
1 Introduction
This application note describes simple C interface functions to
CRANK and CAM eTPU functions. These functions can be used
on any product that has an eTPU module. Example code is
available for the MPC5633M device. This application note
should be read in conjunction with application note AN2864 —
General C Functions for the eTPU. The CAM and CRANK
functions are part of an automotive function set. For more details
refer to AN3769 — eTPU Automotive Set (Set 2) .

2 Function Overview
These functions process signals from crank and cam sensors on
an engine to provide angular position and speed information to
a control system. The engine position functions (CRANK and
CAM) together generate an angle counter. The angle counter is
synchronized with the crank wheel angle and provides a counter
representation of the instantaneous position of the engine. The
crank toothed wheel signal is processed by a combination of
eTPU hardware and eTPU software to create an angle counter.
The cam signal is used to differentiate between the two 360°
halves of the 720° engine cycle. The hardware and software
support the following features:

• Support for wide range tooth wheel configurations
Up to 255 teeth on the wheel are supported•

• Between 1 and 3 missing teeth are supported

• Support for rising and falling active edges
• Unique position information over a multiple of 720°

revolutions is generated
• Angle counts are added in the gap (to compensate for

missing teeth)

© Freescale Semiconductor, 2009 – Current copyright. All rights reserved.

Document Number: AN3769Freescale Semiconductor
Rev. 0, 06/2009Application Note

Using the Engine Position (CRANK
and CAM) eTPU Functions

Geoff Emersonby:
East Kilbride

Contents
1 Introduction.. 1

2 Function Overview... 1

3 Functional Description... 2

4 C Level API for eTPU Engine Position Functions
CRANK and CAM.. 15

5 Use of Engine Position Functions............................ 20

6 Example of Function Use... 21

7 Conclusion.. 22

Appendix A: Crank State Transition............................ 22

Appendix B: CAM State Transition............................ 23

Appendix C: System Sync State Transition................. 24

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus/ultra-reliable-mpc563xm-for-automotive-industrial-engine-management:MPC563xM?utm_medium=AN-2021

• Synchronization is achieved by identifying the gap and confirming normal teeth spacing follows the gap.
• On– going gap testing is performed to ensure synchronization is maintained. If the gap testing fails a re–synchronization

is initiated.
• Status reporting for:

CRANK•
• CAM
• Overall engine position system

• Crank tooth periods are divided by between 1 and 1024 to create an angle counter. This happens on every crank tooth
edge occurrence.

• Noise rejection for the crank signal is provided by using a ratio and time based windowing technique. Window position
is based on most recent tooth measurements. Window width is based on a ratio of most recent tooth measurements. To
provide versatile windowing ratios they may be separately specified for:

• Normal teeth (all other teeth not dealt with below)
• The tooth after the gap
• The second tooth after the gap
• The tooth after a single timeout has occurred. This allows the window to be wider if a timeout happens.

• Noise rejection for cam is provided by using an angle based windowing technique.
• Single tooth crank errors are dealt with as follows:

A single tooth occurring outside the window is allowed and reported by the CRANK function raising an interrupt
request flag.

•

• If the tooth edge is not in the window the CRANK function adds counts to compensate as if the tooth edge had
occurred in the window.

• A new window is scheduled for the next tooth based on the most recent physical tooth information and a special
windowing ratio.

• This means, the tooth occurring after a single tooth timeout event can have a wider acceptance window if necessary.

• Two consecutive teeth occurring outside of their respective windows are considered an error. In this case the CRANK
function initiates a re-synchronization.

• When a stall or another error is detected a list of channels may be signalled. This allows for a rapid shutdown of other
functions in the event that the engine position becomes unknown.

• When a stall is detected, the software initiates a re-synchronization.
• CAM and CRANK are separate functions. Either CRANK or CAM may be replaced by a custom function as required.
• The CAM function supports a single lobe CAM.
• The following features are associated with the CRANK function start-up behaviour

A programmable number of teeth may be ignored prior to the CRANK function beginning to attempt synchronization.•
• A programmable amount of time may be programmed during which the CRANK function waits before attempting

to synchronize
• A timeout for the first tooth is supported. If a second tooth edge is not recognized before this time the software

reverts to seeking a first edge again.

• The created angle counter does not reset at 720°. It increments from 0 to 0xFFFFFF and numerous engine cycles would
have occurred before it rolls over to 0.

3 Functional Description
The CRANK function processes the signal from a tooth wheel connected to the crank shaft. The tooth wheel has one or more
missing teeth, these are referred to as the gap. The gap allows positional information for the engine to be derived. This is becasue
the gap has a fixed angular relationship to the engine’s position. A typical tooth wheel might have 35 teeth spaced at 10° intervals
with one missing tooth in the 36th position. This is referred to a 36 –1 configuration. A 60 – 2 configuration is also common.
This wheel has 58 physical teeth spaced at 6° intervals with missing teeth in the 59th and 60th positions. Prior to beginning the
search for the gap, the CRANK function ignores teeth edges for a specified period of time, BLANK_TIME. Then optionally a

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.2

Functional Description

number of teeth, BLANK_TEETH, may be ignored. The next edge after this initiates a timeout period,
FIRST_TOOTH_TIMEOUT, during which a second edge must occur. If a second edge does not occur within the specified
timeout period the function begins searching for the first edge again. The figure below shows these parameters graphically.

Figure 1. First Tooth Timeout

The CRANK function is responsible for identifying the gap in the crank wheel by measuring and analyzing the time between
successive teeth. An ABa test is used to determine if the gap has occurred. The figure below is a graphical representation of the
signal coming from a tooth wheel.

Figure 2. ABa Gap Test

A user specified Gap_Ratio parameter is used by the function to determine if the gap has been identified. The AB portion of
the test is considered to have passed if:

Tooth Period B * Gap_Ratio > Tooth Period A

If the AB test passes then the Ba test is performed. The Ba test passes if:

Tooth Period B * Gap_Ratio > Tooth Period a

The timer counter register 2 (TCR2) contains the angle counter as derived by the eTPU Angle Counter hardware with assistance
from the CRANK function. Prior to the gap being verified the TCR2 value is held by the CRANK function at a value less than
one tooth worth of TCR2 counts. After the gap has been found and verified by the ABa test the CRANK function writes a
starting value to the TCR2 register. The TCR2 count is incremented by a user defined number of counts for every Crank tooth
which is detected. The rate at which the TCR2 counter is incremented is related to the previous tooth period as measured by
the CRANK function. The aim of the angle counter hardware and CRANK function software is to provide a TCR2 that tracks
the angular position of the crank shaft.

The CRANK function keeps track of the teeth and estimates when the next gap will occur. When the next and subsequent gaps
occur, the CRANK function ensures that it has occurred in the correct place by performing an ABa test again. During the gap
TCR2 counts are inserted even though there are no tooth edges.

Failure of the ABa test will result in the CRANK function signalling the CAM function and optionally other output channels
(for example, FUEL, SPARK, and KNOCK_WINDOW) that there has been an error and atttempts to re-synchronize.

For a full explanation of the angle counter refer to AN2897 — Using the eTPU Angle Clock, available at www.freescale.com

3.1 Start-Up Scenarios

To achieve synchronization CAM and CRANK functions must be able to deal with various start-up scenarios. After initialization,
the active CAM edge may happen either before or after the gap is identified. The following sections show the behavior of the
functions under these conditions. Three status variables are used by the functions to control the behavior and to also communicate

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
3Freescale Semiconductor, Inc.

