
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2009. All rights reserved.

This document describes how to perform advanced
development tasks to create applications using an i.MX
platform and the Microsoft® .NET Micro Framework.

These tasks (with examples) are as follows:

• GPIO pin configuration

• Working with threads, events, and persistent data

• Working with GUI elements

• Working with Windows® SideShow® applications

Before reading this document, it is suggested that users read
the Development with Microsoft® .NET Micro Framework
2.0 (AN3887) Application Note, which provides information
and examples for the keyboard, certain interrupts, and the
graphical user interface.

Document Number: AN3888
Rev. 0, 08/2009

Contents
1. GPIO Pin Configuration . 2

1.1. Identify CPU Pins . 2
1.2. Configure Platform Pins . 2
1.3. Example: Serial Communications with GPIO 6

2. Threads . 7
2.1. Multithreading . 7
2.2. Implement a Thread . 7

3. Events . 8
3.1. Define the Delegate and Variable 9
3.2. Implement and Assign the Function 9
3.3. Example: Events, Threads, and GUI Usage 10

4. Persistent Data . 14
4.1. Create Storable Data . 15
4.2. Example: Persistent Data . 15
4.3. Create a Flash Reference . 16
4.4. FlashReference Class . 16

5. GUI Applications . 17
5.1. Standard UI Elements . 18
5.2. Using UI Elements . 18
5.3. Use the Screen as a Bitmap . 24

6. SideShow Applications . 28
6.1. SideShow Enhanced Display Types 28
6.2. Example: SideShow Applications 28

Advanced Development with
Microsoft®.NET Micro Framework 2.0
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

2 Freescale Semiconductor

GPIO Pin Configuration

1 GPIO Pin Configuration
General Purpose Input/Output (GPIO) ports are sets of single-bit I/O pins that are used for input or output.
Embedded applications use GPIOs for controlling items such as switches, LEDs, as well as for handling
button presses. This section describes how to program the GPIOs and provides an example for each
concept.

1.1 Identify CPU Pins
Pin configuration is performed using the InputPort, InterruptPort and OutputPort classes, located in
the Microsoft.SPOT.Hardware namespace. Each class is specific to its required pin configuration. Pin
information is provided by the i.MX board manufacturer through a static class called Pins, which contains
multiple Cpu.Pin constant definitions that are used to associate specific pins with a unique pin ID.

Pin identification numbers (IDs) are consecutive, where:

• GPIO Port A Pin 0–31 numbers are 0–31

• GPIO Port B Pin 0–31 numbers are 32–63

• GPIO Port C Pin 0–31 numbers are 64–95

• and so on

If pin number is needed that is not defined in the Pins class, update the Pins class by adding the definition
of the pin and associating its corresponding ID as defined above.

1.2 Configure Platform Pins
Freescale recommends configuring the pins for a particular platform in a separate <Platform>Pins class
where <Platform> refers to the name of the platform. For example, the MXSDVK platform contains a
class called MxsdvkPins, which is defined as follows:

public static class MxsdvkPins {
// Buttons
public const Cpu.Pin leftButton = Pins.GPIO_PORT_B_17;
public const Cpu.Pin rightButton = Pins.GPIO_PORT_B_15;
public const Cpu.Pin upButton = Pins.GPIO_PORT_B_14;
public const Cpu.Pin downButton = Pins.GPIO_PORT_B_16;
public const Cpu.Pin selectButton = Pins.GPIO_PORT_B_18;
public const Cpu.Pin rewindButton = Pins.GPIO_PORT_A_12;
public const Cpu.Pin fastforwardButton = Pins.GPIO_PORT_A_13;

// LEDs
public const Cpu.Pin greenKeypadLed = Pins.GPIO_PORT_D_9;

}

The MxsdvkPins class substitutes user-provided names for the available GPIO pins on the MXSDVK
platform. This enables, for example, users to refer to the Left Keypad Button pin as
MxsdvkPins.leftButton, rather than by the cryptic term Pins.GPIO_PORT_B_17.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 3

GPIO Pin Configuration

1.2.1 Configure an Input Pin
The InputPort class in the Microsoft.SPOT.Hardware namespace configures a pin as an input pin with
an optional glitch filter and pull up/down resistor. The glitch filter is used to avoid the bounce effect caused
when the pin is connected through a path with mechanical state changes. Examples of mechanical switches
include keyboards, push buttons, and relays.

Use these steps to configure an input pin:

1. Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to select an available (non-protected) GPIO.

2. Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the following example, PORTC pin 5 is associated
with pin ID 69 on the device:

public const Cpu.Pin GPIO_PORT_C_5 = (Cpu.Pin)69;

3. Update the <Platform>Pins class and add an intuitive name for the pin:

public const Cpu.Pin sensorInput = Pins.GPIO_PORT_C_5

4. Declare the object that references the InputPort. It is typically defined as private for the class in
which they are used:

private InputPort sensorInputPin;

5. Define the object and configure the pin. Initialization options vary depending on the pin
requirements:

sensorInputPin = new InputPort(MxswdvkPins.sensorInput, true, Port.ResistorMode.PullUp);

NOTE
The glitch filter can be enabled if the input pin is connected to a mechanical
switch.

The resistor mode can be specified based on the normal state required for
the pin. However, if the i.MX does not support the specified resistor mode,
then the resistor mode has no effect on the pin. Define the resistor mode that
minimizes current draw to the circuitry around the pin. Select the resistor
mode carefully, because the read value on the pin may be inaccurate if the
pin is connected to isolated or high impedance circuitry.

Attempting to configure a pin that is already configured causes an
exception. To reconfigure a pin, first call the Dispose() method.

6. Read the pin using the Read() method of the InputPin object:

if (sensorInputPin.Read()) runInputAction();

7. Deallocate resources to disable the pin for a port and mark it as available for reuse:

sensorInputPin.Dispose();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

4 Freescale Semiconductor

GPIO Pin Configuration

1.2.2 Configure an Interrupt Pin
The InterruptPin class is derived from the InputPort class. In addition to the characteristics and
behaviors inherited from the InputPort class, the InterruptPort class publishes an event that can be
configured to trigger on a change of the level or edge of the pin.

Use these steps to configure an interrupt pin:

1. Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to determine an available (non-protected) GPIO.

2. Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the following example, PORTC pin 6 is associated
with pin ID 70 of the device:

public const Cpu.Pin GPIO_PORT_C_6 = (Cpu.Pin)70;

3. Update the <Platform>Pins class and add an intuitive name for the pin:

public const Cpu.Pin leftButton = Pins.GPIO_PORT_C_6

4. Declare the object and define an object where the pin is referenced in the code:

InterruptPort leftButtonPin;

5. Define the object and configure the pin. Initialization options vary depending on the pin
requirements:

leftButtonPin = new InterruptPort(MxswdvkPins.leftButton, true,
Port.ResistorMode.PullUp, Port.InterruptMode.InterruptEdgeHigh);

See Section 1.2.1, “Configure an Input Pin,” for important information about the glitch filter,
resistance mode, and accidental pin re-configuration. Select the interrupt mode carefully. Take into
account the resistor mode in order to avoid false interrupts.

6. Configure the interrupt handler. Create a function of type GPIOInterruptEventHandler, and
then add this function to the event OnInterrupt of the leftButtonPin object.

leftButtonPin.OnInterrupt += new GPIOInterruptEventHandler(leftButtonPin_onInterrupt);

NOTE
Multiple event handlers can be assigned to a particular event. The += and –=
operators are used to subscribe and unsubscribe events, respectively.

