceLogFl ash;

2. Definethe object that is used for the process:

Devi ceLog devi celog;
FI ashRef erence devi ceLogFl ash;

3. Load the object to recover the data from Flash. The number O (zero) is the identification of the
devicel.og object in Flash. Select a number as required, to identify the storable data.

devi ceLogFl ash = new Fl ashRef erence(0);
devi ceLog = devi ceLogFl ash. | oad() as Devicelog;

4. |Initialize the object, if needed. Initialize the object for the first read time of the Flash object, or if
the Flash object is damaged:

if (deviceLog == null) deviceLog = new Devi ceLog();
5. Update the object. Update/change/del ete data in the object:

String | egend = "Data saved no: " + devi celLog. Log. Count. ToString();
devi ceLog. AddToLog(new Devi ce((byt e) devi ceLog. Log. Count, |egend));

6. Savethe object in Flash:

devi ceLogFl ash. save(devi celLog) ;

5 GUI Applications

This section describes two ways to create graphical user interface elements:

» Usethe standard User Interface (Ul) objects provided by .NET Micro Framework (which are
limited in number, properties, and scope)

* UsetheBitmap class

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 17

GUI Applications

5.1

Standard Ul Elements

Visua Studio 2005 and .Net Micro Framework provide standard Ul elements that allow quick design of
thelook and feel of screen components. Table 1 describes the most commonly used standard Ul elements.

Table 1. Standard Ul Elements

Element Description

Canvas

Defines an area, or canvas, within which child elements can be explicitly positioned by using coordinates that
are relative to the upper-left corner of the canvas

Image

Displays a bitmap image

ListBox

Implements a list of selectable items

ListBoxltem |Implements a selectable item inside a ListBox object

Panel

Constitutes a base class for all panel elements

StackPanel |Arranges child elements (child objects) in a single line that can be oriented either horizontally or vertically

Text Displays a block of text
TextFlow Provides members that control how text flows on the display device (screen)
TextRun Provides members used to create and work with a text run, which is a string of characters that share a single
property set
Shape Represents a line or a two-dimensional shape displayed on a hardware display device; the implemented shape
objects are: ellipse, line, polygon, and rectangle
5.2 Using Ul Elements

To interact with the interface elements, use functions that are called in the queue of messages of any Ul
element. Thisavoid issues with the interaction of visual Ul elements.

The user interface el ements (Ul Element) are an implementation of the dispatcher abstract object
(Dispatcher Object). This dispatcher object adds the queue messaging service to the Ul, which must be
used for any visual change in the object to take effect. Use any dispatcher of any object in the window,
including the window object, to update any visual property of the Ul elements.

To update the elements and view the effects in the screen, use these steps:

1. Configure the delegate for the function that updates the user interface element:

private del egate voi d UpdateScreenDel egat e(U El enent newVal ue, bool set Focus);
private del egate

voi d AddCanvasChi | dDel egat e(Ul El ement newVal ue, int top, int left, bool setFocus);
private del egate voi d UpdateH nt Del egate(String hint);

Implement the functions. These functions must be defined with the same parameters, using the
same types of data. The content of the function updates the properties of the user interface
elements. The user interface element to update can be a parameter for the function, or the user
interface element can be referenced by a global variable.

private void UpdateScreen(U El ement newal ue, bool setFocus) {

_mai nW ndow. Chi I d = newval ue;
if (setFocus) Buttons.Focus(newal ue);

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

18

Freescale Semiconductor

GUI Applications

private void AddCanvasChi |l d(Ul El enent newvalue, int top, int left, bool setFocus) ({
Canvas. Set Top(newal ue, top);
Canvas. Set Lef t (newval ue, left);
if (setFocus) Buttons.Focus(newal ue);
_canvas. Chi | dren. Add(newal ue) ;

}
private void UpdateH nt (String text) {

if (_hint '= null) _hint. TextContent = text;
}

The Buttons.Focus method moves the button focus to a specified display element, and in thiscase,
is used to catch keyboard events. This method is used to focus (using setFocus) on any element
that is associated with the keyboard, such as ListBox. At any specific point in time, there can be
only one element on a button device display that has the button’s focus. For example, if the
Buttons.Focus method is applied to the ListBox element, and then the ListBox element cleared,
then the Buttons.Focus method must be applied to other user interface elementsin the window,
including the window itself, in order to continue catching the keyboard events.

