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RFC1990 describes a mechanism, the “M” algorithm, for 
detecting MLPPP fragment loss. This mechanism detects a 
lost fragment only when all of the links in an MLPPP bundle 
have received a fragment with a sequence number greater 
than that of the fragment that is lost. The RFC does not state 
how the M algorithm should be implemented to guarantee an 
acceptable level of QoS. Using only the RFC1990 M 
algorithm in periods of low density traffic can lead to a 
relatively large amount of time passing before a fragment 
loss is detected. This can have a detrimental effect on 
real-time traffic such as voice or video.

This application note explains how the RFC1990 M 
algorithm can be augmented to detect fragment loss in a way 
that guarantees an acceptable QoS. It is relevant for 
Freescale Semiconductor’s MLPPP-enabled, 
QUICC Engine™ products (MPC8360E, MPC8568E, and 
MPC8569E).
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1 Low Density Traffic Problem Statement
Consider the following scenario: a 3G wireless base station (BTS) is connected to the radio network 
controller (RNC) via 16 E1 lines. Late in the evening the density of traffic drops and there is only one voice 
call active on the BTS. For the user to experience acceptable voice quality, a packet (typically) needs to be 
received every 20 ms. Figure 1 shows this scenario.

 

Figure 1. 16 E1 MLPPP Low Density Traffic Problem

Every 20 ms, a voice packet is transferred over the bundle from the RNC to the BTS. It is acceptable to 
lose 2–3 back-to-back packets; more than this becomes audible to the end user. A 20 ms delay means there 
is no possibility of packets being transmitted back-to-back. There is a large “idle” gap between consecutive 
packets on the bundle. Fragment loss detection latency can become an issue in this system. To illustrate 
the point, it is assumed, as described in RFC1990, that the RNC sends the voice packets round robin over 
the 16 links in the bundle. For ease of illustration, it is also assumed that there is no fragmentation; each 
MLPPP “fragment” has its B (Begin) and E (End) bits set to 1.

Table 1 shows when the M algorithm detects fragment loss when there are four E1 links in the bundle.

Because the packets are transmitted round robin in sequence, they are also received round robin in 
sequence. Table 1 shows that the first four fragments are received correctly. Then E1_1 receives fragment 
with sequence number 4. Sequence number 5 is lost on E1_2, so this link’s latest sequence number remains 
1. Fragments go round robin until E1_2 again. No fragment loss is detected because it is feasible that the 

Table 1. Fragment Loss Detection Example Using RFC1990 M Algorithm

MLPPP Sequence Number

E1_1 E1_2 E1_3 E1_4

0 1 2 3

4 LOST 6 7

8 9 (Fragment loss detected here) — —

BTS RNC

MLPPP Bundle 16 E1 Lines

Voice Packets Same Call/Flow

20 ms
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fragment with sequence number 5 could appear on E1_2. Only when the fragment containing sequence 
number 9 is fully received on E1_2 is the fragment loss detected. In theory, as fragments 6, 7, and 8 have 
B = E = 1. they can be passed up to the next layer; however, this is system-dependent and is very complex 
to manage. It is likely that these fragments will be buffered until either sequence number 5 appears or 
fragment loss is detected. This is the behavior in the MLPPP microcode’s WBD; the fragments are 
buffered until fragment loss is detected.

It took 4 fragments to detect the loss, which at first glance seems reasonable. However, because there is a 
20-ms interval between each fragment, it took 80 ms to detect the loss. Fragment 6 is delayed by 60 ms, 7 
by 40 ms, and 8 by 20 ms. This may result in audible disturbance on the voice call.