7. Define the event handler:

void leftButtonPin_onInterrupt(Cpu.Pin port, Boolean state, TimeSpan time) {
Debug.Print("leftButtonPin interrupt fired");

}

8. Clear the interrupt. If a level interrupt event is configured in Step 4, call the ClearInterrupt()
method of the object:

leftButtonPin.ClearInterrupt();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 5

GPIO Pin Configuration

NOTE
The ClearInterrupt() method is typically called at the beginning of the
event handler code in order to enable the interruption immediately. For a
level interrupt configuration, the execution of the ClearInterrupt() can be
delayed to create more complex event handling mechanisms. For example,
when a key is pressed, the event handler code could process the key
immediately and then start an asynchronous timer to delay the execution of
the ClearInterrupt() function. This allows users to set an interval for key
press repetition.

9. Read the pin using the Read() method of the inputPin object:

if (sensorInputPin.Read()) runInputAction();

10. Deallocate resources of the pin to disable the pin for a port and mark it as available for reuse:

sensorInputPin.Dispose();

1.2.3 Configure an Output Pin
The OutputPort class of the Microsoft.SPOT.Hardware namespace sets the value of a GPIO pin by
specifying the initial state of the pin. Configure the state of the pin in runtime by calling the Write()
function of the pin object.

Use these steps to configure an output pin:

1. Identify the pin. Examine the board schematic and select a pin to configure as an input. Refer to
the platform schematic to select an available (non-protected) GPIO. Select the pin based on ease
of identification, accessibility, and value of the current. The i.MX microprocessors limit the current
provided to the pins.

2. Confirm the number to associate with the pin. See Section 1.1, “Identify CPU Pins,” to identify
the number to be associated with the pin. In the example below, PORTC pin 7 is associated with
pin ID 71 on the device:

public const Cpu.Pin GPIO_PORT_C_7 = (Cpu.Pin)71;

3. Define an object where the pin is referenced in the code:

OutputPort outputPin;

4. Initialize the object and configure the initial value for the pin. Initial states should be true for
logic 1 and false for logic 0:

outputPin = new OutputPort(Pins.GPIO_PORT_C_7, false);

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

6 Freescale Semiconductor

GPIO Pin Configuration

NOTE
The OutputPort class provides a constructor for additional pin
configuration options, such as the glitch filter and resistor mode.
Configuration is similar to the configuration of InputPort. The
recommended initial state is false logic 0, to prevent lack of current at the
start up and in extreme situations damage of the i.MX due to the current
demand. Attempting to configure a pin that is already configured causes an
exception. Call the Dispose() method prior to reconfiguring a pin.

5. Read the pin using the Read() method of the outputPin object:

if (outputPin.Read()) runOutputAction();

6. Write the pin. To force a value on the pin, use the Write() method of the outputPin object, where
true represents a logical 1 and false represents a logical 0.

outputPin.Write(true);

7. Deallocate resources of the pin to disable the pin for a port and mark it as available for reuse:

sensorInputPin.Dispose();

1.3 Example: Serial Communications with GPIO
This example describes the initialization, configuration, and use of three GPIO pins. The first pin is
configured as an input, the second as an interrupt input, and the third as an output.

1. Add a reference to the namespace that contains the classes to be used:

using Microsoft.SPOT.Hardware;

2. Define the objects that are used in this example:

InputPort inputPin;
InterruptPort leftButtonPin;
OutputPort outputPin;

3. Initialize and configure the pin objects:

inputPin = new InputPort(Pins.GPIO_PORT_C_5, true, Port.ResistorMode.PullUp);
leftButtonPin = new InterruptPort(Pins.GPIO_PORT_C_6,

true, Port.ResistorMode.PullUp, Port.InterruptMode.InterruptEdgeHigh);
outputPin = new OutputPort(Pins.GPIO_PORT_C_7, false);
leftButtonPin.OnInterrupt +=

new GPIOInterruptEventHandler(inputPinInterrupt_onInterrupt);

The inputPinInterrupt_onInterrupt function is defined as follows:

private void inputPinInterrupt_onInterrupt(Cpu.Pin port, Boolean state, TimeSpan time) {
Debug.Print("inputPinInterrupt interruption");
//leftButtonPin.ClearInterrupt();

}

NOTE
The ClearInterrupt() method is not needed in this case, because the
leftButtonPin is configured as an edge interrupt.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 7

Threads

4. Use the objects. Use Read mode for the three pin objects of this example and Write mode (only)
for the outputPin object. For the leftButtonPin object, use the interrupt(s) assigned to the
leftButtonPin object:

if (inputPin.Read()) ...
if (!leftButtonPin.Read()) ...
outputPin.Write(!outputPin.Read());

5. Dispose of the objects:

String legend = "Data saved no: " + deviceLog.Log.Count.ToString();
deviceLog.AddToLog(new Device((byte)deviceLog.Log.Count, legend));

6. Save the object in Flash:

deviceLogFlash.save(deviceLog);

2 Threads
In development, the term thread means a thread of execution. Threads are a way for a program to fork (or
split) itself into two or more, simultaneously (or pseudo-simultaneously) running tasks. Threads and
processes differ from one operating system to another but, in general, a thread is contained inside a process,
and different threads in the same process share some resources, while different processes do not.

2.1 Multithreading
Although the .NET Micro Framework can execute only one application at a time, it provides a
multithreading functionality that allows execution of multiple threads in parallel. The .NET Micro
Framework assigns CPU time to the threads depending on the priorities specified for the threads
themselves, and for the priorities of the threads that execute the call. Additionally .NET Micro Framework
provides ways to suspend, resume, and sleep the thread.

2.2 Implement a Thread
Threads are managed through the Thread class in the System.Threading namespace. The Thread class
creates and controls a thread, sets its priority, and gets its status. This section explains how to create,
prioritize, start, sleep, suspend or stop, and verify the state of threads.

2.2.1 Create a Thread

To create a thread, assign a function (without parameters or return data) to the creator of the thread object.
The created function contains the code for the thread. The thread code can call other functions and
reference shared data, such as global variables, registers, GPIOs, or serial ports.

Thread t1 = Thread(new ThreadStart(thread1));

The thread object is managed through t1 and the thread code is in the thread1() function.

For shared data in threads, implement a synchronization process (such as flags, semaphores, mutex,
queues) in order to read/write valid data.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

8 Freescale Semiconductor

Events

2.2.2 Prioritize a Thread
Assign a priority to the thread in order to assign more MCU time to one thread than another:

t1.Priority = ThreadPriority.Highest;

It is recommended to assign higher priority to threads in critical processes, or to threads which have a quick
process requirement.

2.2.3 Start a Thread
After defining a thread object for the function to run as a thread, execute the thread using the Start()
function:

t1.Start();

2.2.4 Sleep a Thread
The Thread.Sleep method suspends the current thread for a specified time. A running thread can typically
sleep for a period of time because it has no processes to perform. To suspend the thread, use the sleep()
static function. A static sleep function affects only the running thread. Use sleep to suspend the main
application. For example:

Thread.Sleep(5000); // Sleep current thread for 5 seconds
Thread.Sleep(0); // Exit from the current thread until next MCU time assigned
Thread.Sleep(Timeout.Infinite); // Sleep current thread forever

2.2.5 Suspend a Thread
To suspend a thread for an indeterminate amount of time, use the suspend and resume functions of the
thread object:

t1.Suspend();
t1.Resume();

The Suspend function takes effect in the next sequential execution of the thread. That is, if the Suspend
function is called, the thread code continues executing until the MCU time dedicated to that thread ends.
To exit the thread, execute the Thread.Sleep(0) instruction after the Suspend() instruction.

2.2.6 Verify the State of a Thread
Verify the state of a thread through the ThreadState property of the thread object. For more information
about available states and invocations, see the .NET Micro Framework Help.

if ((t1.ThreadState & ThreadState.Suspended) == ThreadState.Suspended)
// do something

3 Events
An event is an interruption to the system. The source of the interruption varies: key press, timeout, data
received, network found, information request, and so forth. An event is captured and processed by the

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 9

Events

system to take a corresponding action. To use events, specify the functions to initiate when an action
occurs. For example, assign a function at the application level to be called when serial data is received and
decoded.