Functional Description

with the host CPU. These are explained in detail in the Section 3.5 Status Variables. In the following figures, each of the three
status variables are shown. In the following figures the Blank_Time period and any Blank_Teeth are not shown. Individual
crank teeth signals are not shown. The vertical line against the crank signal indicates the gap. The active cam edge position is
indicated by an arrow pointing up from a box bearing the word CAM.

3.1.1 Scenario 1 Cam Edge Occurs First

In this scenario, the cam edge occurs before the gap has been identified.

Figure 3. Cam Edge Before the Gap

The first cam edge is effectively ignored by the CAM function. This is because the CRANK function has not yet identified the
gap. When the gap is identified by the CRANK function it begins incrementing TCR2 beyond a single tooth’s count. Prior to
this point TCR2 was reset to zero on every active crank tooth edge by the CRANK function. TCR2 is reset to zero by the
CRANK function when the second gap occurs because no valid cam edge has yet been identified. When the third gap occurs,
a valid cam edge has been identified and TCR2 is set to the number of TCR2 counts representing 720° by the CRANK function.
From this point the TCR2 value is incremented by the specified number of counts per tooth on every valid tooth edge. This
approach ensures that the cam signal occurs in the second half of each engine revolution. It also means that the TCR2 values
do not exceed the 720° TCR2 value until both the cam position and crank position are known. Therefore, if output events for
example FUEL, SPARK, and KNOCK_WINDOW are scheduled at initialization for angles greater than 720° the output events
can not occur until the engine position is known. This technique is shown for the KNOCK_WINDOW function in the software
package associated with this application note, AN3769SW.

3.1.2 Scenario 2 CRANK Gap Occurs First (before the CAM edge)

In this case the gap is identified before the cam edge occurs.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.4

Functional Description

Figure 4. Cam Edge After the Gap

When the gap is identified by the CRANK function it begins incrementing TCR2 beyond a single tooth’s count. Prior to this
point TCR2 was reset to zero on every active crank tooth edge by the CRANK function. When the second gap occurs, a valid
cam edge has been identified and TCR2 is set to the number of TCR2 counts representing 720° by the CRANK function. From
this point the TCR2 value is incremented by the specified number of counts per tooth on every valid tooth edge. This approach
ensures that the CAM signal occurs in the second half of each engine revolution. It also means that the TCR2 values do not
exceed the 720° TCR2 value until both the CAM position and CRANK position are known. Therefore, if output events, for
example, FUEL, SPARK, and KNOCK_WINDOW are scheduled at initialization for angles greater than 720°. The output
events cannot occur until the engine position is known. This technique is shown for the KNOCK_WINDOW function in the
software package associated with this application note AN3769SW.

3.2 Windowing Signals

The eTPU channel hardware includes various channel modes to help reject noise on signals. One of these is used in the example
function set. Various window parameters must be specified in calls to the APIs so that the functions work efficiently. These
parameters are described in the Section 4. C-Level API for eTPU Engine Position Functions CRANK and CAM.

The mechanism for the windowing is described here.

The fundamental components of the windowing system for the crank signal are shown in the following figure.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
5Freescale Semiconductor, Inc.

Functional Description

Figure 5. Mecanism for Windowing Out Noise

The eTPU channel hardware is programmed with values in its match registers that define when the window opens and closes.
Transitions before the window opens are rejected. A transition in the acceptance window prevents further transitions from being
accepted until the hardware is re-programmed. When the window closes without a transition in the window, further transitions
are not recognized until the hardware is re-programmed. This situation is referred to as a timeout. The CRANK function can
distinguish between a timeout and a valid transition in the acceptance window. Timeouts are reported by setting a TIMEOUT
bit in an error status word. The cam signal is windowed using the same channel mode and a similar technique. However, the
cam window is based in the angle domain, whereas the crank signal is windowed in the time domain.

3.3 Error Handling

A limited amount of error handling is supported by CAM and CRANK functions. To make the function set easily understood
error handling is treated in a fairly simple manner. Other more complex error handling solutions are possible. It is left to the
user to determine if the measures described are adequate for their purposes and meet their system requirements.

The following errors are dealt with:

3.3.1 CRANK Timeout Prior to Synchronization

Situation — The crank signal did not have a valid edge in the acceptance window prior to the gap having been identified.

Treatment — In this case the internal state machine of the CRANK function reverts to seeking the first edge again. The timeout
bit is set in the crank error status word.

3.3.2 AB Test Failure After Synchronization is Achieved

This can be caused by one of the following scenarios:

3.3.2.1 Timeout on CRANK Tooth Prior the Gap

Situation — A timeout occurred on the tooth before the gap.

Treatment — This is considered a serious error as the position of the engine is no longer certain. The AB portion of the ABa
test cannot be performed as the A measurement is not available. The TIMEOUT and STALL bits are set in the CRANK error
status word. The internal state machine of the CRANK function reverts to seeking for the first edge again. The CRANK channel
issues a channel interrupt. Optionally, links are sent to a specified list of channels. This allows output channels to shutdown
quickly in the event that the engine position becomes unknown.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.6

Functional Description

3.3.2.2 Timeout on the CRANK Tooth After the Gap

Situation — A timeout occurred on the tooth after the gap.

Treatment — This is considered a serious error as the position of the engine is no longer certain. The AB portion of the ABa
test cannot be performed as the B measurement is not available. The STALL bit is set in the CRANK error status word. The
internal state machine of the CRANK function reverts to seeking for the first edge again. The CRANK channel issues a channel
interrupt. Optionally, links are sent to a specified list of channels. This allows output channels to shutdown quickly in the event
that the engine position becomes unknown.

3.3.2.3 CRANK Gap Ratio Test Fail

Situation — The gap ratio test fails on the tooth after the gap.

Treatment — This is considered a serious error as the position of the engine is no longer certain. The STALL bit is set in the
CRANK error status word. The internal state machine of the CRANK function reverts to seeking for the first edge again. The
CRANK channel issues a channel interrupt. Optionally, links are sent to a specified list of channels. This allows output channels
to shutdown quickly in the event that the engine position becomes unknown.

3.3.3 Single CRANK Tooth Timeout After Synchronization is Achieved

Situation — A valid edge was not detected in the acceptance window.

Treatment — An internal flag within the CRANK function (Timeout_flag) is used to register that a single tooth timed out. The
CRANK channel issues a channel interrupt. The next tooth is windowed with a different windowing ratio (called
crank_windowing_ratio_timeout). This approach allows the user to specify a different (probably wider) window for the next
tooth after a single tooth timeout. If the next window has an active edge within it the internal CRANK flag (Timeout_flag) is
cleared.

3.3.4 Two Consecutive CRANK Tooth Timeouts

Situation — A valid edge was not detected in the acceptance window and the internal flag within the CRANK function
(Timeout_flag) is already set.

Treatment — This is considered a serious error as the position of the engine is no longer certain. The STALL bit is set in the
CRANK error status word. The internal state machine of the CRANK function reverts to seeking for the first edge again. The
CRANK channel issues a channel interrupt. Optionally, links are sent to a specified list of channels. This allows output channels
to shutdown quickly in the event that the engine position becomes unknown.

3.3.5 Active CAM Edge Not in Angle Window

Situation — The cam edge is not in the angle acceptance window.

