
Freescale Semiconductor
Application Note

Contents
1. Fusebox Electrical Specifications 2
2. IIM Fuse Definitions For Silicon Revision 2.0 2
3. Fuse Addressing . 15
4. Fuse Programming Procedure 15
5. Fuse Sensing Procedure . 16
6. Sample Code . 16
7. Revision History . 19

i.MX35 IC Identification Module (IIM)
Fusebox

Document Number: AN3652
Rev. 1, 04/2010
The IC identification module (IIM) provides the primary
user-visible mechanism for interfacing with on-chip fuse
elements. Among the uses for the fuses are unique chip
identifiers, mask revision numbers, cryptographic keys, and
various control signals requiring a fixed value.

The purpose of this application note is to describe the
i.MX35 Fusebox’s electrical characteristics and to provide
both a fuse-map definition and a detailed description of the
necessary steps to program and read fuse bits.
© 2010 Freescale Semiconductor, Inc. All rights reserved.

Fusebox Electrical Specifications
1 Fusebox Electrical Specifications
Table 1 describes the operating ranges, supply current parameters, and timing characteristics of the
fusebox.

2 IIM Fuse Definitions For Silicon Revision 2.0
Table 2 lists the fuse definitions for Silicon Revision 2.0.

Table 1. Fusebox Supply Current Parameters

Symbol Parameter Min Typ Max Units

FUSE_VDD1

1 The Fusebox read supply is connected to the supply of the full speed USBPHY. FUSE_VDD is only used for programming.
Connect it to ground when not using it for programming.

Fusebox program supply voltage 3.0 3.6 3.6 V

Iprogram eFuse Program Current2:

Current to program one eFuse bit epm_avdd = 3.6 V

2 The current Iprogram is during program time (tprogram).

26 35 62 mA

Iread eFuse Read Current3

Current to read an 8-bit eFuse word vdd_fusebox = 3.3 V

3 The current Iread is present for approximately 50 ns of the read access to the 8-bit word.

— 12.5 15 mA

tprogram Program time for eFuse4

4 The program length is defined by the value defined in the epm_pgm_length[2:0] bits of the IIM module. The value to program
is based on a 32 Hz clock source (4 × 1/32 KHz = 125 µs).

125 — — µs

Table 2. IIM Fuse Definitions (Revision 2.0)

IIM
Address

IIM
Bank

 Fuse Name
Number

of
Fuses

Fuses Function Setting
Locked by/Is

Lock?1

0000[7] 0 FBWP 1 Fuse Bank Write Protect.
Controls whether the fuse bank
may be programmed.

0 Fuse bank may be
programmed

1 Fuse bank may not be
programmed (it is
write-protected)

LOCK

0000[6] 0 FBOP 1 Fuse Bank Override Protect.
Controls whether the fuse bank
may be overridden.

0 Fuse bank may be
overridden

1 Fuse bank may not be
overridden (it is
override-protected)

LOCK

0000[5] 0 FBRP 1 Fuse Bank Read Protect.
Controls whether the fuse bank
may be read.

0 Fuse bank may be read by
software

1 Fuse bank may not be read
by software (it is
read-protected)

LOCK
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

2 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
0000[4] 0 FBSP 1 Fuse Bank Scan Protect.
Controls whether the fuse bank
may be scanned through JTAG
(read/program).

0 Fuse bank may be scanned
by JTAG

1 Fuse bank may not be
scanned by JTAG (it is
scan-protected)

LOCK

0000[3] 0 FBESP 1 Fuse Banks Explicit Sense
Protect.
Controls whether the fuse bank
may be explicitly sensed. The
state of this fuse controls whether
the IIM state machine allows
explicit sense cycles (normal,
0-stress, or 1-stress).

0 Fuse bank be explicitly
sensed by software

1 Fuse bank may not be
explicitly sensed by software
(it is sense-protected)

LOCK

0000[2] 0 CRC_LOCK 1 Lock for rows 0018 and 0040.
Note: Locking for MANU_CRC
information is not required. This
lock can be useful if MANU_CRC
field will be transferred to SW or
customer needs.

— LOCK

0000[1] 0 SIREV_
LOCK

1 Lock for SI_REV[7:0] field (row
001C of fusebank 0)

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0000[0] 0 RESERVED 1 Reserved — LOCK

0004[7] 0 JTAG_LOCK 1 Word lock bit of JTAG related
fuses (row 0004 of fusebank 0)

0 Unlock (The controlled field
can be read, sensed, burned
or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0004
[6:5]

0 JTAG_
SMODE[1:0]

2 JTAG Security Mode.
Controls the security mode of the
JTAG debug interface.

00 JTAG enable mode
01 Secure JTAG mode
11 No debug mode

JTAG_LOCK

0004[3] 0 JTAG_HEO 1 JTAG HAB Enable Override.
Disallows HAB JTAG enabling.
The HAB may normally enable
JTAG debugging by means of the
HAB_JDE-bit in the IIM SCS0
register. The JTAG_HEO-bit can
override this behavior.