A common example of event implementation is found in the serial communications process of encoding
and decoding data into frames at different layers. While many solutions are possible, events and threads
are useful in allowing the main loop of the program to focus on the application, while delegating the serial
communications to a communications module. Thus, the module interrupts the main loop only when
required, such as when data is received and decoded.

The .NET Micro Framework functionality makes it easy to use events and threads to develop a
system-independent module for serial communications and frame specifications. Libraries (DLLs) are
used to include events and threads in an application.

In event communication, a delegate (comparable to a function pointer type) identifies the object or method
that receives the event. The delegate is a class that can hold a reference to a method, and specifies the event
parameters. Event usage is a two-part process: define the delegate and variable, and then implement and
assign the event function.

3.1 Define the Delegate and Variable
Use these steps to define the delegate and variable:

1. Define the delegate. Delegate definitions accept common .NET Micro Framework delegates or
custom delegates. For custom delegates, specify the parameter types and return values. For
example:

delegate void InterruptDelegate(Object sender, String description);

2. Define the event variable using the event word. Event variable definitions accept common .NET
Micro Framework delegates or custom delegates. For example:

event InterruptDelegate OnLoad;

3. Apply the event variable to execute the assigned event code. Apply the event variable in a thread
to execute the event code as a separate task. For example:

if (OnLoad != null) OnLoad(this, "Loaded all the numbers");

3.2 Implement and Assign the Function
Use these steps to implement and assign the event function:

1. Define the event function with the same parameter and return types specified in the delegate (the
parameter names may differ). For example:

void OnLoadEvent(Object sender, String description) {
Debug.Print(description);

}

2. Assign the event. Use the += operand described in Section 1.2.2, “Configure an Interrupt Pin.”
For example:

OnLoad += new InterruptDelegate(OnLoadEvent);

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

10 Freescale Semiconductor

Events

3.3 Example: Events, Threads, and GUI Usage
This example, which includes threads, events, and GUI standard usage, uses the following classes:

• Program class starts a hard mathematical order process in the HardMathEvaluation class

• HardMathEvaluation class uses events to notify the Program class at the end of each part of the
process

3.3.1 HardMathEvaluation Class
The HardMathEvaluation class defines one delegate and two events. The objective is to create and order
a buffer of semi-random numbers. The class generates the numbers, exits the corresponding event, orders
the numbers, and again exits the corresponding event.

The following steps show how the class is built:

1. Include namespaces for the class:

using System;
using Microsoft.SPOT;
using System.Threading;

2. Define data types and variables to use:

public delegate void InterruptDelegate(Object sender, String description);
public event InterruptDelegate OnGenerated;
public event InterruptDelegate OnOrdered;
private int[] buffer;
private Thread thread;
private int ordered;
public int Ordered {get { return ordered;}}

— InterruptDelegate defines the structure of the functions for the events OnLoad and
OnFinish.

— The buffer variable stores the array of numbers (elements) and the ordered variable (accessible
as property through Ordered) contains the number of elements already ordered.

— The thread variable is used for a process that takes a long time to run as another task.

3. Use a constructor to define the number of elements to order and the size of the buffer variable:

public HardMathEvaluation(int numElements) {
buffer = new int[numElements];

}

4. Generate the numbers. The generateNumbers method creates a thread to work into the process as
another task:

public void generateNumbers() {
ordered = 0;
thread = new Thread(new ThreadStart(generateNumbers_process));
thread.Start();

}
private void generateNumbers_process() {

for (int i = 0; i < buffer.Length; i++)
buffer[i] = Microsoft.SPOT.Math.Random(Int32.MaxValue);
if (OnGenerated != null) OnGenerated(this, "Generated all the numbers");

}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 11

Events

NOTE
Define the Random method in the Math class with the namespace, because
there is another class with the same name in the System namespace. Specify
which class to use.

5. Order the numbers. The orderNumbers method creates a thread to work into the process as
another task:

public void orderNumbers() {
thread = new Thread(new ThreadStart(orderNumbers_process));
thread.Start();

}
private void orderNumbers_process() {

int temp, j;
for (int i = 1; i < (buffer.Length); i++) {

j = i - 1;
while ((j >= 0) && (buffer[j] > buffer[i])) j--;
if (buffer[j+1] > buffer[i]) {

j = j + 1;
temp = buffer[i];
for (int k = i; k > j; k--) buffer[k] = buffer[k - 1];
buffer[j] = temp;

}
ordered = i + 1;

}
if (OnOrdered != null) OnOrdered(this, "Done! all the numbers are ordered");

}

3.3.2 Program Class
The Program class is based on the sample Program class provided by the Microsoft Visual Studio® 2005
development system, which is used to create a new project in the following folder:

C#/.Net Microframework/Window Application

The following steps show the changes made to the provided Program class in order to run this example:

1. Include the needed namespaces:

using System.Threading;

2. Define the types of data and variables to use:

private HardMathEvaluation orderNum;
private Text text1;
private Text text2;
private delegate void UpdateTextDelegate(Text IUElement, String text);
private Thread t1;

— orderNum object is the reference to the HardMathEvaluation class that defines and applies
the events.

— text1 and text2 are the objects that display text in the screen.

— UpdateTextDelegate defines the structure of the asynchronous function to be executed for
correct screen updating. For more information, see Section 5.1, “Standard UI Elements.”

— The variable t1 is used to run the update screen process as a separate task.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

12 Freescale Semiconductor

Events

The Main() method remains unchanged.

3. Initialize the variables. This step:

— Modifies the CreateWindow method to create a panel object of type Panel
— Initializes the Text objects

— Adds the Text objects to the panel

— Assigns the panel as child of the mainWindow object

— Initializes the orderNum object

— Assigns the events functions

With these changes, the new CreateWindow method contains the following code (some comments
are removed to save space):

public Window CreateWindow() {
mainWindow = new Window();
mainWindow.Height = SystemMetrics.ScreenHeight;
mainWindow.Width = SystemMetrics.ScreenWidth;

Panel panel = new Panel(); // Create a panel control.
text1 = new Text();
text1.Font = Resources.GetFont(Resources.FontResources.small);
text1.TextContent = Resources.GetString(Resources.StringResources.String1);
text1.HorizontalAlignment =

Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text1.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Center;
text2 = new Text();
text2.Font = Resources.GetFont(Resources.FontResources.small);
text2.HorizontalAlignment =

Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text2.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Top;

panel.Children.Add(text1);
panel.Children.Add(text2);
mainWindow.Child = panel;

mainWindow.AddHandler
(Buttons.ButtonUpEvent,new ButtonEventHandler(OnButtonUp), false);

mainWindow.Visibility = Visibility.Visible;
Buttons.Focus(mainWindow);

// Create the HardMathEvaluation control and assign its events.
orderNum = new HardMathEvaluation(1000);
orderNum.OnGenerated +=

new HardMathEvaluation.InterruptDelegate(OnGeneratedNumEvent);
orderNum.OnOrdered +=

new HardMathEvaluation.InterruptDelegate(OnOrderedNumEvent);
return mainWindow;

}

NOTE
Compiling the code at this point produces errors because the methods with
the OnGeneratedNumEvent and OnOrderedNumEvent events code are
not yet defined.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 13

Events

4. Start the process. The process is defined to start when any button is pressed. For this purpose,
additional lines are added to the OnButtonUp method. The changes are moved into an IF
condition, to avoid the case in which a process is running, a key is pressed, and the process tries to
run again without having finished the initial run. This IF condition verifies the value of the thread
variable, and is used for the screen update.

if (t1 == null)

The added lines start the hard mathematical order process, which continues through the
generateNumbers method, and then starts the screen update thread content in the t1 variable:

orderNum.generateNumbers();
t1 = new Thread(new ThreadStart(updateWindow));
t1.Start();

With the changes, the OnButtonUp method contains the following code (some comments are
removed to save space):

private void OnButtonUp(object sender, ButtonEventArgs e) {
Debug.Print(e.Button.ToString());
if (t1 == null) {

orderNum.generateNumbers();
t1 = new Thread(new ThreadStart(updateWindow));
t1.Start();

}
}

NOTE
Compiling the code at this point produces errors because the thread
updateWindow method is not yet defined.