3. Add functions to the queue. Put the function call in the queue for the correct update of the user
interface elements:

_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eScr eenDel egat e(Updat eScr een) ,
new object[] { _panel, true });
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new AddCanvascChi | dDel egat e(AddCanvasChi | d),
new object[] { immge, 40, 10, false });
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eHi nt Del egat e(Updat eHi nt),
new object[] { "Actual State: Draw | nage" });

5.2.1 Example: Graphical User Interface

Thefollowing exampleillustrates architecture development of an application using .Net Micro Framework
user interface elements. This example uses the convention of the underscore character () to indicate
global private variables.

1. Add references to the namespaces where the classes are located:

using System Threadi ng;
using M crosoft. SPOT. Present ati on. Medi a;
using M crosoft. SPOT. Present ati on. Shapes;

2. Definethe objects that are used for this example:

/* Del egates */
private del egate voi d UpdateScreenDel egat e(Ul El ement newval ue, bool setFocus);
private del egate voi d AddCanvasChi |l dDel egat e
(Ul El enent newval ue, int top, int left, bool setFocus);
private del egate void UpdateH nt Del egate(String hint);
/* dobal variables for reference of user interface elements */
private Wndow _mai nW ndow,
private StackPanel _panel;
private Canvas _canvas;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 19

GUI Applications

private Thread _stateT,;

private ListBox _listbox;

private Text _hint;

/* States of the nain states machi ne */

private enum statesMain {initial State, draw mage, drawListBox, idle, undefined, end, }
/* States control variable */

private struct stateType {

}

public statesMin actual;
public statesMain prior;
public statesMain next;

private stateType _state;
/* Additional enuneration control */
private enum shapeTypes { rectangle, circle, ellipse, line, }

3. Initialize and configure the objects through the CreateWindow and the stateM achine with the
state of initialState. With these changes, the CreateWindow method looks like this:

public W ndow Creat eW ndow() {

}

mai nNW ndow = new W ndow() ;
mai nNW ndow. Hei ght = Systemetri cs. ScreenHei ght ;
_mai nW ndow. Wdth = Systenetrics. ScreenW dt h;
Text text = new Text();
text.Font = Resources. Get Font (Resour ces. Font Resources. small);
text. Text Content = Resources. Get String(Resources. StringResources. Stringl);
text.Horizontal Ali gnnent =
M crosof t. SPOT. Presentati on. Hori zont al Al i gnrment . Center;
text.Vertical Alignment = M crosoft. SPOT. Presentation. Vertical Ali gnment. Center;
_mai NW ndow. Child = text;
_mai NW ndow. AddHandl er
(Buttons. Butt onUpEvent, new ButtonEvent Handl er (OnButt onUp), false);
_mai nWndow. Visibility = Visibility. Visible; Buttons.Focus(_mai nW ndow) ;
/* Initializing the states */
_state = new stateType();
_state.prior = statesMin.undefi ned;
_state.actual = statesMain.idle;
_state.next = statesMain.initial State;
/* Creating and running the thread for the state nmachine */
_stateT = new Thread(new ThreadStart (stateMachine));
_stateT. Start();
return _mai nW ndow;

4. Usethe objectswhen akey is pressed while in the state machine function. In this example the use
of complex objects is done through detached functions. With these changes, the OnButtonUp
method looks like this:

private void OnButtonUp(object sender, ButtonEventArgs e) {

if (e.Button == Button.Right) {
/* Update the states after right button is pressed */

_state.prior = _state.actual;
_state.actual = _state. next;
_state.next = statesMin.undefined;

}

if ((_state.prior == statesMin.drawLi st Box)

&% (e.Button == Button. Select)) {
/* In case of the state "drawLi stBox" the button select is pressed
* draw a picture depending of the list box el ement selected */

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

20

Freescale Semiconductor

GUI Applications

switch (_listbox. Sel ectedl ndex) {
case 0: {createShape(shapeTypes.rectangl e, 150, 10, 140, 220); break; }
case 1: {createShape(shapeTypes.circle, 150, 10, 140, 220); break; }
case 2: {createShape(shapeTypes.ellipse, 150, 10, 140, 220); break;}
case 3: {createShape(shapeTypes.line, 150, 10, 140, 220); break; }

