
Freescale Semiconductor
Application Note

Document Number: AN3756
Rev. 0, 10/2008

Contents

Baudrate Requirements for LIN. 2
S08’s Internal Clock Sources . 2
Implementation of the Internal Clock Synchronization . . 4

3.1 Principle of the Synchronization 4
3.2 Correction of the Internal Clock 5
3.3 Remarks . 10
Synchronization Performance . 11

4.1 Accuracy of the Synchronization 11
4.2 CPU Loading . 12
4.3 Settling Time . 12
Conclusions . 13

ppendix A Example of Implementation 14

Using and Synchronizing the S08’s Internal
Clock for LIN Slave Implementations
(for LIN Rev 2.x implementations)
by: Yves BRIANT

Global Sales and Marketing (GSM)
Reliable communication via the asynchronous LIN
protocol requires an MCU with a bus clock accurate
enough to avoid errors. MCUs that use clocks based on
crystal or ceramic resonators easily provide very
accurate bus clocks. The LIN protocol was designed to
also allow more cost-effective solutions: MCUs with
on-chip oscillators can be used successfully to
implement LIN slaves, even though the on-chip
oscillators have less accuracy than a crystal.

A LIN master initiates each frame by sending a 13-bit
break field and a synchronization byte. The data of the
synchronization byte is always 0x55. Thus this byte is
composed of five falling (recessive to dominant) edges
that can be used as a reference for clock and/or baud rate
adjustment.

Each derivative of the S08 family embeds an internal
oscillator, whose output frequency can be changed by
adjusting a trim register. This application note proposes
a method for adjusting the frequency of Freescale’s S08
internal oscillator by measuring the synchronization byte
sent within a LIN frame.

1
2
3

4

5
A

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Baudrate Requirements for LIN
1 Baudrate Requirements for LIN
The required clock accuracy is different for a LIN slave and a LIN master. These requirements are
summarized in Table 1.

Since a LIN master initiates each LIN frame and sends the break and the synch fields, it should embed an
accurate clock source (<0.5%).

For a LIN slave, two different accuracies are required: < ±14% for the reception of the break and
synchronization fields, <1.5% for the reception or emission of the remainder of the LIN frame. These two
tolerances are illustrated in Figure 1.

Figure 1. Baudrate Tolerances for a LIN Slave

The requirement to have a ±14% accurate clock source, to reliably recognize the break signal, is met by
the factory trimming of the oscillator on all of the S08 devices. To achieve the more precise ±1.5%
requirement for LIN communication, a further adjustment is required. These adjustments are covered in
the next two sections.

2 S08’s Internal Clock Sources
Three different clock modules exist within the S08 family:

• MCG (Multi-Purpose Clock Generator): for example, embedded in the S08Dx and in the S08EN

• ICS (Internal Clock Source): for example, embedded in the S08EL, SL, SG, QD, QE and QG

Table 1. Bit Rate Tolerances Relative to Nominal Bit Rate

No. Bit Rate Tolerance Name ΔF/FNom

Param 1 Master node (deviation from nominal bit rate) FTOL_RES_MASTER <±0.5%

Param 2 Slave node without making use of
synchronization (deviation from nominal rate)

FTOL_RES_SLAVE <±1.5%

Param 3 Deviation of slave node bit rate from the nominal
bit rate before synchronization; relevant for nodes
making use of synchronization and direct break
detection

FTOL_UNSYNC <±14%

synch break

≥ 13 bits

identifiersynch field 0 to 8 data fields checksum

±14%

Resynchronization

±1.5%
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor2

S08’s Internal Clock Sources
• ICG (Internal Clock Generator): for example, embedded in the S08AW and the S08AC

While these clock modules integrate such functions as a PLL (phase locked loop), an FLL (frequency
locked loop), a clock monitor, and an external oscillator, this application note focuses only on the internal
reference clock. For more details about these clock modules, refer to AN3499: “Clock Options on the
HC9S08 Family”, available at http://www.freescale.com.