5. Define the window update code. To correctly update the window content and view the screen
changes, the instructions for visual changes in functions must be called asynchronously.
Therefore, UpdateTextDelegate is used as a parameter in the asynchronous calls, and is defined
with two parameters. The first parameter identifies the user interface text object to update, and the
second represents the text to update.

6. Define the UpdateText method as follows, respecting the parameters and returning types defined
by the delegate UpdateTextDelegate:

private void UpdateText(Text IUElement, String text) {
IUElement.TextContent = text;

}

NOTE
Any function that respects the parameters and returns the types defined by
the UpdateTextDelegate can be a function of that type.

7. Implement the updateWindow thread method. The updateWindow thread method is
implemented to update the text2 object with the number of elements already ordered. The call to
the UpdateText method is made through the Dispatcher.Invoke method. Because this thread
method must be running forever to update the text, the code is in a while(true) loop.

private void updateWindow() {
while (true) {

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

14 Freescale Semiconductor

Persistent Data

text2.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateTextDelegate(UpdateText),
new object[] { text2, orderNum.Ordered.ToString() + " ordered" });

}
}

— The TimeSpan parameter represents the .NET Micro Framework delay between the execution
of the Invoke instruction and the UpdateText method. In this case it is one second.

— The object[] parameter represents the parameters of the UpdateText method in array form.

8. Define the events code. There are two events in this example. One event is exited when the buffer
is filled with semi-random number values. The second event is exited when the ordering process
is complete.

The OnGeneratedNumEvent event method is assigned to the orderNum object for the
OnGenerated event in Step 3. Implement the function that starts the ordering process and updates
a message on the screen. The function looks like this:

private void OnGeneratedNumEvent(Object sender, String description) {
Debug.Print(description);
orderNum.orderNumbers();
text1.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),
new UpdateTextDelegate(UpdateText),
new object[] {text1,Resources.GetString

(Resources.StringResources.String1)+":"+description});
}

The OnOrderedNumEvent event method is assigned to the orderNum object for the OnOrdered
event in Step 3. Implement the function that updates a message on the screen and suspends the t1
thread, which updates the window with the numbers ordered. The function looks like this:

private void OnOrderedNumEvent(Object sender, String description) {
Debug.Print(description);
text1.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),
new UpdateTextDelegate(UpdateText),
new object[]{text1,Resources.GetString

(Resources.StringResources.String1)+":"+description});
t1.Suspend();
t1 = null;

}

After suspending the t1 thread, the variable is set to null to allow the system to run again by
pressing any button. This is also done in Section 2.2.3, “Start a Thread.”

4 Persistent Data
Persistent data is that data stored in Flash memory for restoration as needed, such as configuration options,
profiles, and control variables. This section explains how to maintain persistent data in .Net Micro
Framework at the managed layer.

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 15

Persistent Data

4.1 Create Storable Data
To be storable, data must be defined as serializable. Such storable data definitions include String, int, byte,
ArrayList, and so on. A serializable class can also be created in order to enclose the storable data. Flash
memory can be erased and saved a finite number of times. It is recommended to create a serializable class
with the storable data, and save the memory only when necessary.

4.2 Example: Persistent Data
In this example, the Device class is defined as a serializable class with two variables, name and id. The
application stores the data of these variables in Flash. If the application needs to store the information for
more than one Flash device, create a log for the data using an ArrayList object, located in the
System.Collections namespace, as the manager of the data.
[Serializable]
public class Device {

private String name;
private byte id;
public String Name {

set { name = value; }
get { return name; }

}
public byte Id {

set { id = value; }
get { return id; }

}
public Device(byte Id, String Name) {

id = Id; name = Name;
}

}

The DeviceLog class showed below, can be used to store a stack of data. The DeviceLog class can be
updated with search functions to allow searching for a device by name or ID.
[Serializable]
class DeviceLog {

private ArrayList log = new ArrayList();
private Device lastDeviceUsed;
public ArrayList Log {

get { return log; }
}
public Device LastDeviceUsed {

get { return lastDeviceUsed; }
set { lastDeviceUsed = value; }

}
public void AddToLog(Device device) {

log.Insert(0, device); // this to have the last element added at the start
}
public void RemoveFromLog(Device device) {

log.Remove(device);
}
public void ClearLog() {

log.Clear();
lastDeviceUsed = null;

}
}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

16 Freescale Semiconductor

Persistent Data

4.3 Create a Flash Reference
The ExtendedWeakReference class in the Microsoft.SPOT namespace is used as reference to the data
to be stored in and recovered from Flash.

To save and recover data from Flash, use these steps:

1. Add a reference to the namespaces where the classes to use are located:

using Microsoft.SPOT;

2. Define the object that is used for the process:

ExtendedWeakReference flashReference;

3. Load the objects to recover the data from Flash, or create the object in Flash:

flashReference = ExtendedWeakReference.RecoverOrCreate(
typeof(Program), // marker class
id, // id number in the marker class
ExtendedWeakReference.c_SurvivePowerdown); // flags

flashReference.Priority = (Int32)ExtendedWeakReference.PriorityLevel.Important;
Object data = flashReference.Target; // recovering data

Data is null if this is the first time it is used, or if the data is damaged.

4. Save the data in Flash:

flashReference.Target = data;

To clear the saved data, use null instead of using the data.

4.4 FlashReference Class
The FlashReference class encloses the basic functionality of the ExtendedWeakReference class. The
FlashReference class only needs a unique identifier for the object to load/save Flash:

public class FlashReference {
private ExtendedWeakReference flashReference;
private uint id;
public FlashReference(uint Id) {

id = Id;
}
public Object load() {

flashReference = ExtendedWeakReference.RecoverOrCreate(
typeof(Program), // marker class
id, // id number in the marker class
ExtendedWeakReference.c_SurvivePowerdown); // flags

flashReference.Priority=(Int32)ExtendedWeakReference.PriorityLevel.Important;
Object data = flashReference.Target; // recovering data
return data;

}
public void save(Object data) {

flashReference.Target = data;
}

}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 17

GUI Applications

4.5 Example: FlashReference Class
The following example uses the FlashReference, DeviceLog and Device classes used in Section 4.2,
“Example: Persistent Data,” and Section 4.4, “FlashReference Class.” This example illustrates the use of
the FlashReference class for the following tasks:

• Store serializable data in the Flash memory for the first time

• Recover the data from Flash

• Update the data

• Save data in the Flash again

To perform this example, use these steps:

1. Add a reference to the namespaces where the classes to use are located:

DeviceLog deviceLog;
FlashReference deviceLogFlash;

2. Define the object that is used for the process:

DeviceLog deviceLog;
FlashReference deviceLogFlash;

3. Load the object to recover the data from Flash. The number 0 (zero) is the identification of the
deviceLog object in Flash. Select a number as required, to identify the storable data.

deviceLogFlash = new FlashReference(0);
deviceLog = deviceLogFlash.load() as DeviceLog;

4. Initialize the object, if needed. Initialize the object for the first read time of the Flash object, or if
the Flash object is damaged:

if (deviceLog == null) deviceLog = new DeviceLog();

5. Update the object. Update/change/delete data in the object:

String legend = "Data saved no: " + deviceLog.Log.Count.ToString();
deviceLog.AddToLog(new Device((byte)deviceLog.Log.Count, legend));

6. Save the object in Flash:

deviceLogFlash.save(deviceLog);

5 GUI Applications
This section describes two ways to create graphical user interface elements:

• Use the standard User Interface (UI) objects provided by .NET Micro Framework (which are
limited in number, properties, and scope)

• Use the Bitmap class

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

18 Freescale Semiconductor

GUI Applications

5.1 Standard UI Elements
Visual Studio 2005 and .Net Micro Framework provide standard UI elements that allow quick design of
the look and feel of screen components. Table 1 describes the most commonly used standard UI elements.