}

In the state machine, each state is divided into three parts. Thefirst part is the process to execute
in the state, the second is the update of the hint message, and the third is the update of the states.
The states change the actual state to idle, and the next state to the next decision state after an event
occurs (key pressed). The stateM achine method looks like this:

private void stateMachine() {
while(true) switch (_state.actual) {
case statesMin.idle: break;
case statesMain.initial State: {
_panel = new StackPanel ();
_panel . Hei ght = _mai nW ndow. Act ual Hei ght ;
_panel . Wdt h= _mai nW ndow. Act ual W dt h;
Text textTitle = new Text();
textTitl e. Font = Resources. Cet Font (Resour ces. Font Resour ces. snal |);
textTitle. TextContent = "GJ Standard Interface";
textTitle.Horizontal Alignment =
M crosof t. SPOT. Presentati on. Hori zont al Al i gnrment . Center;
textTitle. ForeCol or =
(M crosoft. SPOT. Present ati on. Medi a. Col or) 0OxFF0000;
_hint = new Text();
_hint. Font = Resources. Get Font (Resources. Font Resour ces. snal |);
_hint. TextContent = "Actual State: Initial State";
_hint. Horizontal Ali gnnent =
M crosoft. SPOT. Presentati on. Hori zont al Al i gnment . Left;
_hint. ForeCol or =
(M crosoft. SPOT. Present ati on. Medi a. Col or) 0x000000;
_canvas = new Canvas();
_canvas. Hei ght = _panel . Hei ght - 30;
_panel . Children. Add(textTitle);
_panel . Chi |l dren. Add(_canvas);
_panel . Chil dren. Add(_hint);
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eScr eenDel egat e(Updat eScr een) ,
new object[] { new Panel (), true });
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eScr eenDel egat e(Updat eScr een) ,
new object[] { _panel, true });

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMin.draw mage;
br eak; }

case statesMin.draw nage: {
I mage i mage = new
I mage(Resour ces. Get Bi t map(Resour ces. Bi t mapResources. | 0go)) ;
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 21

GUI Applications
new AddCanvascChi | dDel egat e(AddCanvasChi |l d),
new object[] { immge, 40, 10, false });
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eHi nt Del egat e(Updat eHi nt),
new object[] { "Actual State: Draw | nage" });
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain. drawlLi st Box;
break; }
case statesMin.drawli st Box: {
_listbox = createlListbox();
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new AddCanvascChi | dDel egat e(AddCanvasChi |l d),
new object[] { _listbox, 40, 60, true });
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eHi nt Del egat e(Updat eHi nt) ,
new object[] { "Actual State: Draw List Box" });
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMin. end;
br eak; }
case statesMin.end: {
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new Updat eHi nt Del egat e(Updat eHi nt) ,
new object[] { "Actual State: Done!" });
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.initial State;
break; }
defaul t: break;
}
}
The additional methods look like this:
private ListBox createlistbox() {
Li st Box listbox = new ListBox();
i st box. Child.Height = 100;
l'i stbox. Child. Wdth = 170;
((Control)listbox. Child).Background = new Li near Gradi ent Brush
(Colors. Wite, Colors.Blue, 0, 0, listbox.Child.Height, 1);
/] Create TextListBoxltens
Font font = Resources. Get Font (Resour ces. Font Resources. snal |) ;
Text Li st BoxI t em drawRect angl eLbi = new Text Li st Boxl ten("Draw Rectangle", font);
Text Li st Boxlt em drawCi r cl eLbi = new Text ListBoxltem("Draw G rcle", font);
Text Li st Boxl t em drawEl | i pseLbi = new TextLi st Boxltem("Draw El|ipse", font);
Text Li st Boxl t em drawLi neLbi = new Text Li st BoxItem("Draw Line", font);
/1 Add TextListBoxltens to |istbox
i stbox.|tems. Add(drawRect angl eLbi);
listbox.ltemnms. Add(drawCirclelLbi);
listbox.|temnms. Add(drawEl | i pseLbi);
i stbox.|temnms. Add(drawLi nelLbi);
i stbox. Sel ectedl tem = drawRect angl eLbi ;
return |istbox;
Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0
22

Freescale Semiconductor

GUI Applications

}

private void UpdateScreen(U El enent newal ue, bool setFocus) {
_mai nW ndow. Chi I d = newval ue;
if (setFocus) Buttons.Focus(newval ue);
}
private void AddCanvasChi |l d(Ul El enent newValue, int top, int left, bool setFocus) ({
Canvas. Set Top(newVal ue, top);
Canvas. Set Lef t (newal ue, left);
if (setFocus) Buttons.Focus(newval ue);
_canvas. Chi | dren. Add(newal ue) ;

}
private void UpdateH nt(String text) {
if (_hint !'= null) _hint.TextContent = text;
}
private voi d createShape(shapeTypes shapeType, int top, int left, int maxHeight, int
maxW dt h) {