Treatment — Assuming that prior to the cam edge becoming lost its position was known (it was found in the angle window)
the CAM status changes from CAM_SYNC_ANGLE to CAM_SYNC_LOST. CAM sends a link service request to CRANK.
A link service request is the means by which one channel can request service from another channel. When this is serviced
CRANK updates the overall engine position status. Assuming this had previously been FULL_SYNC the overall engine position
status would be changed to HALF_SYNC. The CRANK function issues a channel interrupt when the overall engine position
status changes. In this situation the application software must decide what to do. One approach is to to widen the angle window
in which the active cam edge is being searched.

3.4 Software Limitations

This section describes the limitations of the CAM and CRANK functions.

Single lobe CAM — Only a single lobe cam is supported by the CAM function. Where the majority of crank wheels are one
of two configuration (36 – 1 or 60 – 2), cam wheels have numerous configurations. The example CAM function was written
for the simplest case which is a single lobe. It is anticipated that some users will substitute the CAM function with one that is
better suited to their own cam configuration.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
7Freescale Semiconductor, Inc.

Functional Description

Single gap on the crank wheel — In this design all of the missing (gap) teeth must be contiguous. Some more specialized crank
wheels have multiple blocks of missing teeth to accommodate fast start synchronization strategies. These are not supported by
this function set.

Single instance of the engine position functions — Only a single instance of these functions is supported. This is because the
overall engine position status variable is global within the eTPU. This means that on a 2 engine eTPU system it is possible to
run only one instance of the engine position functions.

Minimum achievable RPM — The following tables show the minimum RPM values that can be achieved without computational
error for various TCR1 timebase frequency and common crank wheel configurations.

Table 1. Minimum RPM for a 36 – 1 Crank Wheel for Various Angular Resolutions and TCR1 Frequencies

Min RPMTCR1 Resolution (ns)Angular Resolution
(degrees)

Crank Type

52.515.20.136-1

52.515.20.0536-1

52.515.20.0136-1

31.825.00.136-1

31.825.00.0536-1

31.825.00.0136-1

26.230.30.136-1

26.230.30.0536-1

26.230.30.0136-1

15.950.00.136-1

15.950.00.0536-1

15.950.00.0136-1

13.160.60.136-1

13.160.60.0536-1

13.160.60.0136-1

7.9100.00.136-1

7.9100.00.0536-1

7.9100.00.0136-1

6.6121.20.136-1

6.6121.20.0536-1

6.6121.20.0136-1

4.0200.00.136-1

4.0200.00.0536-1

4.0200.00.0136-1

Table 2. Minimum RPM for a 60–2 Crank Wheel for Various Angular Resolutions and TCR1 Frequencies

Min RPMTCR1 resolution (ns)Angular Resolution
(degrees)

crank type

19.1250.0560-2

19.1250.0160-2

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.8

Functional Description

Min RPMTCR1 resolution (ns)Angular Resolution
(degrees)

crank type

9.5500.0560-2

9.5500.0160-2

4.81000.0560-2

4.81000.0160-2

2.42000.0560-2

2.42000.0160-2

31.515.151520.0560-2

31.515.151520.0160-2

15.730.303030.0560-2

15.730.303030.0160-2

7.960.606060.0560-2

7.960.606060.0160-2

3.9121.21210.0560-2

3.9121.21210.0160-2

NOTE
In this case 0.1 degree resolution has been omitted. . This is because in these cases the TRR
calculation overflows.

Limitations in calculating the tick rate — To provide a TCR2 value that tracks the position the engine CRANK function calculates
a value for the tick rate register (TRR). The number of TCR1 counts per TCR2 count is stored in the tick rate register. TRR
adjusts according to whether the engine is accelerating or decelerating. It is recalculated on every active tooth edge based on
the most recent tooth period measurements. The CRANK function is responsible for measuring Tooth_Period using timer
counter register 1 (TCR1). This Tooth_Period is divided by a user defined parameter, Ticks_Per_Tooth to establish the rate at
which the TCR2 angle counter register is incremented. The TRR in the eTPU angle counter hardware must be populated with
this rate. TRR has a 9.15 fractional format. To achieve this format the following calculation is performed:

trr = ((Tooth_Period_A << 3) / (Ticks_Per_Tooth)) << 6;

Under certain conditions the calculated TRR value can have an error due to rounding errors introduced by this simple method
of calculation. If the Ticks_Per_Tooth parameter is more than 200 or a slow TCR1 frequency is being used (which would result
in small Tooth_Period_A values (< 100) then errors of more than 2% in the TRR value may be encountered. However, these
are considered corner cases and have not been dealt with in this design. It is up to the user to ascertain if this method is suitable
for their requirements. More complex calculation methods are possible which deal with the limitations presented by this simple
method, these involve more computational steps.

Additionally, this calculation will fail to give an accurate TRR value if either of the left shift operations results in a value greater
than 0xFFFFFF. If the TCR1 prescaler is small and the RPM is low then Tooth_Period_A will be large. This is more of an issue
on a 36 – 1 CRANK than on a 60 – 1 CRANK. Careful selection of TCR1 prescaler is required to avoid this issue. If
Ticks_Per_Tooth is small then this can produce an overflow situation. A more comprehensive method is described in the eTPU
Reference Manual.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
9Freescale Semiconductor, Inc.

Functional Description

Table 3. 36 – 1 Crank Avoiding Overflows in the TRR Calculation (overflows are highlighted)

((Tooth_

Period_A

<<3)/

ticks_

per_tooth))

<<6

(Tooth_

Period_A

<<3)/

ticks_

per_tooth

Tooth_

Period_A

<<3

Tooth_

Period_A

(TCR1
counts)

TCR1 freqFys (MHz)Ticks_

Per_

Tooth

Edges/

Second

RPM

1833344286462933333636666676600000013210241830

916672143231466666418333333300000013210241830

716811211458414323257812.513210241830

111110417361177777762222222400000008010241830

555584868188888881111111200000008010241830

4352686944886811562508010241830

1877333504293333362933333636666676600000013211830

938666496146666641466666418333333300000013211830

1564441624444414666664183333333000000132601830

733337611458411458414323257812.513211830

113777766417777776177777762222222400000008011830

568888832888888888888881111111200000008011830

16253952253968888888811111112000000080351830

4444672694486944886811562508011830

46087273336916766000000132102472001200

0028836257812.5132102472001200

2752434444855564000000080102472001200

001762215625080102472001200

46935047333673336916766000000132172001200

1843228828836257812.5132172001200

2844672444484444855564000000080172001200

112641761762215625080172001200

Table 4. 60 – 2 CRANK Avoiding Overflows in the TRR Calculation

((Tooth_

Period_A

<<3)/

ticks_

per_tooth))<<6

(Tooth_

Period_A

P<<3)/

ticks_

per_tooth

Tooth_

Period_A

<<3

Tooth_

Period_A

(TCR1
counts)

TCR1 freqFys (MHz)Ticks_

Per_

Tooth

Edges/

Second

RPM

1100032171881760000022000006600000013210243030

5500168594880000011000003300000013210243030

428867687528594257812.513210243030

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.10

Functional Description

((Tooth_

Period_A

<<3)/

ticks_

per_tooth))<<6

(Tooth_

Period_A

P<<3)/

ticks_

per_tooth

Tooth_

Period_A

<<3

Tooth_

Period_A

(TCR1
counts)

TCR1 freqFys (MHz)Ticks_

Per_

Tooth

Edges/

Second

RPM

66668810417106666641333333400000008010243030

2624414166452081562508010243030

1126400000176000001760000022000006600000013213030

112640001760008800000110000033000000132503030

440012868752687528594257812.513213030

68266649610666664106666641333333400000008013030

136533762133342133336266667800000080103030

2666496416644166452081562508013030

27524344000550066000000132102412001200

0016821257812.5132102412001200

1664262666433334000000080102412001200

001041315625080102412001200

28160004400044000550066000000132112001200

1075216816821257812.5132112001200

1706496266642666433334000000080112001200

66561041041315625080112001200

3.5 Status Variables

Both CAM and CRANK functions have status variables associated with them. The CRANK function also maintains a status
variable that reflects the overall status of the engine position system. These status variables and all their respective values are
described.