The internal reference clock of these three modules behaves the same way: their output frequencies vary
with the temperature, supply voltage, and process. The frequency variations can be cancelled by adjusting
a “trim register”. This trim register can change the output frequency by ±25%, with a resolution finer than
0.4%.

The largest contributor to this frequency deviation is the process variation (±20%). Since this deviation is
fixed and does not vary with the time, it can be entirely cancelled by one single initial (in-factory) trim
operation.

The frequency deviation due to temperature is guaranteed to be less than ±2% over -40°C to 125°C,
whereas the effect of the supply voltage variation can almost be negligible, as long as the supply voltage
remains within 5% of the nominal voltage. These two parameters (temperature and supply voltage) vary
with the time and their variations should be compensated to assure that the internal clock frequency
remains stable.

All the internal clocks on S08 family devices are factory trimmed: a value of the trim register is determined
and recorded into flash memory. By copying this trim value into the trim register, the frequency deviation
due to the process variation can be almost entirely eliminated. Taking into account the temperature, the
supply voltage, and the remaining process variations, the overall accuracy of the factory trimmed internal
reference is better than ±14%, which means that the break and synch fields of the incoming frame can be
received correctly without any initial synchronization.

Table 2 summarizes the main characteristics of S08’s internal clock modules.

Table 2. Main Characteristics of the S08’s Internal Clock

Frequency Range
(untrimmed)

Frequency Range
(factory trimmed)

Frequency Deviation
with Temperature

and Supply

Trim
Register

Trim
Resolution

8 bits

Trim
Resolution

9 bits

MCG
[25 ; 41.66] kHz =
33.33 kHz ± 25%

[31.25 ; 39.0625] =
35.15 kHz ± 11%

Max ± 2% 9-bit
Max: ± 0.4%
Typ: ± 0.2%

Max: ± 0.2%
Typ: ± 0.1%

ICS
[25 ; 41.66] kHz =
33.33 kHz ± 25%

[31.25 ; 39.0625] =
35.15 kHz ±11%

Max ± 2% 9-bit
Max: ± 0.4%
Typ: ± 0.2%

Max: ± 0.2%
Typ: ± 0.1%

ICG
[182.25 ; 303.75] kHz =

243 kHz ± 25%
250 kHz ±11% or

243 kHz ±11%
Max ± 2% 8-bit Max: ± 0.4% NA

Temperature range: [-40; + 125]°C;

Supply range: 5V± 10%;
All parameters minimum and maximum values. Values are for indication only — refer to the device data sheets.
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 3

http://www.freescale.com

Implementation of the Internal Clock Synchronization
3 Implementation of the Internal Clock Synchronization
The implementation described in the following section is predominantely the same for all S08 derivatives.
Some details differ slightly depending on the embedded clock module (ICS, ICG, or MCG).

3.1 Principle of the Synchronization
The basic principle of the synchronization method is as follows:

• The synch field, sent by the LIN master, is used as a fixed reference clock (in fact, a ±0.5% accurate
clock signal). The duration of this synch field can be measured by any LIN slave, using a timer
channel.

• Since the timer channel is clocked by the internal oscillator of the slave, the measured duration of
the synch field illustrates the clock’s deviation from the internal oscillator’s expected frequency.
If the measured duration is shorter than the expected one (assuming the nominal frequency of the
internal oscillator), it means that the internal oscillator is running too fast, and vice-versa.

• From this measured duration, a new trim value can be computed and loaded into the trim register
of the internal oscillator. If the internal clock oscillates too fast, the trim value should be increased,
and vice-versa.

Once the process variations have been cancelled out by the initial trim, the major contributor to the internal
clock deviation is the temperature. Since temperature is a slowly changing parameter, the system may be
able to cope with re-synchronizing the clock less often to save CPU bandwidth; however, this strategy
must be assessed against the improbable but possible effect of communication failure.