/] Get random numbers

int topRelaive = Mcrosoft.SPOT. Mat h. Random(maxHei ght) ;
int leftRelaive = M crosoft. SPOT. Mat h. Random(maxW dt h) ;
int topPos = topRel aive + top;

int leftPos = |eftRelaive + left;
maxHei ght -= topRel ai ve;
mxWdth -= | eft Rel ai ve;

if (maxHei ght < 2) maxHei ght = 2;

if (mxWdth < 2) maxWdth = 2;

Col or color = (Color)M crosoft.SPOT. Mat h. Random(OxFFFFFF) ;

int maxRadi us = O;

if (mxWdth < maxHei ght) maxRadi us = maxW dt h/ 2;

el se maxRadi us = naxHei ght / 2;

Shape shape = nul |;

switch (shapeType) {

case shapeTypes.rectangl e:
shape = new Rectangl e();
shape. Wdth = M crosoft. SPOT. Mat h. Randon{ maxW dt h) ;
shape. Hei ght = M crosoft. SPOT. Mat h. Random(maxHei ght) ;
shape. Stroke = new Pen(col or);
/1 Note: The . NET M cro Framewor k SDK does not support a non-filled rectangle at this tinme

/1** Fill the rectangle with the same color as the pen stroke
shape. Fill = new Sol i dCol orBrush(col or);
br eak;

case shapeTypes.circle:
int radius = Mcrosoft. SPOT. Mat h. Random(maxRadi us) ;
shape = new Ellipse(radius, radius);
shape. Stroke = new Pen(col or);
br eak;
case shapeTypes.ellipse:
int xRadius = M crosoft. SPOT. Mat h. Random(maxW dt h/ 2) ;
int yRadius = M crosoft. SPOT. Mat h. Random(maxHei ght/ 2) ;
shape = new Ellipse(xRadi us, yRadi us);
shape. Stroke = new Pen(color);
br eak;
case shapeTypes.|ine:
int xDis = M crosoft. SPOT. Mat h. Randon(maxRadi us) ;
int yDis = M crosoft. SPOT. Mat h. Randon(maxRadi us) ;
shape = new Line(xDis, yDis);
shape. Stroke = new Pen(col or);
br eak;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 23

GUI Applications

defaul t: break;
}
if (shape !'= null)
_mai nW ndow. Di spat cher. | nvoke(
new Ti neSpan(0, 0, 1),
new AddCanvascChi | dDel egat e(AddCanvasChi |l d),
new object[] { shape, topPos, leftPos, false });

}
For this example, aclassis created for a specific functionality for the list box items, as follows:

cl ass TextListBoxltem: ListBoxltem {
public TextlListBoxlten(string str, Font font) : base() {
Text text = new Text(font, str);
text.Horizontal Alignnent = Horizontal Ali gnment. Center;
this.Child = text;
this.Background = null; // Set the background to transparent
}
protected override void OnlsSel ect edChanged(bool isSelected) {
Text text = this.Child as Text;
if (isSelected) {
t ext . ForeCol or = Col ors. Bl ue;
t hi s. Background = new Sol i dCol or Brush(Col ors. G ay) ;
} else {
t ext . ForeCol or = Col ors. Bl ack;
t hi s. Background = nul | ;

5.3 Use the Screen as a Bitmap

To use the screen as a bitmap: create the bitmap, update the pixels in the bitmap, and place the bitmap in
the screen.

5.3.1 Bitmap Class

The Bitmap class encapsulates a GDI+ bitmap, which consists of the pixel datafor a graphicsimage and
its attributes. A Bitmap is an object used to work with images defined by pixel data. The Bitmap class
provides a complete set of methods that allows drawing text, lines, circles, ellipses, and rectangles in the
bitmap, merging other bitmaps, and modifying the bitmap by pixel. The Flush method of the Bitmap class
places the bitmap in the screen. Table 2 describes the common methods for drawing within the bitmap.

Table 2. Bitmap Drawing Methods

Method Description
Clear Clears the entire drawing surface
DrawEllipse Draws a filled ellipse on the display device
Drawlimage Draws a rectangular block of pixels on the display device
DrawLine Draws a line on the display device
DrawRectangel Draws a rectangle on the display device

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

24 Freescale Semiconductor

5.3.2

GUI Applications

Table 2. Bitmap Drawing Methods (continued)

Method Description
DrawText Draws text on the display device
DrawTextInRect Draws text in a specified rectangle
Flush Flushes the current bitmap to the display device
SexPixel Turns a specified pixel on or off

Example: Graphical User Interface

This example shows how to develop the architecture of an application using .Net Micro Framework with
aBitmap asthe screen. Thisexample usesthe convention of the underscore character () toindicate global
private variables.

To perform this example, use these steps:

1.