If there are 16 links in the bundle, then it would take 320 ms to detect the loss, causing significantly more 
disturbance. This example is simplified and can be much worse in reality if any of the following are true:

• The peer does not transmit the fragments strictly in round robin fashion

• There are multiple fragment loss events

2 Loss Detection and Flushing the WBD
To overcome the issue described in Section 1, “Low Density Traffic Problem Statement,” the MLPPP 
microcode’s WBD must be flushed when a fragment is lost and the traffic density is low. There are two 
distinct elements to the solution, as follows:

1. Detecting the fragment loss

2. Triggering the flush

2.1 Fragment Loss Detection
To ensure that fragments are pushed out of the WBD before the delay impacts QoS, the user must monitor 
for fragment loss, and when necessary, issue the WBD flush command. The following parameters in the 
CPT are used in the algorithm:

• RX_MAX—highest sequence number of a fragment received on this bundle

• RX_LSQN—oldest missing fragment’s sequence number; or, if no fragments are missing, then 
RX_MAX + 1 (this is essentially the next expected sequence number)

The basic idea is to define an array with a length that takes into account the time out period, for example, 
if the check is done every 1 ms, and the time-out period for the system is 10 ms then the array should have 
10 elements. This allows a packet delayed in the WBD for 10 ms to be flushed. When the timer period has 
expired the maximum sequence number received on this bundle is written to the current element in the 
array. The array index is then incremented to the next entry.

Each element is checked in turn, meaning the current element is checked, and then on the next timer tick 
the next element is checked, and so on. Therefore, after one full wrap of the array, and thus one full system 
timeout period, the first element is checked again. That is, if the array holds N elements, then after N timer 
ticks the element is checked. When it is checked, the array element contains the highest sequence number 
received on this bundle one system time-out period ago. If the value of the element is greater than the 
sequence number of the oldest hole (CPT[RX_LSQN]), then a WBD flush command should be issued.
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The array elements should be initialized with a number greater than the sequence number range (for 
example, UNDEFINED_SN = 0x80000000). This undefined value is used to handle the first time through 
the array and is programmed at initialization only.

An example of how to monitor for this situation is described in the following steps:

1. Record the highest sequence number (new_high) received in the timer period (that is, save 
RX_Max from Class Parameter Table (CPT)).

2. Get the old highest sequence number (old_high) for this time-out period (for example, in the last 
10 ms) by reading the value in the current array index.

3. Set the current array element to the new high sequence number, that is, value from step 1.

4. Increment the array index.

5. Check if the end of the array has been reached, and if so, wrap around. 

6. Check if the WBD flush is required. First the user should check if the old_high value from step 2 
is equal to UNDEFINED_SN, and if so, no action is required and step 7 can be skipped.

7. This step uses RX_LSQN from the CPT. The user should check if the old_high value from step 2 
is greater than RX_LSQN, and if so, the WBD flush command should be called as described in 
Section 2.2, “Triggering a WBD Flush.” If it is not greater than RX_LSQN, then no action is 
required.

These steps are summarized in the code shown in Example 1.

Example 1. Code for Handling Flushing of WBD

old_high = flush_array[current_idx];    /* get highest SN from previous timeout period */ 

flush_array[current_idx] = p_CptPtr->rxMax; /* copy CPT[RX_MAX] to array*/

current_idx += 1;

temp = old_high - p_CptPtr->rxLSQN; /* check if old_high > RX_LSQN (signed int)*/

if (high_idx > arraySize) current_idx=0; /* Handle wraparound */

if (old_high == UNDEFINED_SEQNO) {

/* Do nothing as this is the initialization value*/

} else if (temp > 0)/* check if flush is required */ {

flushWBD(old_high);

} else {

/* No action */

}
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An example scenario for detecting WBD timeout is shown in Table 2.

Table 2 details an example using an array with four elements. This example is working on the traffic 
pattern shown in Table 1. The table is read from left to right and then proceeds to the next row. It assumes 
that each element is checked every 1 ms and a fragment is received every 1 ms. It also assumes that the 
fragments are received in incremental sequence number order. In terms of how to interpret each entry in 
the table, consider the following entry found in the first two columns of Table 2.

• Element 0 Before = 0—this is the old high (step 2).