Figure 2 shows how the clock re-synchronization is achieved.
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor4

Implementation of the Internal Clock Synchronization
Figure 2. Principle of the Clock Synchronization

The measurement of the synch field duration is achieved by either polling the input capture flag or by using
a timer input capture interrupt routine. For both methods, all interrupt sources should be disabled (except
the timer interrupt if the polling method is not used), to allow the most precise measurement.

3.2 Correction of the Internal Clock

3.2.1 Computation of the New Trim Value

The duration Tsynch of the synch field is measured between the first and the fifth falling edges,
corresponding to 8 bits. Therefore:

Eqn. 1

where LIN_baudrate is the nominal baudrate on the LIN network, assuming no clock deviation.

With the SCI module embedded in the S08, the baudrate is generated from the bus frequency, according
to the formula in Equation 2,

Eqn. 2

Idle Break Synchr field Identifier

Wait for Break Wait for Synchr-field Wait for identifier

SCI REC ISR:

Initialize timer channel
for Synch field mea-
surement: input capture
on falling edge

T1 Polling on timer

Measure time elapsed
between edge #0 and
edge #4

T2
input capture flag:

#0

Compute T3 SCI REC ISR:

If data received =
0x55, then load a
new value in the
trim register

T4

new trim

#4

Incoming LIN frame

State of LIN driver

Clock
synchronization

baudrateLIN
TbitsTsynch _

88 ==

prescalerLIN
FbaudrateLIN

nom
bus

_16
_

×
=

Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 5

Implementation of the Internal Clock Synchronization
where is the nominal bus frequency and LIN_prescaler is the 16-bit content of the SCIBDL and
SCIBDH registers.

It yields from Equation 1 that:

Eqn. 3

The measurement of Tsynch with the S08 timer (TPM) results in the digital value Vmeas, which has
following expression.

Eqn. 4

where Ttimer is the period of the clock source of the timer.

The timer should be clocked by the bus frequency, fed by the internal oscillator. With referring to the
“actual bus frequency”, it yields:

Eqn. 5

From Equation 3, Equation 4 and Equation 5:

By defining:

as the constant F_DEV_FACTOR, the internal oscillator deviation can be calculated directly from Vmeas:

Eqn. 6

It can be observed from Equation 6 that, if Vmeas is greater than the constant F_DEV_FACTOR, it means
that the actual bus frequency is greater than the nominal bus frequency, and that the trim value should be
increased.

From Equation 5, we can also get that:

Fbus
nom

nom
bus

nom
bus

synch F
prescalerLIN

F
prescalerLINT _128_168 ×

=
××

=

timer

synch
meas T

T
V =

Fbus
act

act
bus

timer F
prescalertimerT _

=

prescalertimer
prescalerLIN

F
F

prescalertimer
F

F
prescalerLIN

T
T

V
nom

bus

act
bus

act
bus

nom
bustimer

synch
meas _

_128
_

_128 ×
×=×

×
==

prescalertimer
prescalerLIN

_
_128×

Δ±== 1
__ FACTORDEVF

V
F
F meas

nom
bus

act
bus
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor6

Implementation of the Internal Clock Synchronization
The 8-bit trim register of the S08 internal clock sources allows a frequency adjustment with a granularity
of 0.4% max (see Table 2). The adjustment of the trim value is thus:

Defining the constant:

this means:

Eqn. 7

NOTES
The constants F_DEV_FACTOR and F_CORR_FACTOR are integer
constants. This results in an approximation in the clock correction.

The prescaler of the timer should be selected so that the 8-bit counter value
may overflow only one time during the measurement of the synch field:

Since:

this yields Equation 8.

Eqn. 8

3.2.2 Algorithm of the Clock Synchronization

The flowcharts in Figure 3 and Figure 4 summarize the contents of Task 3 (“Compute New Trim Value”)
and of Task 4 (“Apply New Trim Value”).