3.5.1 CRANK_Status

The Crank_Status variable has one of the following values:

FS_ETPU_CRANK_BLANK_TIME — The function is waiting until a user specified blank time has expired. Crank teeth are
ignored during this period.

FS_ETPU_CRANK_BLANK_TEETH — The function is ignoring a user specified number of teeth.

FS_ETPU_CRANK_FIRST_EDGE — The function is waiting for a valid active first edge (after Blank_time and Blank_teeth).

FS_ETPU_CRANK_SECOND_EDGE — The function is waiting for a valid active second edge (after the first edge).

FS_ETPU_CRANK_TEST_POSSIBLE_GAP — On the next active edge the function has made at least 2 tooth period
measurements and can perform the AB portion of the ABa test.

FS_ETPU_CRANK_VERIFY_GAP — The AB test has passed. On the next active edge the function can perform the Ba portion
of the ABa test.

FS_ETPU_CRANK_GAP_VERIFIED — The ABa test has passed.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
11Freescale Semiconductor, Inc.

Functional Description

FS_ETPU_CRANK_COUNTING — The function is counting normal teeth. Normal teeth are teeth that are not the tooth before
or the tooth after the gap.

FS_ETPU_CRANK_TOOTH_BEFORE_GAP — The function is expecting the next valid active edge to be the tooth before
the gap.

FS_ETPU_CRANK_TOOTH_AFTER_GAP– The function is expecting the next valid active edge to be the tooth after the gap.

FS_ETPU_CRANK_TOOTH_AFTER_GAP_NOT_HRM — Similar to FS_ETPU_CRANK_TOOTH_AFTER_GAP. This
state guarantees that the angle counter hardware is not in high rate mode. This state is related to a workaround for Errata 2477
that affects particular versions of the eTPU. A conditional compilation flag is provided. See the errata list for target device to
determine if this is relevant.

A software finite state machine within the CRANK function determines the status of the CRANK function. See Appendix A
for a state transition diagram describing the finite state machine.

3.5.2 CAM_State

The CAM_State variable has one of the following values:

FS_ETPU_CAM_SYNC_SEEK_OR_START_ANGLE — The CAM signal is not yet being filtered by the eTPU channel.

FS_ETPU_CAM_SYNC_ANGLE — The CAM signal is being filtered by the eTPU channel. The active edge is in the angle
window.

FS_ETPU_CAM_SYNC_LOST — The CAM signal is being filtered by the eTPU channel. The active edge is not in the angle
window.

A software finite state machine within the CAM function determines the status of the CAM function. See Appendix B for a
state transition diagram describing the finite state machine.

3.5.3 Engine Position Status

The engine position status variable has one of the following values:

ENG_POS_SEEK — The position of the CRANK and CAM are both unknown. TCR2 is not valid.

ENG_POS_FIRST_HALF_SYNC — The position of the CRANK is known, the position of the CAM is not known. TCR2 has
a value between 0 and a half engine cycle (360°) worth of TCR2 counts.

ENG_POS_PRE_FULL_SYNC — The position of the CRANK and CAM are both known. It has a value between 0 and a half
cycle (360°) worth of TCR2 counts. TCR2 becomes valid the next time the gap occurs.

ENG_POS_FULL_SYNC — The position of the CRANK and CAM are both known. TCR2 is now valid.

ENG_POS_HALF_SYNC — The position of the CRANK is known; the position of the CAM has become unknown. A valid
active CAM edge has not been found in the acceptance angle window. TCR2 may be considered valid if it is acceptable to the
application. The CAM edge was not found where it was expected to be.

A software finite state machine within the CRANK and CAM functions determines the value of the engine position status
variable. See Appendix 3 for a State Transition diagram describing the finite state machine.

3.6 Function Interactions

The CRANK and CAM functions each provide part of the functionality for the engine positioning system. The role of the
CRANK function is, wth assistanc from the eTPU hardware, to create TCR2 in such a way that TCR2's value tracks the position
of the crank wheel. The crank wheel rotates twice for every cam wheel rotation. The engine position cannot be fully known
without the position of both the cam and crank wheels being known.

In this design the CRANK function holds the overall engine position status variable. When the status of the CAM function
changes the CAM function communicates with the CRANK function by populating the link service request register with the
value which corresponds to the CRANK function channel’s number (0 on a single engine eTPU microcontroller). In this situation
the eTPU will service the CRANK channel and update the overall position status variable according to the following table:

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.12

Functional Description

Table 5. Engine Position Status Derivation

CAM_State = LOSTCAM_State = SYNC_ANGLECurrent engine position status

XENG_POS_PRE_FULL_SYNCENG_POS_FIRST_HALF_SYNC

XENG_POS_FULL_SYNCENG_POS_HALF_SYNC

ENG_POS_HALF_SYNCXX

NOTE

• If the CAM_State is lost then the engine position status will be ENG_POS_HALF_SYNC irrespective of the present
engine position status.

• The value in the table is the new engine position status and is derived based on the current engine position status and the
CAM_State variable

• Refer to the state transition diagrams in Appendix C

At start-up any cam edge is effectively ignored until the CRANK gap has been identified. In this case if a CAM edge occurs,
the TCR1 value is captured. No angular information is yet available or valid. Once the gap has been found, CAM edges can be
processed and the CAM function is allowed to signal the CRANK function to update the overall engine position status variable.

The CAM function signals CRANK via a link service request on the following events:

• Active cam edge and overall engine position status variable does not equal ENG_POS_SEEK (for example CRANK
function has recently found and verified the gap). Software ensures that this link service request is generated once per
gap finding sequence.

• Active cam edge and cam status variable has changed.
• Cam window timed out (no active edge in the angle window) and the cam status variable has changed.

3.7 Engine_Cycle_Zero_Count – Reference Point for Each Engine Cycle

In this design a non-resetting angle counter has been implemented. The TCR2 value is not reset to zero at some point during
every engine cycle. CAM and all other output functions in this design maintain a variable that is a reference point for the start
of each engine cycle.

The CRANK function API calculates the number of TCR2 counts in an engine cycle. This is based on the number of physical
teeth, the number of missing teeth (in the gap), and the number of ticks specified in a tooth, calculated as follows:

tcr2_counts_per_engine_cycle = crank_tcr2_ticks_per_tooth * ((crank_number_of_physical_teeth +
crank_number_of_missing_teeth) *2);

Both the CAM and CRANK function have a parameter called Angle_Start_Count. These parameters are both set to
tcr2_counts_per_engine_cycle.

This Angle_Start_Count value is written to TCR2 when the gap has been identified, verified, and the cam position is known.
The CRANK function begins incrementing TCR2 and tcr2_counts_per_engine_cycle is added on every engine revolution (720°).

The CAM function maintains the Engine_Cycle_Zero_Count variable for events to be scheduled relative to it. At initialization,
Engine_Cycle_Zero_Count is also set to Angle_Start_Count, after the CRANK function has verified the gap. On every subsequent
active cam edge or on every subsequent CAM acceptance angle window timeout (these events are mutually exclusive)
Engine_Cycle_Zero_Count is incremented by tcr2_counts_per_engine_cycle. The cam edge can be windowed in an angle
relative to Engine_Cycle_Zero_Count. The figure below shows the principle involved.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
13Freescale Semiconductor, Inc.