0 HAB may enable JTAG
debug access

1 HAB JTAG enable is
overridden (HAB may not
enable JTAG debug access)

JTAG_LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 3

IIM Fuse Definitions For Silicon Revision 2.0
0004[2] 0 KTE 1 Kill Trace Enable.
Enables tracing capability on
NEXUS, ETM, and other
modules.

0 Bus tracing is allowed
1 Bus tracing is allowed in

case security state as
defined by Secure JTAG
allows it (for example,
JTAG_ENABLE or
NO_DEBUG)

JTAG_LOCK

0004[1] 0 SEC_JTAG_
RE

1 Secure JTAG Re-enable.
Overrides the Secure JTAG
Bypass fuse (JTAG_BP, in this
register) to limit JTAG access
according to the JTAG_SMODE.
The JTAG_RE signal
permanently overrides JTAG
security bypass, returning the
device to “Secure JTAG mode.”

0 Secure JTAG Bypass fuse is
not overridden (secure JTAG
bypass is allowed)

1 Secure JTAG Bypass fuse is
overridden (secure JTAG
bypass is not allowed)

JTAG_LOCK

0004[0] 0 JTAG_BP 1 JTAG Debug Security Bypass.
Blowing this fuse
semi-permanently returns the
device to the “JTAG Enable
mode.”

0 JTAG Security bypass is not
active

1 JTAG Security bypass is
active

JTAG_LOCK

000C
[7:6]

0 BT_SDMMC
_SRC[1:0]

2 Choosing the specific eSDHC
controller for booting from.

00 eSDHC-1
01 eSDHC-2
10 eSDHC-3

BOOT_LOCK

000C[5] 0 BT_ECC_
SEL

1 Define 4/8-bit ECC.
Also used as a fast boot mode
indication for eMMC 4.3 protocol.

If the bootable device is NAND
then:
0 4-bit ECC
1 8-bit ECC

If the bootable device is
MMC then:

0 Do not use eMMC fast boot
mode.

1 Use eMMC fast boot mode.

BOOT_LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

4 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
000C
[3:2]

0 BT_SPARE_
SIZE[1:0]

2 Specifies the size of spare bytes,
for Nand Flash devices, i.e. for
BT_MEM_CTL[1:0] = NAND
Flash
BT_SPARE_SIZE[0] is also used
as a fast boot mode indication for
eSD 2.10 protocol.

If the bootable device is NAND
then:
00 16 bytes spare area size

(For 512 B page size
device)

01 64 bytes spare area size
(For 2 KB page size device)

10 128 bytes spare area size
(For 4 KB page size device,
Samsung)

11 218 bytes spare area size
(For 4 KB page size device,
Micron, Toshiba)

If the bootable device is SD
then:
BT_SPARE_SIZE[0]=0 -
"FAST_BOOT" bit 29 in
ACMD41 argument is 0.
BT_SPARE_SIZE[0]=1 -
"FAST_BOOT" bit 29 in
ACMD41 argument is 1.
BT_SPARE_SIZE[1] is
reserved in this case.

BOOT_LOCK

000C
[1:0]

0 BT_USB_
SRC

2 USB PHY selection 00 UTMI PHY
01 ULPI PHY
10 Serial PHY: ATLAS
11 Serial PHY: PHILIPS 1301

BOOT_LOCK

0010[7] 0 BT_SPARE_
FUSE

1 Spare fuse for easy metal
fixes/ECOs. It is routed to SRC
and unused there for a while.

— BOOT_LOCK

0010
[6:5]

0 BT_PAGE_
SIZE[1:0]

2 NAND Flash Page Size.
This field is used in conjunction
with the BT_MEM_CTL[1:0]
setting.

If BT_MEM_CTL = NAND
Flash then

00 512 bytes
01 2K bytes
10 4K bytes
11 Reserved

BOOT_LOCK

0010[4] 0 BT_WEIM_
MUXED

1 Selects whether WEIM is in
muxed mode or not.

For BT_MEM_CTL[1:0] =
WEIM (NOR)
0 Not muxed
1 WEIM in Address muxed

mode

BOOT_LOCK

0010[3] 0 GPIO_BT_
SEL

1 GPIO Boot Select.
Determines whether certain boot
fuse values are controlled from
GPIO pins or IIM.

0 The fuse values are
determined by GPIO pins

1 The fuse values are
determined by fuses

BOOT_LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 5

IIM Fuse Definitions For Silicon Revision 2.0
0010
[2:0]

0 HAB_
TYPE[2:0]

3 Security Type 001 Engineering (allows any
code to be flashed and
executed, even if it has no
valid signature)

100 Security Disabled (For
internal/testing use)

Others Production (Security
On)

BOOT_LOCK

0014[7] 0 BT_SPI_
TYPE

1 Selects between EEPROM and
Serial Flash type devices

0 EEPROM
1 Serial Flash
(In conjunction with

BT_MEM_CTL = 11 and
BT_MEM_TYPE[1:0] = 11)

BOOT_LOCK

0014
[6:5]

0 BT_MEM_
TYPE[1:0]

2 Boot Memory Type.
Interpreted by boot ROM SW
according to BT_MEM_CTL
setting. Signals could also be
interpreted by HW to alter delays
and timing in support of direct
boot.