• Element 0 After = 4—this is the new high (CPT[RX_MAX] read in step 1).

• RX_MAX = 4—this is CPT[RX_MAX] the highest sequence number received on this bundle at 
this point in time.

• RX_LSQN = 5—this is the next expected sequence number, because no fragments are lost at this 
point in time and there is no hole in the WBD. 

The example in Table 2 detects fragment loss in a similar time frame to the RFC M algorithm when the 
transmission and reception is round robin. In Table 2, the fragment with sequence number 5 is lost. The 
example shows that the fragment number 6 is delayed in the WBD by 4 ms regardless of which links the 
fragments are received on.

For example, if all the fragments are received on one link in the bundle (remember the bundle in this 
example contains four links), the M algorithm does l not detect any fragment loss. The above example 
detects the fragment loss in a predictable manner regardless of which links in the bundle the fragments are 
received on.

0
4

4
5

Table 2. Fragment Loss Detection in Practice

Element 0:
Before 
After

RX_MAX 
RX_LSQN

Element 1:
Before 
After

RX_MAX 
RX_LSQN

Element 2: 
Before 
After

RX_MAX 
RX_LSQN

Element 3:
Before 
After

RX_MAX 
RX_LSQN

UND
0

0
1

UND
1

1
2

UND
2

2
3

UND
3

3
4

0
4

4
5

1
4 (5 LOST)

4
5

2
6

6
5

3
7

7
5

4
8

8
5

4
9

9
5

6
10

10
5 FLUSH

0 1 2 3

4
5

6 7

8 9 10

X Denotes sequence number received always ‘just’ before the timeout expiry in this example

A
BA

B

Time line, read table from left to right then proceed
to next row.

Notes:
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Table 3 illustrates the original example of a fragment received every 20 ms. This time the array holds ten 
entries and is checked every 1 ms. Therefore, the system timeout period is 10 ms; this is the maximum 
amount of time a packet can be delayed in the WBD. The results are shown in Table 3.

Each row in Table 3 is a 10-ms chunk of time. Because a fragment is received every 20 ms, it takes two 
rows to receive consecutive fragments. It is assumed that the fragment is received between check 9 and 
wrapping again to check 0, thus the RX_LSQN and RX_MAX are the values used in each check within 

Table 3. Fragment Loss Detection Time with 20 ms Traffic

0 1 2 3 4 5 6 7 8 9 RX_LSQN RX_MAX

Array Element Before
Array Element After

U1

0

1 Undefined, the initialization value of the array (0x80000000).

U
0

U
0

U
0

U
0

U
0

U
0

U
0

U
0

U
0

1 0

Array Element Before
Array Element After

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1 0

Array Element Before
Array Element After

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

2 1

Array Element Before
Array Element After

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2 1

Array Element Before
Array Element After

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

3 2

Array Element Before
Array Element After

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3 2

Array Element Before
Array Element After

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

4 3

Array Element Before
Array Element After

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4 3

Array Element Before
Array Element After

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

5 4

Array Element Before
Array Element After

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

5 4

Array Element Before
Array Element After

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

5 LOSS 4

Array Element Before
Array Element After

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

5 4

Array Element Before
Array Element After

4
6

4
6

4
6

4
6

4
6

4
6

4
6

4
6

4
6

4
6

5 6

Array Element Before
Array Element After

6
6

Fragment loss detected in first element in this 
sweep through the array. WBD flush issued.

5 6

Note:  
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one row. Table 3 shows that the fragment with sequence number 6 is received and stays inside the WBD 
for ten checks of the array. A fragment loss is detected after 10 ms, which is much less than the 60 ms when 
four links are in the bundle, or 320 ms when 16 links are in the bundle. This therefore results in a more 
robust solution to fragment loss handling.

