
Freescale Semiconductor
Application Note

Document Number: AN3741
Rev. 0, 08/2008

Contents

Introduction . 1
Flash Programming on RS08 . 2

2.1 Flash Programming Procedure 2
2.2 FLASH Specifications . 3
2.3 External Program Voltage Control. 3
Implement Programmable Data Storage on the
MC9RS08KA8 . 5

3.1 Reserve Flash Locations for Data Storage 5
3.2 Memory Access from Page Window 5
3.3 Run the Code in RAM . 6
3.4 Program Multi-Bytes . 8
3.5 Housekeeping for Implementation. 8
Conclusion. 10
Reference . 10

Implement an In-Application-Programmable
Data-Storage on the MC9RS08KA8
System Configuration and Sensor Calibration
by: Jerry Shi

Field Application Engineer
Beijing
1 Introduction
The MC9RS08KA8 (RS08 series) microcontroller is
Freescale’s general purpose 8-bit device for the ultra
low-end market. RS08KA devices are specifically
crafted to be more efficient and cost effective for
applications that require a small memory size. It inherits
most of the S08 core architecture and peripherals but
with limited features and performance due to the nature
of the low-cost simplified core design. One significant
difference is its on-chip flash memory. It has no
page-erase scheme or associated build-in charge-pump
circuit to generate high the voltage needed for
in-application flash re-programming. This makes the
RS08 largely different from the conventional flash
re-programming approach applied to the S08 series. It
remains possible to reprogram part of its on-chip flash
contents if an external 12 V is present. This approach is
useful if there are small amounts of data that need to be
set once or a limited multiple-times by using a
rolling-storage mechanism.

1
2

3

4
5

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Flash Programming on RS08
2 Flash Programming on RS08
This chapter describes registers and specifications relative to the RS08 flash module and how to program
the flash memory procedure.

2.1 Flash Programming Procedure
The RS08 flash memory is programmed on a row basis. A row consists of 64 consecutive bytes starting
from addresses $3X00, $3X40, $3X80, or $3XC0. A specific procedure must be strictly followed to
program a row of flash memory. Figure 1 is a flow chart for programming flash memory. When high
voltage is applied to the flash array, the flash memory is mapped longer to the memory. Fetching from flash
may cause fatal error. Commands must be executed in the RAM to program flash memory codes.

Figure 1. Flash Programming Flow Chat

Start

Apply external Vpp

Set the PGM bit

Write data to any
flash location

Wait for tnvs

Set the HVEN bit

Wait for tpgs

Write data to the
flash location to be

programmed

Wait for tprog

Any more
data?

Clear the PGM bit

Wait for tnvh

Clear the HVEN bit

Wait for trcv

Remove Vpp

Y

N

End
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor2

Flash Programming on RS08
2.2 Flash Specifications
Flash module specifications must be considered carefully for flash program and erase operation, such as
program voltage and timing for the program.

Table 1 lists MC9RS08KA8 specifications that are related to the flash module and operations. For more
information refer to the data sheet of a specific RS08 MCU.

2.3 External Program Voltage Control
The external program voltage must be controlled to apply or to remove from the target microcontroller by
either the user program or manually. It is recommended to control it by the user program with an external
switch to avoid damage to the circuit due to operating exceptions.

A recommended power supply with program voltage is shown in Figure 2. To switch program voltage an
on/off switch is controlled by an I/O pin of the MCU. This on/off switch can be implemented by a
transistor. Additionally, a 100 Ù resistor and a 1 nF capacitor are added to filter the program voltage. This
filter prevents the program voltage from rising too fast. If the voltage rises too fast this may result in the
current overflowing into the pad and cause permanent damage to the internal circuit.

Table 1. Flash Specifications

Characteristic Symbol Min Typical Max Unit

Supply voltage for program/erase VDD 2.7 – 5.5 V

Program/erase voltage VPP 11.8 12 12.2 V

VPP current IVPP_prog – – 200 A

IVPP_erase – – 100 A

Supply voltage for read operation VRead 1.8 – 5.5 V

Byte program time tprog 20 – 40 s

Mass erase time tme 500 – – ms

Cumulative program HV time thv - – 8 ms

Total cumulative HV time thv_total - – 2 hours

HVEN to program setup time tpgs 10 – – s

PGM/MASS to HVEN setup time tnvs 5 – – s

HVEN hold time for PGM tnvh 5 – – s

HVEN hold time for MASS tnvh1 100 – – s

Vpp to PGM/MASS setup tvps 20 – – ns

HVEN to Vpp hold time tvph 20 – – ns

Vpp rise time tvrs 200 – – ns

Recovery time trcv 1 – – s

Program/erase endurance 1000 cycles

Data retention tD_ret 15 years
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor 3

Flash Programming on RS08
Figure 2. Power Supply with Program Voltage

In Figure 2 the Vpp switch can be an analog switch, a MOSFET switch circuit, or any other electrical
switch. Figure 3 shows a switch circuit made with 2 transistors. If the transistor VCE drop is considered,
the supply voltage is slightly higher than 12 V.