If BT_MEM_CTL = WEIM then
00 NOR
01 Reserved
10 Reserved
11 Reserved
If BT_MEM_CTL = NAND
Flash
00 3 address cycles
01 4 address cycles
10 5 address cycles
11 6 address cycles
BT_MEM_CTL = ATA HDD
00 Reserved
01 P-ATA HDD
10 Reserved
11 Reserved
If BT_MEM_CTL = Expansion
Card Device
00 SD/MMC
01 Reserved
10 Serial ROM via I2C
11 Serial ROM via SPI

BOOT_LOCK

0014[4] 0 BT_EEPROM
_CFG

1 Selects whether EEPROM device
is used for load of configuration
DCD data, prior to boot from other
devices (not applicable when
using EEPROM as boot device).

0 Use EEPROM DCD
1 Do not use EEPROM DCD

BOOT_LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

6 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
0014[3] 0 BT_BUS_
WIDTH

1 NAND Bus Width.
This field is used with conjunction
with the BT_MEM_CTL[1:0]
setting
Note: NFC - NAND has 16/8 bits
WEIM - NOR has 16-bits option
only, and available for debugging
purpose. (Signals are muxed with
display port and NAND and
P-ATA)

BT_MEM_CTL[1:0] = NAND
Flash
0 8 bit
1 16 bit
BT_MEM_CTL[1:0] = WEIM

(NOR)
0 16 bit
1 Reserved
BT_MEM_CTL[1:0] =
Expansion Device (SPI)
0 2-byte address SPI device

(16-bit)
1 3-byte address SPI device

(24-bit)

BOOT_LOCK

0014
[2:1]

0 BT_MEM_
CTL[1:0]

2 Boot Memory Control Type
(memory device)

00 WEIM
01 NAND Flash
10 ATA HDD
11 Expansion Device

(SD/MMC, support high
storage, EEPROMs. See
BT_MEM_TYPE[1:0]
settings for details).

BOOT_LOCK

0014[0] 0 DIR_BT_DIS 1 Direct External Memory Boot
Disable

0 Direct boot from external
memory is allowed

1 Direct boot from external
memory is not allowed

BOOT_LOCK

001C 0 SI_REV[7:0] 8 Silicon revision number 0x10 = Rev2.0 SIREV_LOCK

0020–
003C

0 RESERVED 64 Reserved — LOCK

0044[7] 0 RES0_LOCK 1 Lock for rows 0048–004C of
fusebank 0

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0044[6] 0 TESTER_
LOCK

1 Lock for reserved fuses in rows
0058–007C of fusebank 0.

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 7

IIM Fuse Definitions For Silicon Revision 2.0
0044[5] 0 SRK0_LOCK 1 Lock for SRK0_HASH[255:248]
fuses in row 0050 of fusebank 0

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0044[4] 0 HAB_CUS_
LOCK

1 Lock for HAB_CUS[7:0] fuses in
row 0054 of fusebank 0

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0044
[3:1]

0 RESERVED 3 Fuses available for
software/customers

— No lock

0044[0] 0 BOOT_LOCK 1 Lock for boot fuses in rows
000C–0018 of fusebank 0

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0048–
004C

0 BI_VER[15:0] 16 Boot Image Version.
Indicate the version of the code
image authenticated by the High
Assurance Boot. The fuse value
must match the version of the
image stored in non-volatile
memory.

— RES0_LOCK

0050 0 SRK0_HASH
[255:248]

8 Most significant byte of 256-bit
hash value of AP super root key
(SRK0_HASH)

— SRK0_LOCK

0054 0 HAB_
CUS[7:0]

8 HAB Customer Code—Selects
customer code, as input to HAB.

— HAB_CUS_
LOCK

0000[7] 1 FBWP 1 Fuse Bank Write Protect.
Controls whether the fuse bank
may be programmed.

0 Fuse bank may be
programmed

1 Fuse bank may not be
programmed (it is
write-protected)

LOCK

0000[6] 1 FBOP 1 Fuse Bank Override Protect.
Controls whether the fuse bank
may be overridden.

0 Fuse bank may be
overridden

1 Fuse bank may not be
overridden (it is
override-protected)

LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

8 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
0000[5] 1 FBRP 1 Fuse Bank Read Protect.
Controls whether the fuse bank
may be read.

0 Fuse bank may be read by
software

1 Fuse bank may not be read
by software (it is
read-protected)

LOCK

0000[4] 1 FBSP 1 Fuse Bank Scan Protect.
Controls whether the fuse bank
may be scanned through JTAG
(read/program).
Note: Fusebanks with SCC_KEY
and SJC_RESP shall be
unscannable.