5.2 Using UI Elements
To interact with the interface elements, use functions that are called in the queue of messages of any UI
element. This avoid issues with the interaction of visual UI elements.

The user interface elements (UIElement) are an implementation of the dispatcher abstract object
(DispatcherObject). This dispatcher object adds the queue messaging service to the UI, which must be
used for any visual change in the object to take effect. Use any dispatcher of any object in the window,
including the window object, to update any visual property of the UI elements.

To update the elements and view the effects in the screen, use these steps:

1. Configure the delegate for the function that updates the user interface element:

private delegate void UpdateScreenDelegate(UIElement newValue,bool setFocus);
private delegate

void AddCanvasChildDelegate(UIElement newValue, int top, int left, bool setFocus);
private delegate void UpdateHintDelegate(String hint);

2. Implement the functions. These functions must be defined with the same parameters, using the
same types of data. The content of the function updates the properties of the user interface
elements. The user interface element to update can be a parameter for the function, or the user
interface element can be referenced by a global variable.

private void UpdateScreen(UIElement newValue, bool setFocus) {
_mainWindow.Child = newValue;
if (setFocus) Buttons.Focus(newValue);

}

Table 1. Standard UI Elements

Element Description

Canvas Defines an area, or canvas, within which child elements can be explicitly positioned by using coordinates that
are relative to the upper-left corner of the canvas

Image Displays a bitmap image

ListBox Implements a list of selectable items

ListBoxItem Implements a selectable item inside a ListBox object

Panel Constitutes a base class for all panel elements

StackPanel Arranges child elements (child objects) in a single line that can be oriented either horizontally or vertically

Text Displays a block of text

TextFlow Provides members that control how text flows on the display device (screen)

TextRun Provides members used to create and work with a text run, which is a string of characters that share a single
property set

Shape Represents a line or a two-dimensional shape displayed on a hardware display device; the implemented shape
objects are: ellipse, line, polygon, and rectangle

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 19

GUI Applications

private void AddCanvasChild(UIElement newValue, int top, int left, bool setFocus) {
Canvas.SetTop(newValue, top);
Canvas.SetLeft(newValue, left);
if (setFocus) Buttons.Focus(newValue);
_canvas.Children.Add(newValue);

}
private void UpdateHint(String text) {

if (_hint != null) _hint.TextContent = text;
}

The Buttons.Focus method moves the button focus to a specified display element, and in this case,
is used to catch keyboard events. This method is used to focus (using setFocus) on any element
that is associated with the keyboard, such as ListBox. At any specific point in time, there can be
only one element on a button device display that has the button’s focus. For example, if the
Buttons.Focus method is applied to the ListBox element, and then the ListBox element cleared,
then the Buttons.Focus method must be applied to other user interface elements in the window,
including the window itself, in order to continue catching the keyboard events.

3. Add functions to the queue. Put the function call in the queue for the correct update of the user
interface elements:

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateScreenDelegate(UpdateScreen),
new object[] { _panel, true });

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new AddCanvasChildDelegate(AddCanvasChild),
new object[] { image, 40, 10, false });

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateHintDelegate(UpdateHint),
new object[] { "Actual State: Draw Image" });

5.2.1 Example: Graphical User Interface

The following example illustrates architecture development of an application using .Net Micro Framework
user interface elements. This example uses the convention of the underscore character (_) to indicate
global private variables.

1. Add references to the namespaces where the classes are located:

using System.Threading;
using Microsoft.SPOT.Presentation.Media;
using Microsoft.SPOT.Presentation.Shapes;

2. Define the objects that are used for this example:

/* Delegates */
private delegate void UpdateScreenDelegate(UIElement newValue, bool setFocus);
private delegate void AddCanvasChildDelegate

(UIElement newValue, int top, int left, bool setFocus);
private delegate void UpdateHintDelegate(String hint);
/* Global variables for reference of user interface elements */
private Window _mainWindow;
private StackPanel _panel;
private Canvas _canvas;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

20 Freescale Semiconductor

GUI Applications

private Thread _stateT;
private ListBox _listbox;
private Text _hint;
/* States of the main states machine */
private enum statesMain {initialState, drawImage, drawListBox, idle, undefined, end, }
/* States control variable */
private struct stateType {

public statesMain actual;
public statesMain prior;
public statesMain next;

}
private stateType _state;
/* Additional enumeration control */
private enum shapeTypes { rectangle, circle, ellipse, line, }

3. Initialize and configure the objects through the CreateWindow and the stateMachine with the
state of initialState. With these changes, the CreateWindow method looks like this:

public Window CreateWindow() {
_mainWindow = new Window();
_mainWindow.Height = SystemMetrics.ScreenHeight;
_mainWindow.Width = SystemMetrics.ScreenWidth;
Text text = new Text();
text.Font = Resources.GetFont(Resources.FontResources.small);
text.TextContent = Resources.GetString(Resources.StringResources.String1);
text.HorizontalAlignment =

Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Center;
_mainWindow.Child = text;
_mainWindow.AddHandler

(Buttons.ButtonUpEvent, new ButtonEventHandler(OnButtonUp), false);
_mainWindow.Visibility = Visibility.Visible; Buttons.Focus(_mainWindow);
/* Initializing the states */
_state = new stateType();
_state.prior = statesMain.undefined;
_state.actual = statesMain.idle;
_state.next = statesMain.initialState;
/* Creating and running the thread for the state machine */
_stateT = new Thread(new ThreadStart(stateMachine));
_stateT.Start();
return _mainWindow;

}

4. Use the objects when a key is pressed while in the state machine function. In this example the use
of complex objects is done through detached functions. With these changes, the OnButtonUp
method looks like this:

private void OnButtonUp(object sender, ButtonEventArgs e) {
if (e.Button == Button.Right) {

/* Update the states after right button is pressed */
_state.prior = _state.actual;
_state.actual = _state.next;
_state.next = statesMain.undefined;

}
if ((_state.prior == statesMain.drawListBox)

&& (e.Button == Button.Select)) {
/* In case of the state "drawListBox" the button select is pressed
* draw a picture depending of the list box element selected */

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 21

GUI Applications

switch (_listbox.SelectedIndex) {
case 0: {createShape(shapeTypes.rectangle,150,10,140,220); break; }
case 1: {createShape(shapeTypes.circle,150,10,140,220); break; }
case 2: {createShape(shapeTypes.ellipse,150,10,140,220); break;}
case 3: {createShape(shapeTypes.line,150,10,140,220); break; }

}
}

}

In the state machine, each state is divided into three parts. The first part is the process to execute
in the state, the second is the update of the hint message, and the third is the update of the states.
The states change the actual state to idle, and the next state to the next decision state after an event
occurs (key pressed). The stateMachine method looks like this:

private void stateMachine() {
while(true) switch (_state.actual) {

case statesMain.idle: break;
case statesMain.initialState: {

_panel = new StackPanel();
_panel.Height = _mainWindow.ActualHeight;
_panel.Width= _mainWindow.ActualWidth;
Text textTitle = new Text();
textTitle.Font = Resources.GetFont(Resources.FontResources.small);
textTitle.TextContent = "GUI Standard Interface";
textTitle.HorizontalAlignment =

Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
textTitle.ForeColor =

(Microsoft.SPOT.Presentation.Media.Color)0xFF0000;
_hint = new Text();
_hint.Font = Resources.GetFont(Resources.FontResources.small);
_hint.TextContent = "Actual State: Initial State";
_hint.HorizontalAlignment =

Microsoft.SPOT.Presentation.HorizontalAlignment.Left;
_hint.ForeColor =

(Microsoft.SPOT.Presentation.Media.Color)0x000000;
_canvas = new Canvas();
_canvas.Height = _panel.Height - 30;
_panel.Children.Add(textTitle);
_panel.Children.Add(_canvas);
_panel.Children.Add(_hint);
_mainWindow.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),
new UpdateScreenDelegate(UpdateScreen),
new object[] { new Panel(), true });