Add areference to the namespaces where the classes to use are |ocated:

usi ng System Threadi ng;
using M crosoft.SPOT. Present ati on. Medi a;

Define the objects to be used in this example:

private Wndow _mai nW ndow, /1 main w ndow el enent
private Bitmap _screen; /1 bitmap used for flush
private Bitmap _back; /1 based bitmap to be updated
private Thread _stateT,; /'l thread of the state machine
/* States of the nain state machine */
private enum statesMain {idl e, initial State, drawBackground, drawButt ons, end, undefi ned,
/* State nachine control variable */

private struct stateType {

public statesMin actual;

public statesMain prior;

public statesMin next;
}
private stateType _state;
/* Definition of the buttons */
private enum buttonNanes {first, buttonl, button2, none, }
/* Buttons control variable */
private struct buttonStates {

public buttonNames pressed; /* Button pressed */

public buttonNames selected; /* Button selected */

public buttonNames prior; /* Last button pressed */

}

private buttonStates _button;
Initialize and configure the objects. In this example the initialization is done through the

CreateWindow and the stateScreen with the state of initialState. After the changes the
CreateWindow method looks like this:

public W ndow Creat eW ndow() {
_mai nW ndow = new W ndow();
_mai nW ndow. Hei ght = System\etrics. Scr eenHei ght ;
_mai nW ndow. Wdth = Systenletrics. ScreenW dt h;
Text text = new Text();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

}

Freescale Semiconductor

25

GUI Applications

text.Font = Resources. Get Font (Resour ces. Font Resources. small);

text. Text Content = Resources. Get String(Resources. StringResources. Stringl);
text. Horizontal Al i gnnent=M crosoft.SPOT. Present ation. Hori zontal Al'i gnnent . Center;
text.Vertical Alignment = M crosoft. SPOT. Presentation. Vertical Ali gnment. Center;
_mai nW ndow. Child = text;

_mai nW ndow. AddHand| er (But t ons. But t onUpEvent,

new Butt onEvent Handl er (OnBut t onUp), fal se);

_mai nWndow. Visibility = Visibility. Visible;

But t ons. Focus(_nai nW ndow) ;

/* Initializing the states */

_state = new stateType();

_state.prior = statesMin.undefi ned;

_state.actual = statesMain.idle;

_state.next = statesMain.initial State;

/* Initializing the button state */

_button = new buttonStates();

/* Creating and running the thread for the state nachine */

_stateT = new Thread(new ThreadStart (stateScreen));

_stateT. Start();

return _mai nW ndow;

}
4. Usethe objects. The objects are used when akey is pressed and in the state machine function.
With our changes, the OnButtonUp method looks like this:

private void OnButtonUp(object sender, ButtonEventArgs e) {
// Print the button code to the Visual Studio output w ndow.
Debug. Print (e.Button. ToString());
if (e.Button == Button.Right) {
/* Update the states after right button is pressed */
_state.prior = _state.actual;
_state.actual = _state. next;
_state.next = statesMin.undefi ned;
}
switch (_state.prior) {
case statesMain.drawButtons : {
/* In case of the state "drawButtons" the button select is changed
* when up or down button is pressed, and the change of states
* update the screen */
if (e.Button == Button. Select) {

_button.prior = _button. pressed;
_button. pressed = _button. sel ect ed;
} else {
if (e.Button == Button.Up) _button.sel ected--;
else if (e.Button == Button. Down) _button. sel ect ed++;
if (_button.sel ected == buttonNanes. none)
_button.sel ected = buttonNames.first + 1;
else if (_button.selected == buttonNanes.first)
_button. sel ected = buttonNanes. none - 1;
}
_state.prior = _state.actual;
_state.actual = statesMai n.drawButtons;
_state.next = statesMin. undefined;
br eak;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

26 Freescale Semiconductor

GUI Applications

In the state machine, each state is divided into three parts. Thefirst part is the process to execute in the
state; the second is the update of the hint message, and the third is the update of the states. The states
changetheactual statetoidle, and then changethe next state to the next decision state, after an event occurs

(key pressed). The state machine stateScreen method looks like this:

private void stateScreen() {

Font font = Resources. Get Font (Resour ces. Font Resources. snal |) ;

while (true) switch (_state.actual) {
case statesMain.idle: break;
case statesMain.initial State: {
_button. prior = buttonNanes. none;

_button. sel ected = buttonNanes. none;

_button. pressed = buttonNanes. none;
_back = new Bit map(240, 320);

_back. DrawRect angl e(Col or. White, 10, 0, 0, 240, 320, 2,
Col or. White, 0, 0, Color.Wite,