0 Fuse bank may be scanned
by JTAG

1 Fuse bank may not be
scanned by JTAG (it is
scan-protected)

LOCK

0000[3] 1 FBESP 1 Fuse Banks Explicit Sense
Protect.
Controls whether the fuse bank
may be explicitly sensed. The
state of this fuse controls whether
the IIM state machine allows
explicit sense cycles (normal,
0-stress, or 1-stress).

0 Fuse bank be explicitly
sensed by software

1 Fuse bank may not be
explicitly sensed by software
(it is sense-protected)

LOCK

0000[2] 1 L2VAL
_LOCK

1 Lock for rows 0078–007C of
fusebank 1.

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0000[1] 1 SJC_RESP_
LOCK

1 Lock for SJC_RESP[55:0] fuses
in rows 005C–0074 of fusebank
1.
When locked, the fuses cannot be
read, sensed, overridden or
written.

0 Unlock (SJC_RESP[55:0]
can be read, sensed,
burned, or overridded in the
corresponding IIM register)

1 Lock (SJC_RESP[55:0]
cannot be read, sensed,
overridden nor written)

LOCK

0000[0] 1 SCC_LOCK 1 Lock for the SCC_KEY[167:0]
fuses in rows 0004–0054 of
fusebank 1.
When unblown, SCC_KEY[167:0]
cannot be read or sensed.
When blown, SCC_KEY[167:0]
cannot be read, sensed,
overridden, or written.

0 Unlock (SCC[167:0] cannot
be read, sensed, scanned,
but can be burned or
overridded in the
corresponding IIM register)

1 Lock (SCC[167:0] cannot be
read, sensed, scanned,
overridden nor written)

LOCK

0004–
0054

1 SCC_
KEY[167:0]

168 SCC Secret Key. Protected by
SCC_LOCK. Neither readable
nor explicitly sensible by the
default.

Random number for every part SCC_LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 9

IIM Fuse Definitions For Silicon Revision 2.0
0058 1 RESERVED 8 Fuses available for
software/customers

— No lock

0057–
0074

1 SJC_
RESP[55:0]

56 Response reference value for the
secure JTAG controller

— SJC_RESP_
LOCK

(locks also for
read, scan and

sense)

0000[7] 2 FBWP 1 Fuse Bank Write Protect.
Controls whether the fuse bank
may be programmed.

0 Fuse bank may be
programmed

1 Fuse bank may not be
programmed (it is
write-protected)

LOCK

0000[6] 2 FBOP 1 Fuse Bank Override Protect.
Controls whether the fuse bank
may be overridden.

0 Fuse bank may be
overridden

1 Fuse bank may not be
overridden (it is
override-protected)

LOCK

0000[5] 2 FBRP 1 Fuse Bank Read Protect.
Controls whether the fuse bank
may be read.

0 Fuse bank may be read by
software

1 Fuse bank may not be read
by software (it is
read-protected)

LOCK

0000[4] 2 FBSP 1 Fuse Bank Scan Protect.
Controls whether the fuse bank
may be scanned using JTAG
(read/program).

0 Fuse bank may be scanned
by JTAG

1 Fuse bank may not be
scanned by JTAG (it is
scan-protected)

LOCK

0000[3] 2 FBESP 1 Fuse Banks Explicit Sense
Protect. Controls whether the
fuse bank may be explicitly
sensed. The state of this fuse
controls whether the IIM state
machine allows explicit sense
cycles (normal, 0-stress, or
1-stress).

0 Fuse bank be explicitly
sensed by software

1 Fuse bank may not be
explicitly sensed by software
(it is sense-protected)

LOCK

0000[2] 2 RESERVED 1 Fuse available for
software/customers

— No lock

0000[1] 2 SRK0_
LOCK88

1 Lock for SRK0_HASH[247:160]
fuses in rows 0004–002C of
fusebank 2

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

10 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
Table 3 provides a fuse map for Silicon Revision 2.0. Shading indicates burned or locked fuses. The
address offset is from the IIM Base Address added to the Fuse Bank Base Address.

0000[0] 2 SRK0_
LOCK160

1 Lock for SRK0_HASH[159:0]
fuses in rows 0030–007C of
fusebank 2

0 Unlock (The controlled field
can be read, sensed,
burned, or overridden in the
corresponding IIM register)

1 Lock (The controlled field
can be read or sensed only)

LOCK

0004–
002C

2 SRK0_HASH
[247:160]

88 88 bits of 256-bit hash value of AP
super root key,
SRK0_HASH[247:160]

— SRK0_
LOCK88

0030–
007C

2 SRK0_HASH
[159:0]

160 160 bits of 256-bit hash value of
AP super root key,
SRK0_HASH[159:0]

— SRK0_
LOCK160

1 LOCK means it locks another eFuse, for example, SCC_LOCK locks SCC[167:0]. Another eFuse name means that it is locked
by that eFuse, for example, SCC[167:0] are locked by SCC_LOCK.