Functional Description

Figure 6. CAM Engine_Cycle_Zero_Count

3.8 Communication with Output Functions

Each output function in this design maintains an Engine_Cycle_Zero_Count variable similar to that maintained by CAM. Similar
to CAM this must be initialized to tcr2_counts_per_engine_cycle. As explained in the section EngineCycle Zero Count, the
Engine_Cycle_Zero_Count parameter must be updated every cycle. It is recommended this be updated on the last event of each
engine cycle.

If CRANK detects a serious error that means the engine position is no longer certain, it sends link service requests (LSRs) to a
list of channels as specified by the API parameters crank_link_1, crank_link_2, crank_link_3, and crank_link_4. See Intialization
Function. Up to 15 channels in addition to the CAM channel can be linked in this manner. See C Level API for eTPU Engine
Positions for a description of these API parameters.

When an output channel services a link service request it must drive the output to a defined state. The engine position is no
longer certain and to continue driving FUEL or SPARK may result in damage to the engine. The output channels must also
reset the Engine_Cycle_Zero_Count parameter to tcr2_counts_per_engine_cycle. This is because the CRANK function begins
looking again for the gap. After the gap has been found and verified the CRANK function begins generating TCR2 values
beginning at Angle_Start_Count.

3.9 Custom CAM Function Requirements

The CAM function provided in the example software supports only a single lobe. The majority of crank wheels are one of two
configurations (36–1 or 60–2). Cam wheels have numerous configurations allowing for fast start strategies. The example CAM
function was written for the simplest case, a single lobe. It is anticipated that some users may want to substitute the CAM
function with another better suited for their own specific CAM configuration.

To interface correctly with the example CRANK function a custom CAM function must:

1. Have an Angle_Start_Count parameter, Host, or eTPU software is required to set this to tcr2_counts_per_engine_cycle
prior to the function being initialized.

2. Maintain an Engine_Cycle_Zero_Count type parameter. See section Engine Cycle Zero Count. This parameter needs to
be set to the value of Angle_Start_Count under the following conditions:

a. At initialization
b. Whenever the CAM channel services a link service request.

3. The Engine_Cycle_Zero_Count parameter must be incremented by tcr2_counts_per_engine_cycle once per revolution.
It is recommended to perform this on the last service event for the CAM of each engine revolution.

4. Reference a global variable called Eng_Pos_Sync_Status_g to determine CAM’s status.
5. Maintain a CAM_State variable of type uint8. The CRANK function has a C pointer to this parameter and uses it to

determine the overall engine position status. The CAM_State variable has the following valid values:
a. #define FS_ETPU_CAM_SYNC_SEEK_OR_START_ANGLE 0

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.14

Functional Description

b. #define FS_ETPU_CAM_SYNC_ANGLE 1
c. #define FS_ETPU_CAM_SYNC_LOST 2

6. The CAM_State variable changes under the following conditions:
From FS_ETPU_CAM_SYNC_SEEK_OR_START_ANGLE to FS_ETPU_CAM_SYNC_ANGLE when
Eng_Pos_Sync_Status_g (the overall engine position status) is no longer ENG_POS_SEEK. This means that the
CRANK function has identified and verified the gap.

a.

b. From FS_ETPU_CAM_SYNC_ANGLE to FS_ETPU_CAM_SYNC_LOST when the active CAM edge is not
found in the angle acceptance window.

c. From FS_ETPU_CAM_SYNC_LOST to FS_ETPU_CAM_SYNC_ANGLE when the active CAM edge is found
in the angle acceptance window (where it has previously been found).

Refer to the example CAM function source code and state transition diagram in Appendix 3 to gain a better understanding of
these recommendations.

3.10 Performance and Use of eTPU CRANK and CAM Functions

Performance — Like all eTPU functions, performance of the CRANK and CAM functions in an application is to some extent
dependent upon the service time (latency) of other active eTPU channels. This is due to the operational nature of the eTPU
scheduler. Increased eTPU loading potentially results in increased latencies. However, worst-case latency in any eTPU application
can be closely estimated. To analyze the performance of an application that appears to approach the limits of the eTPU, use the
guidelines given in the eTPU reference manual and the information provided in the eTPU engine position software release
available from Freescale.

Changing operation modes — To re-configure either the CAM function or the CRANK function on a channel while it is still
running, both channels must first be disabled. This can be done using the fs_etpu_disable function that can be found in file
etpu_utils.h.

4 C Level API for eTPU Engine Position Functions CRANK and CAM
The following functions provide easy access to interface to the CRANK and CAM functions. Use of these functions eliminates
the need to directly control the eTPU registers. These functions can be found in the etpu_eng_pos.h and etpu_eng_pos.c files.
The functions are described below and are available from Freescale. In addition, the eTPU compiler generates files called
etpu_crank_auto.h and etpu_cam_auto.h. These files contain information relating to the eTPU CRANK and CAM functions,
details on how the eTPU data memory is organized, and definitions for various API parameters.

The API consists of 20 functions:

• Initialization function
fs_etpu_app_eng_pos_init

• Read parameter functions
fs_etpu_eng_pos_get_cam_edge_angle
fs_etpu_eng_pos_get_tooth_number
fs_etpu_eng_pos_get_tooth_time
fs_etpu_eng_pos_get_engine_speed

• Read status functions
fs_etpu_eng_pos_get_engine_position_status
fs_etpu_eng_pos_get_cam_status
fs_etpu_eng_pos_get_crank_status

• Read error status functions
fs_etpu_eng_pos_get_cam_error_status
fs_etpu_eng_pos_get_crank_error_status

• Clear error status functions

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
15Freescale Semiconductor, Inc.

C Level API for eTPU Engine Position Functions CRANK and CAM

fs_etpu_eng_pos_clear_cam_error_status
fs_etpu_eng_pos_clear_crank_error_status

• Update parameter functions
fs_etpu_eng_update_cam_window

• Set windowing ratio functions
fs_etpu_eng_pos_set_wr_normal
fs_etpu_eng_pos_set_wr_after_gap
fs_etpu_eng_pos_set_wr_across_gap
fs_etpu_eng_pos_set_wr_timeout

• Advanced functions
fs_etpu_eng_pos_insert_tooth
fs_etpu_eng_pos_adjust_angle

• Debug functions
fs_etpu_eng_pos_get_engine_cycle_0_tcr2_count
fs_etpu_eng_pos_set_tooth_number

4.1 Initialization Function — fs_etpu_app_eng_pos_init

int32_t fs_etpu_app_eng_pos_init (uint8_t cam_channel,
 uint8_t cam_priority,
 uint8_t cam_edge_polarity,
 uint32_t cam_angle_window_start,
 uint32_t cam_angle_window_width,
 uint8_t crank_channel,
 uint8_t crank_priority,
 uint8_t crank_number_of_physical_teeth,
 uint8_t crank_number_of_missing_teeth,
 uint8_t crank_blank_tooth_count,
 uint32_t crank_tcr2_ticks_per_tooth,
 ufract24_t crank_windowing_ratio_normal,
 ufract24_t crank_windowing_ratio_after_gap,
 ufract24_t crank_windowing_ratio_across_gap,
 ufract24_t crank_windowing_ratio_timeout,
 ufract24_t crank_gap_ratio,
 uint32_t crank_blank_time_ms,
 uint32_t crank_first_tooth_timeout_us,
 uint32_t crank_link_1,
 uint32_t crank_link_2,
 uint32_t crank_link_3,
 uint32_t crank_link_4,
 uint32_t tcr1_timebase_freq);

This function initializes two channels to use CAM and CRANK functions.