Figure 3. Power Supply with Program Voltage

100
VPP = +12 V

VDD = +5 V

Controlled
by GPIO

Vpp switch

+12 V
power
supply

1 nF

7805

+12 V

VPP
GPIO

100 K

500 

100 K

IRLML6302

BSS138
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor4

Implement Programmable Data Storage on the MC9RS08KA8
3 Implement Programmable Data Storage on the
MC9RS08KA8

Program and mass erase are two kinds of operations supported by the RS08 flash module. Program
operation makes it possible to implement non-volatile data storage on the RS08. Every time the RS08 is
mass erased and programmed all unused flash units keep the value of 0xFF. Those values can be
programmed by the user program applied with the external programming voltage. Because those units can
not be erased by row, they can not be reprogrammed again.

3.1 Reserve Flash Locations for Data Storage
When a project is created, the linker maps all the code and data according to the specified parameter (PRM)
file. All the codes are mapped into the ROM segment defined in the default PRM file of a KA8 project:
ROM = READ_ONLY 0x2000 TO 0x3FF7;

Address range 0x2000 to 0x3FF7 is for the flash module on the KA8 indicated by the key word
READ_ONLY. Because the data storage is mapped into the memory their locations must be reserved,
therefore no codes can be mapped to the same area. This can be easily done by manually modifying the
PRM file.

The RS08 flash memory is programmed on a 64 bytes a row basis, therefore reserved locations for data
storage must be integral times of 64 bytes. For example, if the length of configuration/calibration data is
equal to or less than 64 bytes, the first row of flash memory can be reserved. The ROM segment in the
PRM file must change to:
ROM = READ_ONLY 0x2040 TO 0x3FF7;

Locations from 0x2000 to 0x203F are reserved for data storage. There is no code mapped to this area.

3.2 Memory Access from the Page Window
Extended memory can only be accessed by the paged or indexed mode because the RS08 CPU core has
limited addressing modes. The 14 bit address to access all of the 16 K memory is a combination of the 8 bit
PAGESEL register and a 6 bit offset address. Refer to Figure 4. The page window is mapped to the direct
address area. It is a 64-byte block with the address ranging from 0x00C0 to 0x00FF.

Figure 4. Figure14-bit Address for Paging Access

Occupying the first row of whole flash memory, the data storage reserved in the above PRM file must be
accessed through the page window. Table 2 shows how to page access the whole memory.

PAGESEL

0 0 0 0 0 0

AD[13:6]
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor 5

Implement Programmable Data Storage on the MC9RS08KA8
To access the flash unit 0x2001, PAGESEL must be written to 0x80; therefore flash memory address
0x2000 to 0x203F is mapped to the direct address window 0xC0-0xFF. If the direct address is 0xC1, the
physical address 0x2001 is accessed. For easy paged access operators HIGH_6_13 and MAP_ADDR_6
are defined in the RS08 assembly.
MOV#HIGH_6_13(data), PAGESEL;
LDAMAP_ADDR_6(data)

The above instructions calculate and move high 8 bits of the data address to the PAGESEL register and
then load its value from the page window in the direct page. The two operators calculate automatically the
page address and low 6-bit address of a location.

In C, the compile calculates the logical address for every variable.

3.3 Run the Code in RAM
Besides 14 bytes of fast access RAM, the KA8 has 114 bytes direct RAM before the page window
(0x002F ~ 0x00BF), and 96 bytes paged RAM after the page window (0x0100 ~ 0x015F). The code can
be executed in direct RAM or page RAM. This depends on the RAM usage in an application.

An array can be defined to contain all binary codes for the flash program. Refer to Figure 5.

Special care must be taken for prog_ram[6], prog_ram[9], prog_ram[17], prog_ram[20], prog_ram[22],
and prog_ram[25].

Table 2. Page Access

PAGESEL Memory Address

0x00 0x0000 ~ 0x003F

0x01 0x0040 ~ 0x007F

0x02 0x0080 ~ 0x00BF

0x03 0x00C0 ~ 0x00FF

...