Table 3. Fuses Map (Revision 2.0)

Address
Offset 7 6 5 4 3 2 1 0

Initially
Burned
Values1

Fuse Bank: 0

0000 FBWP FBOP FBRP FBSP FBESP CRC_LOCK SIREV_
LOCK

RESERVED 0000 0011

0004 JTAG_
LOCK

JTAG_SMODE
[1:0]

RESERVED JTAG_
HEO

KTE SEC_JTAG_
RE

JTAG_BP 000x 0000

0008 RESERVED xxxx xxxx

000C BT_SDMMC_SRC
[1:0]

BT_ECC
_SEL

RESERVED BT_SPARE_SIZE
[1:0]

BT_USB_SRC
[1:0]

0000 0000

0010 BT_SPARE
_FUSE

BT_PAGE_SIZE
[1:0]

BT_WEIM_
MUXED

GPIO_
BT_SEL

HAB_TYPE
[2]

HAB_TYPE
[1]

HAB_TYPE
[0]

0000 0001

0014 BT_SPI_
TYPE

BT_MEM_TYPE
[1:0]

BT_EEPRO
M_CFG

BT_BUS
_WIDTH

BT_MEM_CTL
[1:0]

DIR_BT_DI
S

0000 0000

0018 RESERVED xxxx xxxx

001C SI_REV27:0] 0001 0000

Table 2. IIM Fuse Definitions (Revision 2.0) (continued)

IIM
Address

IIM
Bank Fuse Name

Number
of

Fuses
Fuses Function Setting

Locked by/Is
Lock?1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 11

IIM Fuse Definitions For Silicon Revision 2.0
0020 RESERVED xxxx xxxx

0024 xxxx xxxx

0028 xxxx xxxx

002C xxxx xxxx

0030 xxxx xxxx

0034 xxxx xxxx

0038 xxxx xxxx

003C xxxx xxxx

0040 RESERVED xxxx xxxx

0044 RES0_
LOCK

TESTER
_ LOCK

SRK0_
LOCK

HAB_CUS_
LOCK

— — — BOOT_
LOCK

0100 0000

0048 BI_VER[15:8]3 0000 0000

004C BI_VER[7:0]2 0000 0000

0050 SRK0_HASH[255:248]4 0000 0000

0054 HAB_CUS[7:0] 0000 0000

0058 RESERVED xxxx xxxx

005C RESERVED xxxx xxxx

0060 RESERVED xxxx xxxx

0064 RESERVED xxxx xxxx

0068 RESERVED xxxx xxxx

006C RESERVED xxxx xxxx

0070 RESERVED xxxx xxxx

0074 RESERVED xxxx xxxx

0078 RESERVED xxxx xxxx

007C RESERVED xxxx xxxx

Fuse Bank 1

0000 FBWP FBOP FBRP FBSP FBESP L2VAL_
LOCK

SJC_RESP_
LOCK

SCC_LOCK 0101 1101

0004 RESERVED5 xxxx xxxx

0008 RESERVED5 xxxx xxxx

000C RESERVED5 xxxx xxxx

0010 RESERVED5 xxxx xxxx

Table 3. Fuses Map (Revision 2.0) (continued)

Address
Offset

7 6 5 4 3 2 1 0
Initially
Burned
Values1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

12 Freescale Semiconductor

IIM Fuse Definitions For Silicon Revision 2.0
0014 RESERVED5 xxxx xxxx

0018 RESERVED5 xxxx xxxx

001C RESERVED5 xxxx xxxx

0020 RESERVED5 xxxx xxxx

0024 RESERVED5 xxxx xxxx

0028 RESERVED5 xxxx xxxx

002C RESERVED5 xxxx xxxx

0030 RESERVED5 xxxx xxxx

0034 RESERVED5 xxxx xxxx

0038 RESERVED5 xxxx xxxx

003C RESERVED5 xxxx xxxx

0040 RESERVED5 xxxx xxxx

0044 RESERVED5 xxxx xxxx

0048 RESERVED5 xxxx xxxx

004C RESERVED5 xxxx xxxx

0050 RESERVED5 xxxx xxxx

0054 RESERVED5 xxxx xxxx

0058 RESERVED 0000 0000

005C SJC_RESP[55:48]6 0000 0000

0060 SJC_RESP[47:40]6 0000 0000

0064 SJC_RESP[39:32]6 0000 0000

0068 SJC_RESP[31:24]6 0000 0000

006C SJC_RESP[23:16]6 0000 0000

0070 SJC_RESP[15:8]6 0000 0000

0074 SJC_RESP[7:0]6 0000 0000

0078 RESERVED xxxx xxxx

007C RESERVED xxxx xxxx

Fuse Bank 27

0000 FBWP FBOP FBRP FBSP FBESP — SRK0_
LOCK88

SRK0_
LOCK160

0000 0000

0004 SRK0_HASH[247:240] 0000 0000

0008 SRK0_HASH[239:232] 0000 0000

Table 3. Fuses Map (Revision 2.0) (continued)