FACTORDEVF
FACTORDEVFVmeas

__
__−

=Δ

FACTORDEVF
FACTORDEVFVmeastrim __

250__250
%4.0

×−=Δ×=
Δ

=Δ

FACTORDEVF
FACTORCORRF

__
250__ =

FACTORCORRFFACTORDEVFVmeastrim ____ ×−=Δ

bus
timertimersynchtimer F

prescalerLINT
baudrateLIN

T
baudrateLIN

TT
×

>⇔
×

>⇔=>
2
_

_32
1

_
8.256

bus
timer F

prescalertimerT _
=

timer_ prescaler LIN_prescaler
2

--------------------------------------->
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 7

Implementation of the Internal Clock Synchronization
Figure 3. Flowchart of the “Compute New Trim Value” Task

ApplyCorr ==1
??

yes

no
Exit task

no
Exit taskΔtrim > MIN_CORR

??

yes

PositiveCorr ==1
?? no

yes

newTrim = curTrim - ΔtrimnewTrim = curTrim + Δtrim

newTrim > MaxTrimValue or
newTrim < curTrim

??

newTrim = MaxTrimValue

newTrim < MaxTrimValue or
newTrim > curTrim

??

no no

newTrim = MinTrimValue

yes yes

ICSTR = newTrim (for ICS module)
ICGTRM = newTrim (for ICG module)

MCGTRM = newTrim (for MCG module)
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor8

Implementation of the Internal Clock Synchronization
Figure 4. Flowchart of the “Apply New Trim Value” Task

ApplyCorr is a variable regularly updated (for example by the Real-Time-Counter interrupt) that defines
the update rate of the internal clock.

MIN_CORR is a constant defining the granularity of the clock synchronization. Any change of the trim
value smaller than MIN_CORR will not be applied.

PositiveCorr is a variable updated by the task “Compute New Trim Value”, representing the sign of the
trim correction.

MaxTrimValue and MinTrimValue are constants that define the maximum cumulative correction that
could be applied.

3.2.3 Numerical Example
Consider the example of a LIN slave implemented with a S08SG containing an ICS module. This slave
communicates on a LIN network at a nominal baudrate of 19200 baud, and is clocked at a nominal bus
frequency = 16 MHz.

The LIN and Timer prescalers can be calculated using Equation 2 and Equation 8:

Timer_prescaler = 32 is the best choice on the S08SG.

Therefore:

Vmes >= F_DEV_FACTOR
??

Δ = Vmes - F_DEV_FACTOR
PositiveCorr = 0

Δ = F_DEV_FACTOR - Vmes
PositiveCorr = 1

Δtrim= Δ.F_CORR_FACTOR

No

Yes

Fbus
nom

Timer_prescaler >
LIN_prescaler

2
= 26

LIN_prescaler =
16 MHz

16 x 19200
= 52
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 9

Implementation of the Internal Clock Synchronization
F_DEV_FACTOR = 128 . 52 / 32 = 208

F_CORR_FACTOR = 250 / 208 = 1.2 which is approximated to 1.

Consider the situation where the actual bus frequency is not the nominal 16 MHz, but is 15.84 MHz
(16 MHz – 1%).

Therefore, according to Equation 7:

The trim value will be increased by 2, which results in a correction of 2 x 0.4% = 0.8%.

3.3 Remarks
1. The synchronization process works only if the initial trim value (determined at ambient

temperature) is far enough from 0x00 and 0xFF to allow at least a ±2% correction of the
temperature. Assuming a 0.2% resolution of the trim register, the initial trim value should be
greater than 10 (2%/0.2%) and less than 245 (255-2%/0.2%). The factory-trimmed values
programmed by Freescale are within these two limits.