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateScreenDelegate(UpdateScreen),
new object[] { _panel, true });

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.drawImage;
break; }

case statesMain.drawImage: {
Image image = new
Image(Resources.GetBitmap(Resources.BitmapResources.logo));
_mainWindow.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

22 Freescale Semiconductor

GUI Applications

new AddCanvasChildDelegate(AddCanvasChild),
new object[] { image, 40, 10, false });

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateHintDelegate(UpdateHint),
new object[] { "Actual State: Draw Image" });

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.drawListBox;
break; }

case statesMain.drawListBox: {
_listbox = createListbox();
_mainWindow.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),
new AddCanvasChildDelegate(AddCanvasChild),
new object[] { _listbox, 40, 60, true });

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new UpdateHintDelegate(UpdateHint),
new object[] { "Actual State: Draw List Box" });

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.end;
break; }

case statesMain.end: {
_mainWindow.Dispatcher.Invoke(

new TimeSpan(0, 0, 1),
new UpdateHintDelegate(UpdateHint),
new object[] { "Actual State: Done!" });

_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.initialState;
break; }

default: break;
}

}

The additional methods look like this:

private ListBox createListbox() {
ListBox listbox = new ListBox();
listbox.Child.Height = 100;
listbox.Child.Width = 170;
((Control)listbox.Child).Background = new LinearGradientBrush

(Colors.White, Colors.Blue, 0, 0, listbox.Child.Height, 1);
// Create TextListBoxItems
Font font = Resources.GetFont(Resources.FontResources.small);
TextListBoxItem drawRectangleLbi = new TextListBoxItem("Draw Rectangle", font);
TextListBoxItem drawCircleLbi = new TextListBoxItem("Draw Circle", font);
TextListBoxItem drawEllipseLbi = new TextListBoxItem("Draw Ellipse", font);
TextListBoxItem drawLineLbi = new TextListBoxItem("Draw Line", font);
// Add TextListBoxItems to listbox
listbox.Items.Add(drawRectangleLbi);
listbox.Items.Add(drawCircleLbi);
listbox.Items.Add(drawEllipseLbi);
listbox.Items.Add(drawLineLbi);
listbox.SelectedItem = drawRectangleLbi;
return listbox;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 23

GUI Applications

}
private void UpdateScreen(UIElement newValue, bool setFocus) {

_mainWindow.Child = newValue;
if (setFocus) Buttons.Focus(newValue);

}
private void AddCanvasChild(UIElement newValue, int top, int left, bool setFocus) {

Canvas.SetTop(newValue, top);
Canvas.SetLeft(newValue, left);
if (setFocus) Buttons.Focus(newValue);
_canvas.Children.Add(newValue);

}
private void UpdateHint(String text) {

if (_hint != null) _hint.TextContent = text;
}
private void createShape(shapeTypes shapeType, int top, int left, int maxHeight, int
maxWidth) {

// Get random numbers
int topRelaive = Microsoft.SPOT.Math.Random(maxHeight);
int leftRelaive = Microsoft.SPOT.Math.Random(maxWidth);
int topPos = topRelaive + top;
int leftPos = leftRelaive + left;
maxHeight -= topRelaive;
maxWidth -= leftRelaive;
if (maxHeight < 2) maxHeight = 2;
if (maxWidth < 2) maxWidth = 2;
Color color = (Color)Microsoft.SPOT.Math.Random(0xFFFFFF);
int maxRadius = 0;
if (maxWidth < maxHeight) maxRadius = maxWidth/2;
else maxRadius = maxHeight / 2;
Shape shape = null;
switch (shapeType) {

case shapeTypes.rectangle:
shape = new Rectangle();
shape.Width = Microsoft.SPOT.Math.Random(maxWidth);
shape.Height = Microsoft.SPOT.Math.Random(maxHeight);
shape.Stroke = new Pen(color);

// Note: The .NET Micro Framework SDK does not support a non-filled rectangle at this time
//** Fill the rectangle with the same color as the pen stroke

shape.Fill = new SolidColorBrush(color);
break;

case shapeTypes.circle:
int radius = Microsoft.SPOT.Math.Random(maxRadius);
shape = new Ellipse(radius, radius);
shape.Stroke = new Pen(color);
break;

case shapeTypes.ellipse:
int xRadius = Microsoft.SPOT.Math.Random(maxWidth/2);
int yRadius = Microsoft.SPOT.Math.Random(maxHeight/2);
shape = new Ellipse(xRadius, yRadius);
shape.Stroke = new Pen(color);
break;

case shapeTypes.line:
int xDis = Microsoft.SPOT.Math.Random(maxRadius);
int yDis = Microsoft.SPOT.Math.Random(maxRadius);
shape = new Line(xDis, yDis);
shape.Stroke = new Pen(color);
break;

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

24 Freescale Semiconductor

GUI Applications

default: break;
}
if (shape != null)

_mainWindow.Dispatcher.Invoke(
new TimeSpan(0, 0, 1),
new AddCanvasChildDelegate(AddCanvasChild),
new object[] { shape, topPos, leftPos, false });

}

For this example, a class is created for a specific functionality for the list box items, as follows:

class TextListBoxItem : ListBoxItem {
public TextListBoxItem(string str, Font font) : base() {

Text text = new Text(font, str);
text.HorizontalAlignment = HorizontalAlignment.Center;
this.Child = text;
this.Background = null; // Set the background to transparent

}
protected override void OnIsSelectedChanged(bool isSelected) {

Text text = this.Child as Text;
if (isSelected) {

text.ForeColor = Colors.Blue;
this.Background = new SolidColorBrush(Colors.Gray);

} else {
text.ForeColor = Colors.Black;
this.Background = null;

}
}

}

5.3 Use the Screen as a Bitmap
To use the screen as a bitmap: create the bitmap, update the pixels in the bitmap, and place the bitmap in
the screen.

5.3.1 Bitmap Class
The Bitmap class encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics image and
its attributes. A Bitmap is an object used to work with images defined by pixel data. The Bitmap class
provides a complete set of methods that allows drawing text, lines, circles, ellipses, and rectangles in the
bitmap, merging other bitmaps, and modifying the bitmap by pixel. The Flush method of the Bitmap class
places the bitmap in the screen. Table 2 describes the common methods for drawing within the bitmap.

Table 2. Bitmap Drawing Methods

Method Description

Clear Clears the entire drawing surface

DrawEllipse Draws a filled ellipse on the display device

DrawImage Draws a rectangular block of pixels on the display device

DrawLine Draws a line on the display device

DrawRectangel Draws a rectangle on the display device

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 25

GUI Applications

5.3.2 Example: Graphical User Interface
This example shows how to develop the architecture of an application using .Net Micro Framework with
a Bitmap as the screen. This example uses the convention of the underscore character (_) to indicate global
private variables.