Address
Offset

7 6 5 4 3 2 1 0
Initially
Burned
Values1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 13

IIM Fuse Definitions For Silicon Revision 2.0
000C SRK0_HASH[231:224] 0000 0000

0010 SRK0_HASH[223:216] 0000 0000

0014 SRK0_HASH[215:208] 0000 0000

0018 SRK0_HASH[207:200] 0000 0000

001C SRK0_HASH[199:192] 0000 0000

0020 SRK0_HASH[191:184] 0000 0000

0024 SRK0_HASH[183:176] 0000 0000

0028 SRK0_HASH[175:168] 0000 0000

002C SRK0_HASH[167:160] 0000 0000

0030 SRK0_HASH[159:152] 0000 0000

0034 SRK0_HASH[151:144] 0000 0000

0038 SRK0_HASH[143:136] 0000 0000

003C SRK0_HASH[135:128] 0000 0000

0040 SRK0_HASH[127:120] 0000 0000

0044 SRK0_HASH[119:112] 0000 0000

0048 SRK0_HASH[111:104] 0000 0000

004C SRK0_HASH[103:96] 0000 0000

0050 SRK0_HASH[95:88] 0000 0000

0054 SRK0_HASH[87:80] 0000 0000

0058 SRK0_HASH[79:72] 0000 0000

005C SRK0_HASH[71:64] 0000 0000

0060 SRK0_HASH[63:56] 0000 0000

0064 SRK0_HASH[55:48] 0000 0000

0068 SRK0_HASH[47:40] 0000 0000

006C SRK0_HASH[39:32] 0000 0000

0070 SRK0_HASH[31:24] 0000 0000

0074 SRK0_HASH[23:16] 0000 0000

0078 SRK0_HASH[15:8] 0000 0000

007C SRK0_HASH[7:0] 0000 0000

1 Describes the state of the eFuses when the device is manufactured: 0 = Unblown, 1 = Blown
2 According to the chip silicon revision, 0x10 = Rev 2.0
3 Boot Image Version
4 Most significant byte of 256-bit SRKO_HASH

Table 3. Fuses Map (Revision 2.0) (continued)

Address
Offset

7 6 5 4 3 2 1 0
Initially
Burned
Values1
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

14 Freescale Semiconductor

Fuse Addressing
3 Fuse Addressing
The IIM module base address register is 0x53FF_0000. All registers are 8-bit wide, but addressable on
32-bit boundaries.

The IIM contains three fuse banks. Each bank contains 256 8-bit rows for a total of 2048 fuses per bank.
Each fuse row is addressable on a 32-bit boundary, meaning that Fuse Row Index 0 is at Fuse Row Offset
0x0, Fuse Row Index 1 is at Fuse Row Offset 0x4, Fuse Row Index 2 is at Fuse Row Offset 0x8, and so on.

Fuse Bank 0 is located at offset 0x0800 from the IIM base address (0x53FF_0000). Fuse Bank 1 is located
at offset 0x0C00. Fuse Bank 2 is located at offset 0x1000.

For example, the absolute address of Fuse Row 0xC at Bank 0 is
0x53FF_0000 + 0x0800 + 0xC = 0x53FF_080C. Keep in mind that the Fuse Row Index is 3.

4 Fuse Programming Procedure
Fuse programming is accomplished using the following procedure:

1. Define the fuse bit address by writing to the upper address (UA) and lower address (LA) registers.

— UA register is located at 0x53FF_0014. LA register is located at 0x53FF_0018.

— UA[5:3] selects the fuse bank.

— UA[2:0] provides the most significant portion of the Fuse Row Index within the bank.

— LA[7:3] provides the least significant portion of the Fuse Row Index within the bank.

— LA[2:0] selects the bit position within the selected row (or fuse byte).

2. Write 0xAA to the program protection register (PRG_P), which is located at address
0x53FF_0028.

This register is used to protect against accidental fuse programming. The fuses can be blown only
when the value of this register is 0xAA. Software should only program this register to 0xAA while
actively blowing fuses. After the program operation is complete, immediately reprogram this
register to a different value.

3. Enable and start fuse programming using the fuse control register (FCTL), which is located at
address 0x53FF_0010. Writing 0x71 to this register commands the IIM to blow the fuse.

4. Wait until fuse programming is finished by IIM. When bit 1 of the status register (STAT) equals
one, the program operation has finished. STAT is located at address 0x53FF_0000.

5. Clear bit 1 of STAT by writing 1 to it.

6. Write any value other than 0xAA to PRG_P register to prevent inadvertent fuse programming.

7. Check if there were errors by reading the content of the module errors register (ERR), which is
located at address 0x53FF_0008. If bits[7:1] are all zeros, no error occurred.