For these functions to run, they need to use some of the eTPU data memory. There is not any fixed amount of data memory
associated with any channel in the eTPU. The memory needs to be allocated in a way that makes sure each channel has its own
memory that will not be used by any other channels. There are two ways to allocate this memory: automatically or manually.
Using automatic allocation to initialize each channel, reserves some of the eTPU data memory for its own use. With manual
configuration, the eTPU data memory is defined when the system is designed.

Automatic allocation is simpler and is used in all of the program examples. The function uses automatic allocation if the channel
parameter base address (CPBA) field for a channel is zero. This is the reset condition of the field, normally you do not need to
do anything except call the initialization API function.

If the initialization function is called more than once, it only allocates data memory the first time it is called. The initialization
function writes a value to the channel parameter base address field on subsequent calls. It does not allocate more memory.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.16

C Level API for eTPU Engine Position Functions CRANK and CAM

If the eTPU data memory is allocated manually, then a value must be written to the channel parameter base address before the
initialization function is called. This is normally only used if the user wants to pre-define the location of each channels' data
memory.

This function has the following parameters:

• cam_channel (uint8_t) — The CAM channel number. For devices with two eTPUs, this parameter must be assigned a
value of 1–31 for eTPU_A and 65–95 for eTPU_B. For products with a single eTPU, this parameter must be assigned a
value of 1–31.

• cam_priority (uint8_t) — The priority to assign to the eTPU CAM channel. The priority setting is used by the eTPU
scheduler. The following eTPU priority definitions are found in utilities file etpu_utils.h.

FS_ETPU_PRIORITY_HIGH
FS_ETPU_PRIORITY_MIDDLE
FS_ETPU_PRIORITY_LOW
FS_ETPU_PRIORITY_DISABLED

• cam_edge_polarity (uint8_t) — The polarity if the CAM edge, can be
FS_ETPU_CAM_FM0_RISING_EDGE or
FS_ETPU_CAM_FM0_FALLING_EDGE

• cam_angle_window_start (unit32_t) — The starting position of the CAM acceptance window. Range 0 to 71999. 71999
represents 719.99°.

• cam_angle_window_width (unit32_t) — The width of the CAM acceptance window. Range 0 to 71999. 71999 represents
719.99 °.

• crank_channel (uint8_t) — This is the CRANK channel number. Can be either 0 for ETPU_A or 64 for ETPU_B. These
channels have special hardware that allows special filtering of the CRANK signal

• crank_priority (uint8_t) — The priority to assign to the eTPU CRANK channel. The priority setting is used by the eTPU
scheduler. The following eTPU priority definitions are found in utilities file etpu_utils.h.

FS_ETPU_PRIORITY_HIGH
FS_ETPU_PRIORITY_MIDDLE
FS_ETPU_PRIORITY_LOW
FS_ETPU_PRIORITY_DISABLED

• crank_number_of_physical_teeth (uint8_t) — Number of physical teeth on the crank wheel. Can be 1 to 255. For a 36
–1 wheel configuration this parameter would be 35.

• crank_number_of_missing_teeth (uint8_t) — Number of missing teeth on the crank wheel. Can be 1, 2, or 3. For a 36 –1
wheel configuration this parameter would be 1.

• crank_blank_tooth_count (uint8_t) — Number of teeth to be ignored after first active edge. Can be 0 to 255.
• crank_tcr2_ticks_per_tooth (uint32_t) — Number of TCR2 counts per tooth. Can be 1 to 1024. Refer to Section 3.4

Software Limitations calculating the tick rate for details of how to determine a good value for this parameter.
• crank_windowing_ratio_normal (ufract24_t) — A fractional number. Used to window out noise. Can be between 0x0

and 0xFFFFFF. Applied to normal teeth. The ratios below are used for other teeth. Refer to Section 3.2 Windowing
Signals.

• crank_windowing_ratio_after_gap (ufract24_t) — A fractional number. Used to window out noise. Can be between 0x0
and 0xFFFFFF. Applied to the second tooth after the gap. Refer to Section 3.2 Windowing Signals.

• crank_windowing_ratio_across_gap (ufract24_t) — A fractional number. Used to window out noise. Can be between 0x0
and 0xFFFFFF. Applied to the first tooth after the gap. Refer to Section 3.2 Windowing Signals.

• crank_windowing_ratio_timeout (ufract24_t) — A fractional number. Used to window out noise. Can be between 0x0
and 0xFFFFFF. Applied to the tooth immediately following a timeout. Refer to Section 3.2 Windowing Signals.

• crank_gap_ratio (ufract24_t) — A fractional number. Used to identify the gap. Can be between 0x0 and 0xFFFFFF. Used
in the ABa test. Refer to Section 3 Functional Description.

• crank_blank_time_ms — The amount of time that teeth are ignored for at start up in milli-seconds. crank_blank_time_ms
has a maximum value given by:

(0xFFFFFF/tcr1_timebase_freq) * 1000.

• crank_first_tooth_timeout_us — The amount of time in micro-seconds after the first tooth times out. Maximum value
given by:

(0xFFFFFF/tcr1_timebase_freq) * 1000000

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
17Freescale Semiconductor, Inc.

C Level API for eTPU Engine Position Functions CRANK and CAM

• crank_link_1 — This is a packed 32-bit parameter containing 4 x 8 bit channel numbers. These channels are signalled
when CRANK has had to re-synchronize. (For example, after STALL). In this design the CAM channel number must be
included in the list. Unused elements of this list should be padded with an unused channel number or with the number of
a channel that has been assigned a function that does not respond to links. See the figure below for details. (0b11001000
would link to channel 8 on the other eTPU engine; 0b00001000 would link to channel 8 on the current eTPU engine.).
On a single eTPU device the engine selection bit field should be set to 0b00 or 0b01.

Figure 7. Micro Engine Link Register

• crank_link_2 (uint32_t) — See description of crank_link_1.
• crank_link_3 (uint32_t) — See description of crank_link_1.
• crank_link_4 (uint32_t) — See description of crank_link_1
• timebase_freq (uint32_t) — This is the pre-scaled frequency in hertz of the TCR1 timebase.

4.2 Read Parameter Functions
• uint32_t fs_etpu_eng_pos_get_cam_edge_angle() — This API function has no parameters. It returns the angle relative

to Engine_Cycle_Zero_Count at where the last CAM edge occurred. The value returned is scaled so that 71999 represents
719.99°.

• int8_t fs_etpu_eng_pos_get_tooth_number() — This API function has no parameters. It returns the tooth number of the
last tooth that was accepted by the CRANK function. The tooth immediately after the gap is numbered 1. Note that the
tooth number is not incremented on the tooth immediately prior to the gap. The tooth numbering scheme for a 36–1
CRANK wheel is shown below.

Figure 8.Tooth Numbering Scheme For a 36–1 Crank Wheel

• int32_t fs_etpu_eng_pos_get_tooth_time() — This API function has no parameters. It returns the TCR1 at which the last
accepted CRANK tooth occurred.

• int32_t fs_etpu_eng_pos_get_engine_speed(uint32_t tcr1_timebase_freq) — This function has the following parameter:

timebase_freq (uint32_t) — This is the pre-scaled frequency in hertz of the TCR1 timebase.

It returns the engine speed in revs per minute (RPM).