_screen = new Bitnmap(240, 320);

_screen. Drawl mage(0, 0, _back, 0, 0, 240, 320) ;

_screen. Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;

_state.next = statesMain.drawBackground;

br eak; }

case statesMin. drawBackground: {
_back. Draw nage(35, 10,
Resour ces. Get Bi t map

(Resources. Bi t mnapResour ces. freescal e),
_back. DrawRect angl e(Col or. White, 1, 35,

Col or. White, 0, 0, Color.Wite,
_screen. Drawl mage(0, 0, _back, 0, 0, 240, 320);
_screen. DrawText | nRect (" St at e: Background",

Bi t map. DT_Al i gnnent Cent er |

Bi t map. DT_Tri nm ngChar act er El | i psi s,

_screen. Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;

_state.next = statesMain. drawButtons;

br eak; }
case statesMin.drawButtons: {

if (_button.selected == buttonNanes. none)
_button.sel ected = buttonNames.first + 1;
_screen. Drawl mage(0, 0O, _back, 0, 0, 240, 320);

String hint = "State: Buttons";
if (_button.pressed != buttonNanes.nnone) {
if (_button.pressed == buttonNanmes. buttonl)
hint += " : Button 1 pressed";
else if (_button.pressed ==
hint += " : Button 2 pressed";

}

_screen. DrawText I nRect (hi nt, 10, 300, 220, 20,

Bi t map. DT_Al i gnnent Cent er |

240, 320, 0);

butt onNanes. button2)

170, 57);
170, 57, 2, 2,
240, 320, 0);

10, 300, 220, 20,

(Col or) OXFFFFFF, font);

Bi t map. DT_Tri nmm ngChar act er El | i psi s, (Col or) OXFFFFFF, font);

_screen. DrawText | nRect ("Button 1",
Bi t map. DT_Al i gnnent Cent er |

100, 220, 20,

Bi t map. DT_Tri mm ngCharact erEl I i psi s, (Col or) 0x0O000FF, font);

_screen. DrawText | nRect ("Button 2",
Bi t map. DT_Al i gnnent Cent er |

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

10, 200, 220, 20,

Freescale Semiconductor

27

SideShow Applications

Bi t map. DT_Tri nmi ngChar act er El | i psi s, (Col or) 0x0O000FF, font);

if (_button.selected == buttonNanes. buttonl)
_screen. DrawEl | i pse((Col or) OXFFFFFF, 120, 107, 110, 10);
else if (_button. sel ected == buttonNanmes. button2)

_screen. DrawEl | i pse((Col or) OxFFFFFF, 120, 207, 110, 10);
_screen. Flush();

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMin. end;

br eak; }

case statesMin.end: {
_screen. Drawi mage(0, 0, _back, 0, 0, 240, 320);
_screen. DrawText | nRect ("State: End", 10, 300, 220, 20,
Bi t map. DT_Al i gnnent Cent er |
Bi t map. DT_Tri nmm ngChar act er El | i psi s, (Col or) OXFFFFFF, font);
_screen. Flush();

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.initial State;
break; }

defaul t: break;

}

6 SideShow Applications

Windows SideShow is a technology that enables a Windows PC to drive avariety of auxiliary display
devices connected to the main PC. These devices can be separate from or integrated into the main PC (for
example, adisplay embedded on the outside of alaptop lid), enabling access to information and media
even when the PC is(mostly) turned off. SideShow can aso drive the display of PC dataon mobile phones
and other devices that are connected by Bluetooth or other wireless network protocols.

6.1 SideShow Enhanced Display Types

Two types of applications can be loaded into the SideShow enhanced display devices:

» XML applications can be downloaded from the Internet and installed and uninstalled in the device
using the SideShow portal in the connected a Windows Vista® PC

» Built-in applications are libraries developed over .Net Micro Framework that can be added to the
SideShow device for specific functionality in the device

6.2 Example: SideShow Applications

This section provides an example for creating device-specific, built-in SideShow applications using .Net
Micro Framework. Because .Net Micro Framework can run only one application at atime, SideShow is
the application that runs and the SideShow applications must be created and added as .Net Micro
Framework libraries (dlls).
Two main components are required in the SideShow applications:

* DLL component that must be compliant with the interface | DeviceApplication

* Main form executable that must be inherited from the Appl i cat i onFor mclass

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

28 Freescale Semiconductor

SideShow Applications

The SideShow Application libraries must respect the following structure:

/1 SideShow application
/1 An application nust inplement the |DeviceApplication interface. The Shell uses this
// interface to control the application.

bubl 1 ¢ ol ass S deshowbxanpl &+ 1 Devi cempplication T
{ publi ¢ Si deshowExanpl e()
{ Debug. Print (" Si deshow Exanpl e Application, DLL Contructor");
}
e e I

/] Built-in order nunber

/'l This static property identifies this class as a built-in (stand-alone) application. The Shell
/1 locates built-in applications by using reflection to find all classes that declare this

/1 property. The Shell creates an instance of each built-in application at systemstartup tinme.