5 Unreadable SCC Key
6 Response reference value for the secure JTAG controller. Cannot be read, overridden, or programmed after SJC_REP_LOCK

is blown.
7 Bits 247:0 of Hash of super-root key stored in FLASH
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 15

Fuse Sensing Procedure
5 Fuse Sensing Procedure
While fuse programming blows fuses one bit at a time, fuse sensing or reading always works at a byte
boundary. There are two methods for reading fuse values: direct register address dereferencing and explicit
fuse sensing.

5.1 Reading Fuses Using Direct Address Dereferencing
Direct register address dereferencing is accomplished by calculating the absolute fuse address and reading
the content of the register using standard pointer dereferencing methods. For example, the fuse row located
at offset 0x10 from fuse bank 0 can be read with the following C code:

char fuse_byte = *(char *) (0x53FF0000 + 0x0800 + 0x10);

5.2 Reading Fuses Using Explicit Sensing
Explicit sensing is accomplished using the following procedure:

1. Write something other than 0xAA to PRG_P register to prevent fuses from being blown
inadvertently.

2. Define the fuse row (or byte) address by writing to the upper address and lower address registers.

— UA[5:3] selects the fuse bank.

— UA[2:0] provides the most significant portion of the Fuse Row Index within the bank.

— LA[7:3] provides the least significant portion of the Fuse Row Index within the bank.

— LA [2:0] is disregarded during fuse sensing operations because it always reads all 8 bits within
the given fuse row.

3. Set the SENS strength to the fuse control register (FCTL), which will trigger a sense cycle. Only
one of bits[3:1] can be set to 1 to start a read cycle.

4. Wait until SNSD bit from the status register (STAT[0]) equals one.

5. Write 1 to SNSD bit from the status register (STAT[0]) to clear it.

6. Check for errors by reading the content of the module errors register (ERR), which is located at
address 0x53FF_0008. If bits[7:1] are all zeros, no error occurred.

7. Finally, the fuse row (or byte) value can be retrieved by reading the SDAT register, which is
located at address 0x53FF_001C.

6 Sample Code
The following source code describes how to do fuse programming and fuse sensing in C programming
language.

#define setmem8(address, value) *(volatile unsigned char *)address = (unsigned char)value
#define readmem8(address) (*(volatile unsigned char *)address)

//Important IIM register definitions.
#define IIM_BASE_ADDRESS (0x53FF0000)
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

16 Freescale Semiconductor

Sample Code
#define IIM_UPPER_ADDRESS_REG (IIM_BASE_ADDRESS + 0x14)
#define IIM_LOWER_ADDRESS_REG (IIM_BASE_ADDRESS + 0x18)
#define IIM_PRG_P_REG (IIM_BASE_ADDRESS + 0x28)
#define IIM_FCTL_REG (IIM_BASE_ADDRESS + 0x10)
#define IIM_STAT_REG (IIM_BASE_ADDRESS + 0x00)
#define IIM_ERR_REG (IIM_BASE_ADDRESS + 0x08)
#define IIM_SDAT_REG (IIM_BASE_ADDRESS + 0x1C)

typedef enum
{

ESNS_1 = 2,
ESNS_0 = 4,
ESNS_N = 8 //Normal Sensing

}e_sens_strength;

typedef enum
{

FUSE_BANK_0,
FUSE_BANK_1,
FUSE_BANK_2,
MAX_FUSE_BANK //MX35 only has 3 fuse banks, 0, 1 and 2.

}e_fuse_banks;

//fuse_bank is the fuse bank index. MX35 only has 3 banks. That's why they've been enumerated.
//fuse_row_addr: represents the address of the row where we are going to blow a fuse.
// Each Row addresses one byte worth of data. This means one row contains 8 fuses ready
to be blown!
// Row Index 0 is Row Address 0x0
// Row Index 1 is Row Address 0x4
// Row Index 2 is Row Address 0x8
// Row Index 3 is Row Address 0xC
// ... And so on

//fuse_bit_addr: A number from 0 to 7 that represent the fuse bit index that we are going to
blow or sense.
static void set_fuse_address(e_fuse_banks fuse_bank, unsigned short fuse_row_addr, unsigned
char fuse_bit_addr)
{

unsigned char upper_addr;
unsigned char lower_addr;
unsigned char fuse_index;

//A fuse bank contains 256 fuse rows. for a total of 2048 fuse bits.
//Dividing the fuse_address by 4 will give us the fuse index.
fuse_index = (unsigned char)(fuse_row_addr >> 2);

upper_addr = ((unsigned char)fuse_bank << 3);
upper_addr |= ((fuse_index >> 5) & 0x7);

lower_addr = ((fuse_index & 0x1F) << 3);
lower_addr |= (fuse_bit_addr & 0x7);

//write address to UA LA register
setmem8(IIM_UPPER_ADDRESS_REG, upper_addr);
setmem8(IIM_LOWER_ADDRESS_REG, lower_addr);

}

//Returns 0 when Successful.
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 17