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.18

C Level API for eTPU Engine Position Functions CRANK and CAM

4.3 Read Status Functions
• int8_t fs_etpu_eng_pos_get_engine_position_status() — This API function has no parameters. It returns the overall engine

position status. Refer to Section 3.5.3 Engine Position Status for a description of the possible return values.

• int8_t fs_etpu_eng_pos_get_cam_status() — This API function has no parameters. This API function returns the status
of the CAM function. Refer to Section 3.5.2 CAM State for a description of the possible return values.

• int8_t fs_etpu_eng_pos_get_crank_status() — This API function has no parameters. This API function returns the status
of the CRANK function. Refer to Section 3.5.1 CRANK Status for a description of the possible return values.

4.4 Read Error Status Functions
• int8_t fs_etpu_eng_pos_get_cam_error_status() — This API function has no parameters. This API function returns the

error status of the CAM function. Possible return values are:

FS_ETPU_CAM_NO_ERROR — Indicates no error has occurred.
FS_ETPU_CAM_INVALID_M1 — Indicates an invalid entry condition within the CAM function.
FS_ETPU_CAM_INVALID_M2 — Indicates an invalid entry condition within the CAM function.

• int8_t fs_etpu_eng_pos_get_crank_error_status() — This API function has no parameters. This API function returns the
error status of the CRANK function. Possible return values are:

FS_ETPU_CRANK_NO_ERROR — Indicates no error has occurred.
FS_ETPU_CRANK_TIMEOUT — Indicates a single tooth timeout has occurred. An active edge did not occur in the
acceptance window.
FS_ETPU_CRANK_STALL — Indicates two consecutive teeth timed out.
FS_ETPU_CRANK_INTERNAL_ERROR — Indicates the internal state machine control variable had an unexpected
value.
FS_ETPU_CRANK_INVALID_M1 — Indicates an invalid entry condition within the CRANK function.
FS_ETPU_CRANK_INVALID_M2 — Indicates an invalid entry condition within the CRANK function.

4.5 Clear Error Status Functions
• int32_t fs_etpu_eng_pos_clear_cam_error_status() — This API function has no parameters. This API function resets any

CAM error. The CAM error status word becomes FS_ETPU_ CAM _NO_ERROR.

• int32_t fs_etpu_eng_pos_clear_crank_error_status() — This API function has no parameters. This API function resets
any CRANK error. The CRANK error status word becomes FS_ETPU_CRANK_NO_ERROR.

4.6 Update Parameter Functions
• int32_t fs_etpu_eng_update_cam_window (uint32_t cam_angle_window_start, uint32_t cam_angle_window_width);

This function is used to update the starting angle and width of the CAM acceptance window. This function has the following
parameters:

• cam_angle_window_start (uint32_t) — The new starting position of the CAM acceptance window. Range 0 to
71999. 71999 represents 719.99°.

• cam_angle_window_width (unit32_t) — The new width of the CAM acceptance window. Range 0 to 71999. 71999
represents 719.99°.

4.7 Set Windowing Ratio Functions
• int32_t fs_etpu_eng_pos_set_wr_normal (ufract24_t ratio) — This function is used to change the windowing ratio for

normal teeth ratios for other types of teeth changed using the API functions listed below. Refer to Section 3.2 Windowing
Signals. This function has one parameter:

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
19Freescale Semiconductor, Inc.

C Level API for eTPU Engine Position Functions CRANK and CAM

ratio (ufract24_t) — A fractional number. Can be between 0x0 and 0xFFFFFF. 0x0 means 0.0 and 0xFFFFFF means
1.0; 0x7fffff means 0.5.

•

• int32_t fs_etpu_eng_pos_set_wr_after_gap (ufract24_t ratio) — This function is used to change the windowing ratio for
the second tooth after the gap. Refer to Section 3.2 Windowing Signals. This function has one parameter:

• ratio (ufract24_t) — A fractional number. Can be between 0x0 and 0xFFFFFF. 0x0 means 0.0, 0xFFFFFF means
1.0, and 0x7fffff means 0.5.

• int32_t fs_etpu_eng_pos_set_wr_across_gap(ufract24_t ratio) — This function is used to change the windowing ratio for
the first tooth after the gap. Refer to Section 3.2 Windowing Signals. This function has one parameter:

• ratio (ufract24_t): A fractional number. Can be between 0x0 and 0xFFFFFF. 0x0 means 0.0 and 0xFFFFFF means
1.0; 0x7fffff means 0.5.

• int32_t fs_etpu_eng_pos_set_wr_timeout (ufract24_t ratio) — This function is used to change the windowing ratio for
the tooth immediately following a timeout. Refer to Section 3.2 Windowing Signals. This function has one parameter:

• ratio (ufract24_t) — A fractional number. Can be between 0x0 and 0xFFFFFF. 0x0 means 0.0 and 0xFFFFFF means
1.0; 0x7fffff means 0.5.

4.8 Advanced Functions
• int32_t fs_etpu_eng_pos_insert_tooth(uint8_t host_asserted_tooth_count) — This function is used to add a tooth worth

of TCR2 counts (that is the crank_tcr2_ticks_per_tooth parameter of the fs_etpu_app_eng_pos_init function) to the TCR2
counter. This is achieved by eTPU software asserting the IPH bit in the tooth program register in the eTPU micro-engine.
The eTPU software also sets the tooth number to the one supplied by the host. When this function is used all the inserted
TCR2 counts appear on the counter bus, none are skipped and any events scheduled by output functions at these intervening
counts will occur. This function has one parameter:

• host_asserted_tooth_count (uint8_t) — The value the tooth number variable becomes after the eTPU software has
added the TCR2 counts.

• int32_t fs_etpu_eng_pos_adjust_angle(int24_t angle_adjust) — This function is used to adjust the value of the TCR2
counter. The angle_adjust parameter value is added to the TCR2 counter value. This function has one parameter:

• angle_adjust (int24_t) — The amount by which the TCR2 value is adjusted. Notice that this parameter is signed so
the TCR2 counter can be incremented or decremented

4.9 Debug Functions
• int32_t fs_etpu_eng_pos_get_engine_cycle_0_tcr2_count() — This function returns the value of the

Engine_Cycle_Zero_Count parameter as maintained by the CAM eTPU function. See Sectionh 3.7 Engine Cycle Zero
Count for an explanation of the meaning of this parameter.

• int32_t fs_etpu_eng_pos_set_tooth_number(uint8_t tooth_number) — This function is used to set the tooth number which
is maintained by the CRANK eTPU function. This function has one parameter:

• tooth_number (uint8_t) — The value the tooth number variable becomes.

5 Use of Engine Position Functions
API Functions — Order of use

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.20

Use of Engine Position Functions

The initialization function, fs_etpu_app_eng_pos_init must be run before any of the other functions. The initialization function
must also be run prior to any of the initialization functions for the output functions. In this design the output eTPU functions
have a pointer to a variable written by the CAM eTPU function (this variable contains the number of TCR2 counts in an engine
cycle). This variable must be initialized by the CAM function prior to any output function otherwise improper operation results.

6 Example of Function Use
This section describes an example use of the engine position function, how to initialize the eTPU module, and assign the eTPU
CAM and CRANK functions to eTPU channels. To demonstrate these functions the KNOCK_WINDOW function is used so
that an output waveform can be observed. Refer to AN3772 — Using the Knock Window eTPU Function for more details on
the KNOCK_WINDOW function.