/1 The Shell orders the built-in applications according to their order nunbers (smallest first).
/1 The built-in applications are displayed behind the PC gadget endpoi nt applications.

public static int BuiltlnOrder

{
get { return 50; }

}

/1

/1 1 DeviceApplication nethods

/1
N e R T T TR TP
/1 Install

/1 The Shell calls this method right after creating an instance of the application. A built-in
/1 application does not receive data froma PC gadget, so the cache argunment is always null.

/1 The application can do any one-time initialization in this method.

e e e T
public void Install (IApplicationCache cache)
{
Debug. Pri nt (" Si deshow Exanpl e Application, DLL Installed");
}
N e e

/1 Uninstall
/1 This nethod is never called for built-in applications because they are never unistall ed.

{

}
e e e
/] Set Shell attributes
/1 The Shell calls this method to get the application nane and icons that will be displayes on

/1 the hone page. The nethod returns these in the attribute class that is passed in. The icons
/1 should be 32-bit color icons with al pha channel. Each icon resource is a byte array which

/1 contains a .bnmp file image. The icons are returned as byte arrays rather than Bitnap cl ass
/1 instances, so that the Shell can access the raw pi xel data.

public void Set Shel |l Attributes(Shell Attributes attributes)
{

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 29

SideShow Applications

attributes. Nane = "Hello World App";
attributes.|conl6Dat a=Resour ces. Get Byt es(Resour ces. Bi nar yResources. | CON_16) ;
attributes.|con32Dat a=Resour ces. Get Byt es(Resour ces. Bi nar yResources. | CON_32) ;
attributes.|cond48Dat a=Resour ces. Get Byt es(Resour ces. Bi nar yResour ces. | CON_48) ;
}
I
/] Menmber variable to hold the applicaiton form
I
private Hell oworl dForm _form

/] Get form

/1 The Shell calls this method to get the applicati on main wi ndow when the user selects this
/1 application on the Shell home page. An application typically caches the formand returns the
/1 same one every tine.

N e
public ApplicationForm Get Form()
{
if (_form==null)
{
_form = new Hel | oWor | dForn() ;
}
return form
}
N e R e T R P R T PP TP PP

/] Get G ance Data

/1 The Shell calls this nethod when the application is highlighted on the Shell hone page. The
/1 method optionally returns one or nore lines of text that give a high-level status for the

/1 application. For exanple, a cal endar application may return the time and place of the next
/1 appointment as the Primary status and | ater appointments this day as secondary status. Note
/1 that the seconday status is an array of strings. A typical device can display up to 15 |lines
/] of status.

/1 For built-in applications that don't have status to display, the prinmary gl ance data can be a
/1 short description of what the application does.

/1 The Shell calls Getd anceDat a when the application gets the focus on the home page or when it
/1 is told that the glance data has changed. The application nust call
/1 dobals. Shel | . Updat ed anceData(this) to notify the Shell when the glance data has changed.

public d anceData Getd anceDat a()

{
G anceDat a gl ance = new d anceDat a();
glance.Primary = "(great exanplel!!)";
return gl ance;

}

}
The SideShow main form must respect the following structure:

/1 Hell oWorl dForm

/1 This is the nain wi ndow of the application. It nust be derived from base cl ass
/1 ApplicationForm ApplicationForm defines virtual nethods for interacting with
/'l the SideShow Shell and provides a default inplenentation for each method.

private class Hel |l oWworl dForm : Applicati onForm

{

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

30 Freescale Semiconductor

SideShow Applications

/1 Constructor

/] Passes "true" to ApplicationForm base to specify the form should have a

/] title bar. Application forms should have a title bar because it identifies
/'l the application with an icon and nanme. It also displays the current tine.

public Hel |l oWor | dForm()
base(true)

Debug. Print (" Form construct");

/'l Activate event handler

/1 This is called when the user selects this application fromthe Shell honme page.
/1 This is called right after the formis nade visible. Prior to calling this

/1 the Shell sets the title bar icon and nanme to the icon and nane provided

/1 by the gadget. The application can replace or extend the title text here.