Sample Code
unsigned char fuse_bit_program(e_fuse_banks fuse_bank,
unsigned char fuse_row_addr,
unsigned char fuse_bit_addr)

{
unsigned char error;

//Define the fuse bit address that we want to program.
set_fuse_address(fuse_bank, fuse_row_addr, fuse_bit_addr);

//write 0xAA to Program Protection Register (PRG_P) register
//The value 0xAA is an arbitrarily chosen value that needs to be written
//to the register so the fuse program operation actually works.
//This helps prevent to blow fuse by mistake.

setmem8(IIM_PRG_P_REG, 0xAA);
//Enable and Start Fuse Programming via Fuse Control Register(FCTL)
setmem8(IIM_FCTL_REG,0x71);

//Wait until fuse blowing is finished.
while((readmem8(IIM_STAT_REG) & 0x2) == 0);

//Write 1 to clear PRGD bit
setmem8(IIM_STAT_REG,0x02);

//Very good to do too. for safety.
setmem8(IIM_PRG_P_REG, 0x0);

//Check Error status.
error = readmem8(IIM_ERR_REG);
if (error & 0xFE)

{

//Clear Error Status Register. By writing the same value we got.
//These are Clear-on-Write type of bits.

setmem8(IIM_ERR_REG, error);
//Some error occurred.
return error;

}

//No error at all.
return 0;

}

//Returns the value of all the fuses (8 fuses or 8 bits)
// contained in fuse_row_addr.
unsigned char fuse_byte_read(e_fuse_banks fuse_bank,

 unsigned char fuse_row_addr,
 e_sens_strength sens_strength)

{
unsigned char error;
unsigned char fuse_byte_value;

//Just in case.
// Write something different than 0xAA to IIM_PRG_P_REG to prevent
//fuses from being blown inadvertently.
setmem8(IIM_PRG_P_REG, 0x0);

//Define the fuse row address that we want to read.
set_fuse_address(fuse_bank, fuse_row_addr, 0);
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

18 Freescale Semiconductor

Revision History
//Set the SENS strength to the Fuse Control Register
// which will also trigger a sense cycle.

setmem8(IIM_FCTL_REG, sens_strength);

// wait for SNSD bit to set. While this is 0,
// it means the sensing has not finished.
while ((readmem8(IIM_STAT_REG) & 0x1) == 0);

//Write 1 to SNSD bit in the STAT register. This is the way to clear it.
setmem8(IIM_STAT_REG,0x01);

//Was there an error??
error = readmem8(IIM_ERR_REG);
if (error & 0xFE)

{
//Clear Error Status Register. By writing the same value we got.
//These are clear on Write type of bits.

setmem8(IIM_ERR_REG, error);

while (1); //READ ERROR. LOOP ForEver.
}

//Read the byte we wanted.
fuse_byte_value = readmem8(IIM_SDAT_REG);

return fuse_byte_value;

}

The following source code shows how to blow the BT_SDMMC_SRC[0] fuse, blowing this fuse
permanently configures the i.MX35 to boot from e-SDHC2 port when booting from SD/MMC:

//Blow the BT_SDMMC_SRC[0] Fuse. Bit 6, of Fuse Row 0xC in FuseBank 0
unsigned char error = fuse_bit_program(FUSE_BANK_0, 0xC, 6);

The following source code shows how to explicitly sense the BT_SDMMC_SRC[1:0] fuses using the
fuse_byte_read function defined above:

unsigned char fuse_byte_value = fuse_byte_read(FUSE_BANK_0, 0xC, ESNS_N);
unsigned char bt_sdmmc_src = (fuse_byte_value >> 6);

As mentioned before, the same fuse row can also be read using direct register address dereferencing, which
is shown in the following code:

unsigned char fuse_byte_value = *(unsigned char *)(0x53FF0000 + 0x0800 + 0xC);
unsigned char bt_sdmmc_src = (fuse_byte_value >> 6);

7 Revision History
Table 4. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 04/2010 Updated the Setting for the BT_MEM_CTL = NAND Flash value of the
BT_MEM_TYPE[1:0] Fuse (IIM Address = 0014[6:5]) in Table 2

0 07/2009 Initial release
i.MX35 IC Identification Module (IIM) Fusebox, Rev. 1

Freescale Semiconductor 19

Document Number: AN3652
Rev. 1
04/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	i.MX35 IC Identification Module (IIM) Fusebox
	1 Fusebox Electrical Specifications
	Table 1. Fusebox Supply Current Parameters

	2 IIM Fuse Definitions For Silicon Revision 2.0
	Table 2. IIM Fuse Definitions (Revision 2.0)
	Table 3. Fuses Map (Revision 2.0)

	3 Fuse Addressing
	4 Fuse Programming Procedure
	5 Fuse Sensing Procedure
	5.1 Reading Fuses Using Direct Address Dereferencing
	5.2 Reading Fuses Using Explicit Sensing

	6 Sample Code
	7 Revision History
	Table 4. Document Revision History