2. The new trim value should be computed in a way that does not lead to over correction. There are
several reasons for that:

— The main cause of the internal clock deviation is the temperature, which varies slowly. Thus a
small clock deviation can be corrected by several small adjustments rather than by one unique
and big clock correction, that may lead to an overshoot of the clock’s frequency.

— The internal clock feeds (directly or through the FLL) the bus frequency, which clocks the
peripherals of the LIN slave. Having a “restrained” clock correction avoids any over-oscillation
of the bus frequency.

— Most of the time, the internal clock is the reference of the FLL, the output of which feeds the
bus frequency. If the internal clock correction is too big, there is a small risk that the FLL could
lose lock, leading to loss of communication on the LIN network.

3. The resolution of the trim process is 0.4% maximum (see Table 2) but no minimum value is
guaranteed. This means that the computed correction (which assumes 0.4% in the example above)
may not have the desired impact and be too small to compensate for the frequency deviation.
Therefore, two or three correction cycles will be required to allow for the frequency deviation.

4. On several S08 packages, the LIN Rx pin is located next to a timer channel pin (see Figure 5. Using
this timer channel eases the routing of the application.

Vmeas
8

19200
--------------- 15,84 MHz

32
-------------------------- × 206==

21)206208(=×−=Δtrim
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor10

Synchronization Performance
Figure 5. Use of TPM2CH1 on 28-pin Package to Measure the Synch Field Length

4 Synchronization Performance
The algorithm described in this application note has been implemented and tested on the MC9S08SG32,
using the Freescale evaluation board (DEMO9S08SG32AUTO) and CodeWarrior™ for Microcontrollers,
Version 6.1. Both the accuracy and the CPU load required by this algorithm have been measured.

4.1 Accuracy of the Synchronization
The accuracy of the synchronization has been tested for a deviation in the range -3% to +3% . The nominal
baudrate is 9600 baud and the bus frequency is nominally 16 MHz.

The results are shown in Figure 6.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

PTC5/ADP13
PTC4/ADP12

RESET
BKGD/MS

VDD
VDDA/VREFH
VSSA/VREFL

VSS
PTB7/SCL/EXTAL

PTB6/SDA/XTAL
PTB5/TPM1CH1/SS

PTB4/TPM2CH1/MISO
PTC3/ADP11

PTB4/TPM2CH1/MISO

PTC6/ADP14
PTC7/ADP15
PTA0/PIA0/TPM1CH0/TCLK/ADP0/ACMP+
PTA1/PIA1/TPM2CH0/ADP1/ACMP-
PTA2/PIA2/SDA/ACMPO/ADP2
PTA3/PIA3/SCL/ADP3
PTA6/TPM2CH0
PTA7/TPM2CH1
PTB0/PIB0/RxD/ADP4

PTB1/PIB1/TxD/ADP5
PTB2/PIB2/SPSCK/ADP6
PTB3/PIB3/MOSI/ADP7
PTC0/TPM1CH0/ADP8
PTC1/TPM1CH1/ADP9
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 11

Synchronization Performance
Figure 6. Accuracy of the Frequency Correction on a S08SG

Figure 6 shows that the accuracy of the synchronization is always better than 0.2%, which is far better than
the LIN communication requirement of 2%.

Several observations can be made on the achieved accuracy:

• The measurement of the synch field with the 8bit timer introduces an error Em:

Em < 1/(256 x 2) = 0.2%

• The accuracy of one synchronization depends on the height of a trim step (the frequency deviation
caused by an increment of the trim value), which is less than or equal to 0.4%. It also depends on
the approximation when computing the integer constant F_DEV_FACTOR and
F_CORR_FACTOR. These two factors lead to an underestimation of the correction, which is the
recommended behavior (see remark 2 in Section 3.3, “Remarks”).

• This synchronization method is a closed loop control system because the effect of one correction
affects the next measured synch field. The accuracy of one correction is not as relevant as other
criteria, like the stability and the damping of the response.