To perform this example, use these steps:

1. Add a reference to the namespaces where the classes to use are located:

using System.Threading;
using Microsoft.SPOT.Presentation.Media;

2. Define the objects to be used in this example:

private Window _mainWindow; // main window element
private Bitmap _screen; // bitmap used for flush
private Bitmap _back; // based bitmap to be updated
private Thread _stateT; // thread of the state machine
/* States of the main state machine */
private enum statesMain {idle,initialState,drawBackground,drawButtons,end,undefined, }
/* State machine control variable */

private struct stateType {
public statesMain actual;
public statesMain prior;
public statesMain next;

}
private stateType _state;
/* Definition of the buttons */
private enum buttonNames {first, button1, button2, none, }
/* Buttons control variable */
private struct buttonStates {

public buttonNames pressed; /* Button pressed */
public buttonNames selected; /* Button selected */
public buttonNames prior; /* Last button pressed */

}
private buttonStates _button;

3. Initialize and configure the objects. In this example the initialization is done through the
CreateWindow and the stateScreen with the state of initialState. After the changes the
CreateWindow method looks like this:

public Window CreateWindow() {
_mainWindow = new Window();
_mainWindow.Height = SystemMetrics.ScreenHeight;
_mainWindow.Width = SystemMetrics.ScreenWidth;
Text text = new Text();

DrawText Draws text on the display device

DrawTextInRect Draws text in a specified rectangle

Flush Flushes the current bitmap to the display device

SexPixel Turns a specified pixel on or off

Table 2. Bitmap Drawing Methods (continued)

Method Description

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

26 Freescale Semiconductor

GUI Applications

text.Font = Resources.GetFont(Resources.FontResources.small);
text.TextContent = Resources.GetString(Resources.StringResources.String1);
text.HorizontalAlignment=Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
text.VerticalAlignment = Microsoft.SPOT.Presentation.VerticalAlignment.Center;
_mainWindow.Child = text;
_mainWindow.AddHandler(Buttons.ButtonUpEvent,
new ButtonEventHandler(OnButtonUp), false);
_mainWindow.Visibility = Visibility.Visible;
Buttons.Focus(_mainWindow);
/* Initializing the states */
_state = new stateType();
_state.prior = statesMain.undefined;
_state.actual = statesMain.idle;
_state.next = statesMain.initialState;
/* Initializing the button state */
_button = new buttonStates();
/* Creating and running the thread for the state machine */
_stateT = new Thread(new ThreadStart(stateScreen));
_stateT.Start();
return _mainWindow;

}

4. Use the objects. The objects are used when a key is pressed and in the state machine function.
With our changes, the OnButtonUp method looks like this:

private void OnButtonUp(object sender, ButtonEventArgs e) {
// Print the button code to the Visual Studio output window.
Debug.Print(e.Button.ToString());
if (e.Button == Button.Right) {

/* Update the states after right button is pressed */
_state.prior = _state.actual;
_state.actual = _state.next;
_state.next = statesMain.undefined;

}
switch (_state.prior) {

case statesMain.drawButtons : {
/* In case of the state "drawButtons" the button select is changed
* when up or down button is pressed, and the change of states
* update the screen */

if (e.Button == Button.Select) {
_button.prior = _button.pressed;
_button.pressed = _button.selected;

} else {
if (e.Button == Button.Up) _button.selected--;
else if (e.Button == Button.Down) _button.selected++;
if (_button.selected == buttonNames.none)

_button.selected = buttonNames.first + 1;
else if (_button.selected == buttonNames.first)

_button.selected = buttonNames.none - 1;
}
_state.prior = _state.actual;
_state.actual = statesMain.drawButtons;
_state.next = statesMain.undefined;
break;

}
}

}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 27

GUI Applications

In the state machine, each state is divided into three parts. The first part is the process to execute in the
state; the second is the update of the hint message, and the third is the update of the states. The states
change the actual state to idle, and then change the next state to the next decision state, after an event occurs
(key pressed). The state machine stateScreen method looks like this:

private void stateScreen() {
Font font = Resources.GetFont(Resources.FontResources.small);
while (true) switch (_state.actual) {

case statesMain.idle: break;
case statesMain.initialState: {

_button.prior = buttonNames.none;
_button.selected = buttonNames.none;
_button.pressed = buttonNames.none;
_back = new Bitmap(240, 320);
_back.DrawRectangle(Color.White, 10, 0, 0, 240, 320, 2, 2,

Color.White, 0, 0, Color.White, 240, 320, 0);
_screen = new Bitmap(240, 320);
_screen.DrawImage(0,0,_back,0,0,240,320);
_screen.Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.drawBackground;
break; }

case statesMain.drawBackground: {
_back.DrawImage(35, 10,
Resources.GetBitmap

(Resources.BitmapResources.freescale), 0, 0, 170, 57);
_back.DrawRectangle(Color.White, 1, 35, 10, 170, 57, 2, 2,

Color.White, 0, 0, Color.White, 240, 320, 0);
_screen.DrawImage(0, 0, _back, 0, 0, 240, 320);
_screen.DrawTextInRect("State: Background", 10, 300, 220, 20,

Bitmap.DT_AlignmentCenter |
Bitmap.DT_TrimmingCharacterEllipsis, (Color)0xFFFFFF, font);

_screen.Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.drawButtons;
break; }

case statesMain.drawButtons: {
if (_button.selected == buttonNames.none)

_button.selected = buttonNames.first + 1;
_screen.DrawImage(0, 0, _back, 0, 0, 240, 320);
String hint = "State: Buttons";
if (_button.pressed != buttonNames.none) {

if (_button.pressed == buttonNames.button1)
hint += " : Button 1 pressed";

else if (_button.pressed == buttonNames.button2)
hint += " : Button 2 pressed";

}
_screen.DrawTextInRect(hint, 10, 300, 220, 20,

Bitmap.DT_AlignmentCenter |
Bitmap.DT_TrimmingCharacterEllipsis,(Color)0xFFFFFF, font);

_screen.DrawTextInRect("Button 1", 10, 100, 220, 20,
Bitmap.DT_AlignmentCenter |
Bitmap.DT_TrimmingCharacterEllipsis,(Color)0x0000FF, font);

_screen.DrawTextInRect("Button 2", 10, 200, 220, 20,
Bitmap.DT_AlignmentCenter |

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

28 Freescale Semiconductor

SideShow Applications

Bitmap.DT_TrimmingCharacterEllipsis,(Color)0x0000FF, font);
if (_button.selected == buttonNames.button1)

_screen.DrawEllipse((Color)0xFFFFFF, 120, 107, 110, 10);
else if (_button.selected == buttonNames.button2)

_screen.DrawEllipse((Color)0xFFFFFF, 120, 207, 110, 10);
_screen.Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.end;
break; }

case statesMain.end: {
_screen.DrawImage(0, 0, _back, 0, 0, 240, 320);
_screen.DrawTextInRect("State: End", 10, 300, 220, 20,

Bitmap.DT_AlignmentCenter |
Bitmap.DT_TrimmingCharacterEllipsis,(Color)0xFFFFFF, font);

_screen.Flush();
_state.prior = _state.actual;
_state.actual = statesMain.idle;
_state.next = statesMain.initialState;
break; }

default: break;
}

}

6 SideShow Applications
Windows SideShow is a technology that enables a Windows PC to drive a variety of auxiliary display
devices connected to the main PC. These devices can be separate from or integrated into the main PC (for
example, a display embedded on the outside of a laptop lid), enabling access to information and media
even when the PC is (mostly) turned off. SideShow can also drive the display of PC data on mobile phones
and other devices that are connected by Bluetooth or other wireless network protocols.

6.1 SideShow Enhanced Display Types
Two types of applications can be loaded into the SideShow enhanced display devices:

• XML applications can be downloaded from the Internet and installed and uninstalled in the device
using the SideShow portal in the connected a Windows Vista® PC

• Built-in applications are libraries developed over .Net Micro Framework that can be added to the
SideShow device for specific functionality in the device

6.2 Example: SideShow Applications
This section provides an example for creating device-specific, built-in SideShow applications using .Net
Micro Framework. Because .Net Micro Framework can run only one application at a time, SideShow is
the application that runs and the SideShow applications must be created and added as .Net Micro
Framework libraries (dlls).