0x80 0x2000 ~ 0x203F

0x81 0x2040 ~ 0x207F

0x82 0x2080 ~ 0x20BF

0x83 0x20C0 ~0x20FF

...

0xC0 0x3000 ~ 0x303F

...

0xFE 0x3F80 ~ 0x3FBF

0xFF 0x3FC0 ~ 0x3FFF
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor6

Implement Programmable Data Storage on the MC9RS08KA8
Prog_ram[22] and prog_ram[25] are a page address and a direct address in the page window of a
designated flash unit that needs to be programmed. Prog_ram[6] and prog_ram[9] are a page address and
a direct address in the page window of any location in the same row of the destination flash unit. They can
also be addresses of the destination unit itself.

Prog_ram[17] and prog_ram[20] are a page address and a direct address in the page window of source data.
Due to the limitation on the RS08 calling convention, it is not passed by stack or any registers, but directly
accessed by its address. Make sure to update prog_ram[17] and [20] to the correct values accor ing to the
map file complier generated every time a project is created, or do the following every time before
prog_ram is called:
prog_ram[20] = (unsigned char)&_data; // ensure that _data in direct page
 // otherwise prog_ram[17] must
 // be updated either.

Figure 5. Array that Contains Binary Codes for the Program

To call this RAM-resident routine use an inline command:
__asm JSR prog_ram;

/**
 ** MAP: location - ???, size - 0x2C (44 bytes)
 ** USAGE: A, X (0x0F), PAGESEL, FLCR
 ** INPUT: data (its address must be updated in prog_ram[20] according to the
 ** map file every time project is made.
 ** OUTPUT: FLASH unit (address 0x2000) - be aware of PRM setting to reserve
 ** unit location.
 **/
volatile unsigned char prog_ram[] =
{
 0x3E, 0x08, 0x1F, // pagesel(FLCR)
 0x10, 0xD1, // *bset 0, FLCR ;set PGM (bit0)

 0x3E, 0x80, 0x1F, // pagesel($2000) ;
 0xB7, 0xC0, // *sta map_addr_6($2000) ;dummy write

 0xAC, // nop (1 cycle) ;delay tnvs 5
 0x3E, 0x08, 0x1F, // pagesel(FLCR) (4 cycles)

 0x16, 0xD1, // *bset 4, map_addr_6(FLCR) ;set HVEN

/***************** loop to program more bytes *********************/
 0x3E, 0x00, 0x1F, // page_sel(data) (4 cycles) ;delay tpgs 10
 0xB6, 0x60, // !LDA data (3 cycles) ;get data
 0x3E, 0x80, 0x1F, // page_sel($2000) (4 cycles) ;
 0xB7, 0xC0, // *STA addr ;write to $3000

 0x3E, 0x04, 0x0F, // ldx #$02 (4 cycles) ;delay tprog 20
 0x3B, 0x0F, -3, // dbnzx relative (7 cycles)
 0x3E, 0x08, 0x1F, // page_sel(FLCR) (4 cycles)
/***************** loop to program more bytes *********************/

 0x11, 0xD1, // *bclr PGM ;clear PGM

 0x30, 0x00, // brn $ (3 cycles) ;delay tnvh 5
 0x30, 0x00, // brn $ (3 cycles)

 0x17, 0xD1, // *bclr HVEN ;clear HVEN
 0xBE // rts (3 cycles) ;delay trcv 1
}

Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor 7

Implement Programmable Data Storage on the MC9RS08KA8
3.4 Program Multi-Bytes
If more than one byte needs to be programmed to flash locations, the commands between the two loops to
program more bytes must be repeated. The maximum number can not be more than 64.

3.5 Housekeeping for Implementation
To make implementation of in-application-programmable data storage work, the following must be
considered.

3.5.1 Code and Data Safety

Flash program routine in the application codes (Figure 5) could potentially harm user code and data. In
case this routine runs incorrectly, the user code or data may change. Because there is only one copy of the
routine in the RAM, destroy the routine after it is called. Clear every element of the array and fill with a
known instruction code such as NOP (0xAC). The data storage can be programmed once, therefore the
routine is not used again.

The Vpp requirement may be used to protect against inadvertent program / erase. In this case an add tional
protection mechanism must be adopted because an external Vpp can be present.