2.1.1 Choosing a System Timeout Period
The system timeout period should take into account the following factors:

1. Transmission time difference between largest and smallest frame

2. Links’ differential delay

2.1.1.1 Frame Size Transmission Delay

The transmit time difference of these fragments should be used to help set the system time out period. 
Assuming that the largest packet in the system is 1536 bytes and the smallest is 64 bytes, this gives the 
following transmit time:

• 64-byte fragment = 250 μs

• 1536-byte fragment = 6 ms

For this example, assume the bundle consists of two E1 links and that all 32 1-byte timeslots on the E1 
carry data for the MLPPP link. If a 1536-byte fragment starts on one link at the same time as a burst of 
64-byte fragments on the other link, the system timeout must be configured to take this into account. 
Table 4 demonstrates system behavior when the system level timeout is poorly defined. It assumes a 1-ms 
array element check within a four element array (system time out of 4 ms). In Table 4 the 1536-byte 
fragment uses sequence number 0 and the 64-byte fragments use sequence numbers 1, 2, 3 etc; sequence 
number 1 is lost.

Table 4 shows that the fragment loss is detected too early. In each 1-ms interval, four frames have been 
received, and because the fragment zero has yet to be fully received RX_LSQN, is configured to zero. 
Because the array has four elements, each checked every 1 ms, the fragment loss is detected after 4 ms. 
However, because the 1536-byte fragment has not been fully received, it is not known whether the 
fragment with sequence number 1 will appear on the same link as the large packet. 

Table 4. Poorly Defined System Level Timeout

Element 0 RX_LSQN
RX_MAX

Element 1 RX_LSQN
RX_MAX

Element 2 RX_LSQN
RX_MAX

Element 3 RX_LSQN
RX_MAX

Element Before
Element After

U1

4

1 Undefined, the initialization value of the array (0x80000000).

0
42

2 In each 1ms interval 4 of the 64 byte frames are received, the 64 byte frames start with sequence number 1.

U
8

0
8

U
12

0
12

U
16

0
16

Element Before
Element After

3
20

0
20

Fragment loss is detected by the algorithm, but wrongfully so.

Note:  
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This scenario should be detected by the RFC1990 M algorithm because it occurs when all of the bandwidth 
on the bundle is being fully used. The mechanism for detecting fragment loss in this document is designed 
for fragment loss detection in low density traffic. It is therefore recommended that the system level timeout 
is programmed to a value equal to or greater than the transmission time of the largest fragment or frame 
(plain PPP and LCP frames are transferred over the same links as fragments) possible in the system.

2.1.1.2 Links’ Differential Delay

A property of bundling multiple E1 links is that each link has its own delay characteristics. The 
propagation time for links on the same bundle can be different for each link. Figure 2 shows an example.

 

Figure 2. E1 Bundling with Different Propagation Characteristics

The propagation delay differs because two links are connected directly to the RNC and two links are 
connected to the RNC via aggregation or switching equipment. The two links with the point-to-point 
connection to the RNC have a propagation delay of 2 ms. The other two links have a propagation delay of 
5 ms (1 ms propegation delay from BTS to TDM aggregator + 2 ms propegation delay from aggregator to 
switch + 2-ms propegation delay to RNC). The differential delay is therefore 3 ms between the links.

This is important because the largest packet in the system can be received on the link with the largest 
propagation delay. Therefore, the links’ differential delay must also be factored into the configuration of 
the system level timeout value. It is recommended that the user configures the system-level timeout value 
using Equation 1.

System Level Time Out = Largest Packet Tx Time + Links’ Differential Delay Eqn. 1

2.2 Triggering a WBD Flush
Too initiate a flush of the packets delayed in the WBD, the software must initialize two PPP microcode 
structures in the following order:

1. Initialize the PPP flush WBD command descriptor

2. Initialize the PPP real time (RT) command register

BTS

MLPPP Bundle 4 E1 Lines

TDM Aggregator/MUX

TDM Switch

RNC

2 ms

2 ms 2 ms

1 ms
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The PPP RT command register is located at offset 0xFC from the MCC Global PRAM Base. The PPP flush 
WBD command descriptor is located at an offset from the MURAM base pointed to by the PPP real time 
(RT) command register. 