Two main components are required in the SideShow applications:

• DLL component that must be compliant with the interface IDeviceApplication
• Main form executable that must be inherited from the ApplicationForm class

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 29

SideShow Applications

The SideShow Application libraries must respect the following structure:

//---
// SideShow application
// An application must implement the IDeviceApplication interface. The Shell uses this
// interface to control the application.
//---
public class SideshowExample : IDeviceApplication
{

public SideshowExample()
{

Debug.Print("Sideshow Example Application, DLL Contructor");
}

//---
// Built-in order number
// This static property identifies this class as a built-in (stand-alone) application. The Shell
// locates built-in applications by using reflection to find all classes that declare this
// property. The Shell creates an instance of each built-in application at system startup time.
//
// The Shell orders the built-in applications according to their order numbers (smallest first).
// The built-in applications are displayed behind the PC gadget endpoint applications.
//--

public static int BuiltInOrder
{

get { return 50; }
}
//
// IDeviceApplication methods
//

//--
// Install
// The Shell calls this method right after creating an instance of the application. A built-in
// application does not receive data from a PC gadget, so the cache argument is always null.
//
// The application can do any one-time initialization in this method.
//---

public void Install(IApplicationCache cache)
{

Debug.Print("Sideshow Example Application, DLL Installed");
}

//---
// Uninstall
// This method is never called for built-in applications because they are never unistalled.
//---

public void Uninstall()
{
}

//---
// Set Shell attributes
// The Shell calls this method to get the application name and icons that will be displayes on
// the home page. The method returns these in the attribute class that is passed in. The icons
// should be 32-bit color icons with alpha channel. Each icon resource is a byte array which
// contains a .bmp file image. The icons are returned as byte arrays rather than Bitmap class
// instances, so that the Shell can access the raw pixel data.
//---

public void SetShellAttributes(ShellAttributes attributes)
{

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

30 Freescale Semiconductor

SideShow Applications

attributes.Name = "Hello World App";
attributes.Icon16Data=Resources.GetBytes(Resources.BinaryResources.ICON_16);
attributes.Icon32Data=Resources.GetBytes(Resources.BinaryResources.ICON_32);
attributes.Icon48Data=Resources.GetBytes(Resources.BinaryResources.ICON_48);

}
//
// Member variable to hold the applicaiton form
//
private HelloWorldForm _form;

//---
// Get form
// The Shell calls this method to get the application main window when the user selects this
// application on the Shell home page. An application typically caches the form and returns the
// same one every time.
//---

public ApplicationForm GetForm()
{

if (_form == null)
{

_form = new HelloWorldForm();
}
return _form;

}
//---
// Get Glance Data
// The Shell calls this method when the application is highlighted on the Shell home page. The
// method optionally returns one or more lines of text that give a high-level status for the
// application. For example, a calendar application may return the time and place of the next
// appointment as the Primary status and later appointments this day as secondary status. Note
// that the seconday status is an array of strings. A typical device can display up to 15 lines
// of status.
//
// For built-in applications that don't have status to display, the primary glance data can be a
// short description of what the application does.
//
// The Shell calls GetGlanceData when the application gets the focus on the home page or when it
// is told that the glance data has changed. The application must call
// Globals.Shell.UpdateGlanceData(this) to notify the Shell when the glance data has changed.
//---

public GlanceData GetGlanceData()
{

GlanceData glance = new GlanceData();
glance.Primary = "(great example!!!)";
return glance;

}
}

The SideShow main form must respect the following structure:

//--
// HelloWorldForm
// This is the main window of the application. It must be derived from base class
// ApplicationForm. ApplicationForm defines virtual methods for interacting with
// the SideShow Shell and provides a default implementation for each method.
//---
private class HelloWorldForm : ApplicationForm
{

//---

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 31

SideShow Applications

// Constructor
// Passes "true" to ApplicationForm base to specify the form should have a
// title bar. Application forms should have a title bar because it identifies
// the application with an icon and name. It also displays the current time.
//--
public HelloWorldForm()

: base(true)
{

Debug.Print("Form construct");
}
//---
// Activate event handler
// This is called when the user selects this application from the Shell home page.
// This is called right after the form is made visible. Prior to calling this
// the Shell sets the title bar icon and name to the icon and name provided
// by the gadget. The application can replace or extend the title text here.
//---
protected override void OnActivate(EventArgs e)
{

//
// Set the initial view. It's up to the application whether to display the
// same view everytime or return to the last visited view. The
// ApplicationForm sets the focus to the View when it gets the focus from
// the OS.
//
// To conserve device memory an application should create its UI on
// activation and release it on deactivation.
//
Debug.Print("Form activate");
View = CreateContent();

}
//---
// Deactivate event handler
// This is called when the user leaves the application and returns to the Shell
// home page.The application should release UI objects and stop any processing
// that isn't needed when the application isn't the active one
//---
protected override void OnDeactivate(EventArgs e)
{

Debug.Print("Form on deactivate");
}
//---
// Handle theme change
// If an application displays text or creates custom UI controls it should
// use the fonts, colors, backgrounds, etc. specified by the currently
// selected theme. The theme properties are exposed by the ThemeResources
// class.
// This method is called when the user switches the theme. The application
// should respond by updating all displays to use the new theme settings. The
// simplest way to update is to just recreate the Views.
//---
public override void OnThemeChange()
{

base.OnThemeChange();
if (View != null)
{

View = CreateContent();

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

32 Freescale Semiconductor

SideShow Applications

}
}
//---
// Create content
// This method creates the view for the form. For this simple example the
// view is just a centered text control which displays "Hello World".
//
// More complex applications often have multiple views and UI to select
// the current view (often a context menu). The view control is private to
// the application. The only part the base form plays is to set the focus
// to the new view whenever it is changed.
//---
private UIElement CreateContent()
{

Color color = ThemeResources.GetColor(ThemeColor.PageText);
Font font = ThemeResources.GetFont(ThemeFont.PageBold);
Text text = new Text(font, "");
text.TextContent = Resources.GetString(Resources.StringResources.String1);
text.ForeColor = color;
text.VerticalAlignment = VerticalAlignment.Center;
text.HorizontalAlignment = HorizontalAlignment.Center;
return text;

}
//---
// Button Up event handler
// This is called when any button is released.
// The application flow can be linked to the buttons events through this event
// handler.
//---
protected override void OnButtonUp(ButtonEventArgs e)
{

switch (e.Button)
{
case Button.Up:

Debug.Print("button UP pressed");
break;

case Button.Right:
Debug.Print("button Right pressed");
break;

case Button.Down:
Debug.Print("button Down pressed");
break;

case Button.Left:
Debug.Print("button Left pressed");
break;

case Button.Select:
Debug.Print("button Select pressed");
break;

}
}

}

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 33

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

34 Freescale Semiconductor

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Advanced Development with Microsoft®.NET Micro Framework 2.0, Rev. 0

Freescale Semiconductor 35

SideShow Applications

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3888
Rev. 0
08/2009

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. Microsoft, SlideShow, and
Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

	Advanced Development with Microsoft®.NET Micro Framework 2.0
	1 GPIO Pin Configuration
	1.1 Identify CPU Pins
	1.2 Configure Platform Pins
	1.2.1 Configure an Input Pin
	1.2.2 Configure an Interrupt Pin
	1.2.3 Configure an Output Pin

	1.3 Example: Serial Communications with GPIO

	2 Threads
	2.1 Multithreading
	2.2 Implement a Thread
	2.2.1 Create a Thread
	2.2.2 Prioritize a Thread
	2.2.3 Start a Thread
	2.2.4 Sleep a Thread
	2.2.5 Suspend a Thread
	2.2.6 Verify the State of a Thread

	3 Events
	3.1 Define the Delegate and Variable
	3.2 Implement and Assign the Function
	3.3 Example: Events, Threads, and GUI Usage
	3.3.1 HardMathEvaluation Class
	3.3.2 Program Class

	4 Persistent Data
	4.1 Create Storable Data
	4.2 Example: Persistent Data
	4.3 Create a Flash Reference
	4.4 FlashReference Class
	4.5 Example: FlashReference Class

	5 GUI Applications
	5.1 Standard UI Elements
	5.2 Using UI Elements
	5.2.1 Example: Graphical User Interface

	5.3 Use the Screen as a Bitmap
	5.3.1 Bitmap Class
	5.3.2 Example: Graphical User Interface

	6 SideShow Applications
	6.1 SideShow Enhanced Display Types
	6.2 Example: SideShow Applications