e e e R R T TP
protected override void OnActivate(EventArgs e)
{
I
/] Set the initial view It's up to the application whether to display the
/] same view everytime or return to the last visited view The
/1 ApplicationFormsets the focus to the View when it gets the focus from
/'l the CS.
I
/1 To conserve device nenory an application should create its U on
/] activation and release it on deactivation.
I
Debug. Print ("Form acti vate");
View = CreateContent();
}
e e e P P R PP

/| Deactivate event handl er

/1 This is called when the user |eaves the application and returns to the Shell
/1 home page. The application should rel ease U objects and stop any processing
/1 that isn't needed when the application isn't the active one

e e e
protected override void OnDeacti vate(Event Args e)
{

Debug. Pri nt ("Form on deactivate");
}
e e R

/1 Handl e t heme change

/1 1f an application displays text or creates customU controls it should

/1 use the fonts, colors, backgrounds, etc. specified by the currently

/1 selected thene. The thene properties are exposed by the ThemeResources

/1 class.

/1 This nmethod is called when the user switches the thene. The application

/1 should respond by updating all displays to use the new thenme settings. The
/1l sinplest way to update is to just recreate the Views.

public override void OnTheneChange()

{
base. OnThenmeChange() ;

if (View!= null)
{
View = CreateContent ();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor 31

/1 Create content
/1 This method creates the view for the form For this sinple exanple the
// viewis just a centered text control which displays "Hello Wrld".

/1 More conpl ex applications often have nmultiple views and U to sel ect

/'l the current view (often a context menu). The view control is private to
/'l the application. The only part the base formplays is to set the focus
/'l to the new view whenever it is changed.

e R e R T R T R R
private Ul El enent CreateContent()
{
Col or col or = TheneResources. Get Col or (ThermeCol or . PageText) ;
Font font = TheneResources. Get Font (ThemeFont . PageBol d) ;
Text text = new Text(font, "");
t ext. Text Content = Resources. Get String(Resources. StringResources. Stringl);
t ext. ForeCol or = col or;
text.Vertical Alignment = Vertical Alignnment. Center;
text. Hori zontal Al'i gnment = Horizontal Al i gnnent. Center;
return text;
}
e R T R R PP

/1 Button Up event handl er

/1 This is called when any button is rel eased.

/1 The application flow can be linked to the buttons events through this event
/1 handl er.

e e R R
protected override void OnButtonUp(ButtonEvent Args e)
{
switch (e.Button)
{
case Button. Up:
Debug. Print ("button UP pressed");
br eak;
case Button. Right:
Debug. Print ("button R ght pressed");
br eak;
case Button. Down:
Debug. Pri nt ("button Down pressed");
br eak;
case Button. Left:
Debug. Print ("button Left pressed");
br eak;
case Button. Sel ect:
Debug. Print ("button Select pressed");
br eak;
}
}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev.0

Freescale Semiconductor

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 33

N

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

34 Freescale Semiconductor

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 35

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3888
Rev. 0
08/2009

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. Microsoft, SlideShow, and
Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

B POWERED

ARM
freescale"

semiconductor

	Advanced Development with Microsoft®.NET Micro Framework 2.0
	1 GPIO Pin Configuration
	1.1 Identify CPU Pins
	1.2 Configure Platform Pins
	1.2.1 Configure an Input Pin
	1.2.2 Configure an Interrupt Pin
	1.2.3 Configure an Output Pin

	1.3 Example: Serial Communications with GPIO

	2 Threads
	2.1 Multithreading
	2.2 Implement a Thread
	2.2.1 Create a Thread
	2.2.2 Prioritize a Thread
	2.2.3 Start a Thread
	2.2.4 Sleep a Thread
	2.2.5 Suspend a Thread
	2.2.6 Verify the State of a Thread

	3 Events
	3.1 Define the Delegate and Variable
	3.2 Implement and Assign the Function
	3.3 Example: Events, Threads, and GUI Usage
	3.3.1 HardMathEvaluation Class
	3.3.2 Program Class

	4 Persistent Data
	4.1 Create Storable Data
	4.2 Example: Persistent Data
	4.3 Create a Flash Reference
	4.4 FlashReference Class
	4.5 Example: FlashReference Class

	5 GUI Applications
	5.1 Standard UI Elements
	5.2 Using UI Elements
	5.2.1 Example: Graphical User Interface

	5.3 Use the Screen as a Bitmap
	5.3.1 Bitmap Class
	5.3.2 Example: Graphical User Interface

	6 SideShow Applications
	6.1 SideShow Enhanced Display Types
	6.2 Example: SideShow Applications