3.5.2 Bus Frequency

For easy implementation, set the bus frequency to a lower value before calling the routine and restore it to
its original value after calling. Bus frequency can be 1 MHz for easy calculation and the necessary delay
time.
ICSC1 = 0b00000110; // bus frequency = 1 MHz
ICSC2 = 0b11000000;

3.5.3 COP and CPU Interrupt

The MCU must not enter STOP mode while the flash program routine is running. In case execution time
is longer than the COP overflow time, the COP must be disabled to avoid COP reset. Evaluate COP
overflow time and routine execution time. Feed the COP before calling.

Code sequence can not be interrupted by exceptions or external conditions because RS08 CPU does not
support real interrupt.

3.5.4 Modes of Operation

Different running modes in the user program can be designed for system configuration and/or sensor
calibration. The program enters a different mode according to conditions after reset. An external condition
can be a key button on the circuit board that displays a different level when the system is powered up. See
Figure 6.
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor8

Implement Programmable Data Storage on the MC9RS08KA8
Figure 6. User Program Flow Chart

3.5.5 Reuse of RAM

If more than 40 bytes are used as a dedicated container of the flash program routine RAM may not be
sufficient in some cases because on-chip resources are usually limited on the RS08.

After power-up reset, the data can be programmed once. It is possible to reuse RAM in the remaining code
flow.

A good approach in C programming is to use a memory overlay technique to fully use the limited RAM
resource. The binary codes can be stored in the flash ROM. If needed for normal application purposes copy
the code bytes to the designated RAM buffer that overlays with all other variables. After the routine is
called and returns memory that is allocated for prog_ram[] it is released and free for any other variables.
All RAM units can be re-used automatically by updating the a project prm file and accordingly allocating
variables to different segments. For example, in the original prm file of a KA8 project the segment RAM
is defined as:
RAM=READ_WRITE0x0030 TO 0x00BF;

Start

Initialization

Change Fbus

Switch on Vpp

Configuration
and/or

calibration

Switch off Vpp

Normal execution/
main loop

Destroy the routine

??

Call the routine

Restore Fbus

False

True

External condition
asserts &&

locations are not
programmed yet
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor 9

Conclusion
A new segment duplicated with RAM can be appended:
CODE_RAM=READ_WRITE0x0030 TO 0x00BF;

Then add a new user segment into:
PRG_CODE_DATAINTO CODE_RAM;

In the source file define prog_ram[] and other variables as:
#pragma DATA_SEG PRG_CODE_DATA
unsigned char prog_ram[];
#pragma DATA_SEG default
unsigned char i, j, k;

prog_ram[] and global variables i, j, k may be duplicated while allocated. No compilation error is
generated.

Do not touch any of the units in prog_ram[] code array before the routine is called. They can be used as
general data buffer in the main function after the routine is called.

3.5.6 Possible Multi-Time Programming

A rolling-storage mechanism can be implemented to achieve limited multi-time programming when a few
bytes of data are saved in a flash row of 64. The user can design a unique algorithm to put all the data into
a group with a tag indicating its validity.

3.5.7 Considerations for Migration

To migrate this implementation to another RS08 MCU consider the following points:

• Memory map of the target MCU

• Change linker parameter file

• Other specifications

4 Conclusion
This application note implements a non-volatile in-application-programmable data storage on the
MC9RS08KA8. This data storage can be used to store the data generated in the application such as sytem
configuration and sensor calibration. After the device has been manufactured or installed, this is useful for
applications where important data must be automatically calculated and stored to non-volatile memory.

5 Reference
MC9RS08KA8, Revision 0 Draft G, 11/2007, Datasheet.

MC9RS08KA8RM, Revision 0 Draft I, 10/2007, Reference Manual.

Freescale website, www.freescale.com
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor10

http://www.freescale.com

THIS PAGE IS INTENTIONALLY BLANK
Implement an In-Application-Programmable Data-Storage on the MC9RS08KA8, Rev. 0

Freescale Semiconductor 11

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: AN3741
Rev. 0
08/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Flash Programming on RS08
	2.1 Flash Programming Procedure
	2.2 Flash Specifications
	2.3 External Program Voltage Control

	3 Implement Programmable Data Storage on the MC9RS08KA8
	3.1 Reserve Flash Locations for Data Storage
	3.2 Memory Access from the Page Window
	3.3 Run the Code in RAM
	3.4 Program Multi-Bytes
	3.5 Housekeeping for Implementation
	3.5.1 Code and Data Safety
	3.5.2 Bus Frequency
	3.5.3 COP and CPU Interrupt
	3.5.4 Modes of Operation
	3.5.5 Reuse of RAM
	3.5.6 Possible Multi-Time Programming
	3.5.7 Considerations for Migration

	4 Conclusion
	5 Reference