A FreeMASTER project has been created to demonstrate an example use of the CAM, CRANK, and KNOCK_WINDOW
functions. To use the example software FreeMASTER software must be downloaded and installed on the user’s PC. FreeMASTER
software was designed to provide an application-debugging, diagnostic, and demonstration tool for the development of algorithms
and applications. It runs on a PC connected to an evaluation booard (EVB) via an RS232 serial cable. A small program resident
in the microprocessor communicates with the FreeMASTER software to return status information to the PC and process control
information from the PC. FreeMASTER software, executing on a PC, uses part of Microsoft Internet Explorer as the user
interface. The FreeMASTER application can be downloaded from the Freescale website.

The demonstration software is written for an MPC5633M device and an XPC56XX EVB Motherboard with an XPC563M
144QFP Mini-Module daughter card. These can be purchased via Freescale website.

A tooth generator eTPU function (TOOTHGEN) has been written to allow the eTPU to provide the input signals for both the
CAM and CRANK functions. This function creates a programmable number of crank teeth and a programmable number of
missing teeth. The TOOTHGEN function also allows the injection of various errors into the CRANK and CAM signal, for
example, missing CRANK teeth, CAM noise, and CRANK noise. The FreeMASTER tool can be used to demonstrate how the
CAM and CRANK functions deal with particular error scenarios.

The tooth generator output for the crank signal must be connected to the pin assigned the eTPU channel running the CRANK
function. Also, the tooth generator output for the CAM signal must be connected to the pin assigned the eTPU channel running
the CAM function. The channel assignments are shown in the following table.

Table 6. Channel Assignments

Engine PositionTOOTHGENChannel

ETPUA0ETPUA1CRANK

ETPUA14ETPUA15CAM

ETPUA10KNOCK_WINDOW

A short video has been created to show some of the features of the engine position driver. To view this go to Freescale’s
YouTube channel . The Freemaster interface allows the user to create various scenarios to study the behaviour of the engine
position driver. Various error situations can be examined and it is possible to change many of the API parameters, including
those of the Tooth generator function. Example software is available from Freescale. For this FreeMASTER demo; look for
AN3769SW.

A short video is available on Freescale’s YouTube channel ASHWARE simulator running a simulation that shows various
features of the entire set2 function set. All of the set 2 automotive functions are shown in this video. You can view this video
at: ASHWARE set2 simulation . This video allows users to see the ASHWARE simulator in action without having to buy a
license.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
21Freescale Semiconductor, Inc.

Example of Function Use

http://www.youtube.com/watch?v=a1NplNEAaww
http://www.ashware.com/
http://www.youtube.com/watch?v=Mu_zBkoByVQ

7 Conclusion
This eTPU Engine position application note provides the user with a description of the CRANK and CAM eTPU functions,
usage, and examples. The simple C interface functions to the engine position eTPU functions enable easy implementation of
the CAM and CRANK function in applications. The functions are targeted for the MPC55xx/MPC563xM family of devices,
but they can be used with any device that contains an eTPU.

Appendix A: Crank State Transition
Following is the state transition diagram for the CRANK function finite state machine.

S1:
Init
Declare
SEEK

S19: Adjust
Angle

S2o: Insert
a tooth

S16: Invalid
MatchA_TransB

S17: Invalid
MatchB_TransA

S18: Update
ENG_Pos

_Sync_Status

CRANK State Transition Diagram Rev. 5.0

Initialize
HSR

Adjust Angle
HSR

Adjust Tooth HSR
&&FMI==1

m1==1 && m2==0 m1==0 && m2==1 LSR==1 && m1==0 && m2==0

S3:
Timeout

Blank_time_expired

S4:
Blank_Teeth

S5:
1st Edge

Edge &
Blank teeth remaing

Edge &
No blank teeth remaining

Edge &&
Blank_Teeth !=0

Edge && Blank_Teeth == 0

S2:
Blank_time

Timeout &&
Blank_Time_Expired_Flag == 1

Edge

Figure A-1. Crank State Transition Part 1

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.22

Conclusion

S5:
1st Edge

S7:
Test possible gap:

Is this a possible gap (AB test)

S6:
2nd Edge

Edge

No &&
Edge

Edge

Yes &&
Edge

Edge &&
Fail

S9:
Verify Gap
(BA test)

Edge &&
Pass

S11:
Gap Verified

Edge

S12:
Counting

Edge && not tooth
before gap

S13:
Tooth before gap

Edge && tooth
before gap

S13:
Errata

2477 workaround

S14:
Tooth after gap

S12a:
Timeout
Counting

Edge

Edge

Edge && tooth
before gap

S15:
"Other"
Timeout

Projected
tooth angle

Timeout

Edge && not tooth
before gap

Timeout or
AB test fail

Timeout

Timeout

Notes:
CAM signals CRANK when the overall
status needs to change because of the CAM
status change.

CRANK maintains SYSYEM_SYNC_STATE

Global Pram must be intialized prior to HSR
for CAM and CRANK. This prevents spurious
behavior caused by the CRANK
function inadvertently seeing an untrue CAM
status value

No timeout from BLANK_teeth thread, due
to start up engine tooth times this would be
excessive(>24 bits)

4 Flag states are used to determine entry to S10
(flags = 1), S11 (flags = 3), S12 (flags = 2) and
all other threads (flag = 0).

All states prior to Gap_Verified will set tcr2 = 0

.

,

Timeout

2nd Timeout

Timeout

1st Timeout

Timeout

Figure A-2. Crank State Transition Part 2

Appendix B: CAM State Transition
Following is the state transition diagram for the CAM function finite state machine.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
23Freescale Semiconductor, Inc.

Conclusion

Figure B-1. CAM State Transition

Appendix C: System Sync State Transition
State transition diagram for engine position status finite state machine.

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
Freescale Semiconductor, Inc.24

Conclusion

Figure C-1. System Sync State Transition

Using the Engine Position (CRANK and CAM) eTPU Functions, Rev. 0, 06/2009
25Freescale Semiconductor, Inc.

Conclusion

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN3769
Rev. 0, 06/2009

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc.2009. All rights reserved.

	
	

	Introduction
	Function Overview
	Functional Description
	Start-Up Scenarios
	Scenario 1 Cam Edge Occurs First
	Scenario 2 CRANK Gap Occurs First (before the CAM edge)

	Windowing Signals
	Error Handling
	CRANK Timeout Prior to Synchronization
	AB Test Failure After Synchronization is Achieved
	Timeout on CRANK Tooth Prior the Gap
	Timeout on the CRANK Tooth After the Gap
	CRANK Gap Ratio Test Fail

	Single CRANK Tooth Timeout After Synchronization is Achieved
	Two Consecutive CRANK Tooth Timeouts
	Active CAM Edge Not in Angle Window

	Software Limitations
	Status Variables
	CRANK_Status
	CAM_State
	Engine Position Status

	Function Interactions
	Engine_Cycle_Zero_Count – Reference Point for Each Engine Cycle
	Communication with Output Functions
	Custom CAM Function Requirements
	Performance and Use of eTPU CRANK and CAM Functions

	C Level API for eTPU Engine Position Functions CRANK and CAM
	Initialization Function — fs_etpu_app_eng_pos_init
	Read Parameter Functions
	Read Status Functions
	Read Error Status Functions
	Clear Error Status Functions
	Update Parameter Functions
	Set Windowing Ratio Functions
	Advanced Functions
	Debug Functions

	Use of Engine Position Functions
	Example of Function Use
	Conclusion
	Appendix A: Appendix A: Crank State Transition
	Appendix B: Appendix B: CAM State Transition
	Appendix C: Appendix C: System Sync State Transition