2.2.1 PPP RT Command Register

The PPP RT command register, shown in Figure 3, is a user-initialized parameter.

Table 5 describes the PPP RT command register fields.
 

NOTE
The PPP Flush WBD command descriptor must not be changed in any way 
while the PPP RT command register FLG field is equal to 1.

2.2.2 PPP Flush WBD Command

This RunTime command starts the process of flushing the WBD for a given class. The host is required to 
provide a sequence number (FLS_SN) that is used as the new minimum of the Class. The QUICC Engine 
flushes all fragments, in sequence, with a sequence number less than FLS_SN. The QUICC Engine treats 
fragments not yet received with a sequence number less than FLS_SN as lost.

The host should prepare a PPP Flush WBD command descriptor (16 bytes in MURAM) as described in 
Table 6. The offset in MURAM to this descriptor should be initialized in the CMD field of the PPP RT 
command register.

0 1 7 8 31

R
FLG — PARAM

W

Figure 3. PPP RT Command Register

Table 5. PPP RT Command Register Field Descriptions

Bits Name Description

0 FLG Command semaphore flag. Set by the host and cleared by the QUICC Engine module.
0 The QUICC Engine module is ready to receive a new command.
1 The PPP RT command register contains a command that the QUICC Engine module is currently 

processing. The QUICC Engine module clears this bit at the end of the command processing. When 
the FLG bit is cleared, the host can safely issue a new command.

1–7 — Reserved. 

8–31 PARAM Command parameter. Configure this to an offset from the MURAM where the PPP Flush WBD 
Command Descriptor resides.

Table 6. PPP Flush WBD Command Descriptor

Offset Name Size Field Description

Offset +0x00 — 1 byte Reserved 

BPT pointer 3 bytes Should be initialized to the bundle parameter table pointer of the Class.
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The PPP flush WBD command descriptor’s Class_Info field is show in Figure 4.

This host command can be used when the fragment loss detection algorithm detects that a fragment has 
been lost. After issuing this host command via the PPP RT command register, newly received fragments 
with sequence numbers less than the Sequence Number field will be silently discarded. 

The Sequence Number field is shown in Figure 5 and Figure 6.

NOTE
See the QUICC Engine™ Block Reference Manual with Protocol 
Interworking for the most current information on the WBD flush command.

3 Conclusion
The RFC1990 M algorithm works well when packets are transmitted round robin over links in the bundle 
in periods of high density traffic. However, in periods of low density traffic, or if the packets are not 
transmitted round robin, the M algorithm cannot guarantee detecting fragment loss in a known time frame. 
This can have an adverse effect on QoS. The M algorithm coupled with the fragment loss detection 

Offset +0x04 — 1 byte Reserved 

CPT pointer 3 bytes Should be initialized to the class parameter table pointer.

Offset + 0x08 FLS_SN 4 bytes This sequence number is used as the new minimum (over the links) of the 
Class. QUICC Engine flushes the WBD Ring up to, but not including, this 
sequence number.

Offset + 0x0C Class_Info 2 bytes Class information. See Figure 4.

Offset +0x0E — 2 bytes Reserved 

0 1 2 3 5 6 12 13 15

R
— 1 Class ID — Bundle ID

W

Figure 4. Class Information

0 11 12 30 31

R
Sequence Number — 1

W

Figure 5. 12-Bit Sequence Number

0 23 24 30 31

R
Sequence Number — 1

W

Figure 6. 24-Bit Sequence Number

Table 6. PPP Flush WBD Command Descriptor (continued)

Offset Name Size Field Description
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algorithm described in this application note presents a robust and deterministic solution to fragment loss 
handling regardless of the traffic profile.

4 Revision History 
Table 7 provides a revision history for this application note. 

Table 7. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 10/2009  • Initial public release.
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