Ba udra te e rror ve rsus inte rna l oscilla tor devia tion

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Lin slave fre que ncy de via tion (%)

B
au

dr
at

e
er

ro
r i

n
%

Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor12

Conclusions
Figure 7. Synchronization Method shown as a Feedback Control System

4.2 CPU Loading
When the polling method is used (as described in Section 3.1, “Principle of the Synchronization”, the CPU
is loaded at 100% during the reception of the first eight bits of the synch field. After this measurement, the
computation of the new trim value (see Figure 2) requires 7.4 µsec with the S08 running at 16 MHz.

7.4 µsec should be compared to the duration of the remaining two bits of the synch field (last data bit +
stop bit). At 19200 baud, this period (104 µsec) is longer than the time required to compute the correction,
so the new trim value is always available at the end of the reception of the synch field (even with a 2 MHz
bus frequency, and a 19200 baud LIN network).

4.3 Settling Time
The internal clock of the S08 can be selected to feed the FLL, allowing a high bus frequency. When
changing the trim register, the reference frequency of the FLL changes, and the FLL may lose its lock,
yielding larger frequency deviations until it locks again.

Since the corrections of the trim value are very slight (and can be limited by software) the FLL is not at
risk of losing lock. In practice, the FLL will not lose lock with frequency changes less than 2%. Note that
the loss of lock can only be monitored, via an interrupt, on devices with an MCG or ICG embedded. Loss
of lock on ICS based devices cannot be monitored.

5 Conclusions

A ±14% accurate clock source is necessary in order to reliably recognize the break signal; this level of
accuracy is achieved by factory trimming of the oscillator on all S08 devices. To achieve the more precise
±1.5% accuracy necessary for LIN communication, further adjustment is required. The method of
synchronization described in this application note provides a level of accuracy far beyond the LIN protocol
requirements for a slave node, at the expense of some additional CPU loading and one additional timer
channel.

Synch field
measurement

Vmeas Compute new
trim value

diff

F_DEV_FACTOR
(referenc Vmeas,

assuming a nominal
bus frequency

new Trim Value Apply new
trim value

newFbus
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 13

Conclusions
Appendix A Example of Implementation
The CodeWarrior project that serves for the evaluation of this synchronization method is attached to this
application note. This project is based on the LINkit for the S08SG32, available at
http://www.freescale.com.

To integrate the clock synchronization, the following changes have been made.

• In the function main():

— After the peripheral initialization, a call to the function initTimer4LIN() is added for the
configuration of Channel 1 of Timer 2 for the synch field measurement.

— The function initTrimSaturation() is called to compute the maximum and minimum allowable
trim value, depending on the maximum amount of clock correction that the user wishes to
allow.

• In the interrupt routine LIN_ISR_SCI_Receive():

— When a break character has been received, the measurement of the synch field is armed. The
polling method is used to measure the length of the synch field. After the fifth falling edge, the
measurement is stopped, and the value of the clock correction is computed

— When a synch characacter has been received, the clock correction is applied if the variable
ApplyCorr is set. In this implementation, ApplyCorr is set by RTC interrupt every
10 milliseconds.
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor14

http://www.freescale.com

Conclusions
Using and Synchronizing the S08’s Internal Clock for LIN Slave Implementations, Rev. 0

Freescale Semiconductor 15

Document Number: AN3756
Rev. 0
10/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Baudrate Requirements for LIN
	2 S08’s Internal Clock Sources
	3 Implementation of the Internal Clock Synchronization
	3.1 Principle of the Synchronization
	3.2 Correction of the Internal Clock
	3.2.1 Computation of the New Trim Value
	3.2.2 Algorithm of the Clock Synchronization
	3.2.3 Numerical Example

	3.3 Remarks

	4 Synchronization Performance
	4.1 Accuracy of the Synchronization
	4.2 CPU Loading
	4.3 Settling Time

	5 Conclusions

