
Freescale Semiconductor
Application Note

Document Number: AN3584
Rev. 0, 5/2008

Contents
Introduction . 1
Power Problem . 2
MPC5510 Family Low Power Feature Summary 3
MPC5510 Power Modes . 3
Clock, Reset, and Power Module (CRP) 4
Low Power Entry . 5

6.1 Shutdown RTI . 7
6.2 Set System Clock to 16 MHz IRC 7
6.3 Disable the PLL (Stop Only) 8
6.4 Shut Down the External Oscillator Circuit (XOSC) . 9
6.5 Select Sleep or Stop Mode and

Execute WAIT Instruction . 9
Low-Power Mode Exit . 10

7.1 Sleep Mode Exit . 11
7.2 Stop Mode Exit . 12
Wakeup Sources . 13

8.1 Low Power Timer Wakeups. 13
8.2 External Pin Wakeup. 16
8.3 Wakeup Source Enable. 16
8.4 Wakeup Source Determination 18
Conserving Run Time Power. 18

9.1 Disabling Modules . 18
9.2 Slowing Down Clocks . 19
9.3 System Clock Choice . 20

0 Use Cases . 21
10.1 Use Case Solutions. 21
10.2 Use Case Factors and Assumptions 21
10.3 List of Use Cases . 22
10.4 Use Case Analysis . 33

ppendix A Low Power Entry Sleep 35
ppendix B Low Power Entry Stop. 36
ppendix C MPC5516 Electrical Reference Data. 37

MPC5510 Family Low Power
Features
by: Christopher Platt and Carl Culshaw

Applications Engineering
Microcontroller Division
Austin, Texas, USA and East Kilbride, Scotland, UK
1 Introduction

The performance requirements in the automotive body
and gateway applications space have increased
significantly over the past few years. Freescale has
addressed this need by introducing a family of Power
Architecture devices specifically targeted at applications
where low power is a critical requirement.

The MPC5510 family builds on the success of the
MPC55xx family popular in powertrain and chassis
systems. It adds many features specifically aimed at
reducing the overall power during normal operation and
modes when the device is stopped. This document
discusses new features in detail and how to best use them
in an application to minimize the overall power used by
the device.

1
2
3
4
5
6

7

8

9

1

A
A
A

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Appendix D Example Code. 39
Appendix E Startup Times in Clock Cycles 44

Power Problem
2 Power Problem
Power is made up of two separate components: run current (dynamic current) and stop current (static
current).

Dynamic Current — This is the main current prevalent during normal operating conditions. The
mechanism responsible for this current is basically due to charging and discharging the gates of the
millions of MOS transistors that switch on and off as the device operates. The switching currents adhere
to the equation:

Eqn. 1

Thus as technology advances and transistors become smaller, the gates become smaller resulting in lower
gate capacitance. The lower capacitance means lower switching currents and hence an overall reduced
dynamic run current.

On the other side of the equation, because switching speeds are increasing (dv/dt) this leads to an increased
dynamic current.

Fortunately, the reduced current due to lower capacitance wins out over the increased current due to faster
switching leading to a lower overall dynamic power. Unfortunately, as applications become more complex
and demanding, the performance requirements and hence frequencies are increasing, leading to an overall
increase in dynamic power.

Static Current — This current is present when the transistors of the device are not switching and are hence
in a static state. The main mechanism causing this current is leakage due to the finite resistance that exists
between power and ground if power is applied to a CMOS circuit.

This leakage current is highly dependent on the threshold voltage of the transistor. As technology becomes
smaller, supply voltage levels are scaled lower. To improve circuit speed, the threshold voltages are also
decreased, which results in an exponential increase in sub-threshold leakage current.

In summary, as technology shrinks ever smaller, even though dynamic power trends lower, the required
increase in performance means that any savings made by technology are neutralized by the increased
frequencies. So, overall power is trending upwards.

Couple this fact with the dramatic increase in static leakage inherent as we move to smaller geometries.
We have an overall picture of increased dynamic power and a static component becoming a larger
component of the overall current.

I =
dt dt

= C
dvdQ
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor2

MPC5510 Family Low Power Feature Summary
3 MPC5510 Family Low Power Feature Summary
Because the power requirements are showing an upward trend, the MPC5510 family has a number of
features that are specifically designed to minimize power:

• Clock management
— The ability to stop clocks on a per module basis
— Optimized clock tree design
— Ability to divide down the system clock to peripherals
— Ability to gate off or divide down the clock to the core

• Onboard clocking
— Part can self-clock without a PLL

– 16 MHz internal oscillator
– 32 kHz internal oscillator (low power mode only)

• Power gating
— Literally removing power to large areas of silicon

• Active well biasing (in stop mode)
• Dual core

— Able to run at lower speed to achieve the same throughput.

All the above features are discussed in this document.

4 MPC5510 Power Modes
The MPC5510 family incorporates three modes of operation:

• Run mode
— Device in this mode is running normally and executing main application code.
— The estimated room temp current in this mode is 120 mA at 66 MHz with all peripherals and

both cores running.
• Stop mode

In this mode, all of the main clocks on the device stop similar to traditional stop modes on many
microcontroller devices such as the S12X family.

The estimated room temp current in this mode is 250 μA.
• Sleep mode

— This mode is new to the Power Architecture family of devices. In this mode, power is literally
removed from large areas of silicon to reduce static leakage currents. There are multiple sleep
modes on the MPC5510 family that differ only in the amount of SRAM that remains powered
during this mode.

— The estimated room temp current for this mode with 8K RAM remaining powered is 20 μA.
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 3

Clock, Reset, and Power Module (CRP)
A tabular summary of modes listing what remains powered during each mode is displayed in Table 1.

5 Clock, Reset, and Power Module (CRP)
A key element of the MPC5510 family is the CRP module. This module is new to this family of devices.
The CRP module forms the heart of the low-power functionality on the device and consists of:

• Input isolation block
— Allows the inputs from external blocks to be driven to known states if the logic driving the

inputs is powered down.
• Pad keeper circuitry

— Wakeup and power status block
— Clock and reset control block
— Low power state machine

The primary function of this module is to maintain all control logic that requires power if other portions
of the device are powered down in sleep modes. This module does not contain clock and reset generation
logic or any voltage regulator, power gating, or LVI (low voltage interrupt) circuits. This module contains
the logic necessary to control these elements during transitions between the various available modes.

Table 1. Modes Listing What Remains Powered

Low Power Modes

Features
Normal Operation

(Run Mode)
Stop

CRP_PSCR[STOP]
Sleep 0–4 CRP_PSCR[SLEEP]

Standard cell logic
(z0/z1 cores, DMA,
peripherals, etc.)

Powered up,
running

Powered up,
halted (well biased)

Powered down

Flash Optionally disabled Disabled (exit SW
cannot be in flash)

Powered down

SRAM powered All SRAM powered All SRAM powered Sleep 0: 0 KB
Sleep 1: 8 KB
Sleep 2: 16 KB
Sleep 3: 32 KB
Sleep 4: 64 KB
Sleep 5: 80 KB

SRAM powered

Output pads Active States maintained States maintained Output pads

Input pads Active Enabled for wakeup Enabled for wakeup Input pads

API, RTC clocks Optionally enabled Optionally enabled Optionally enabled API, RTC clocks
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor4

Low Power Entry
The CRP module is the heart of the low power mode control. It is always powered up, even in sleep mode
while most of the device is power gated off.

6 Low Power Entry
The sequence of events to enter a power saving mode is listed below. The following sequence assumes that
low power exit criteria are already set up and that any wakeup routines are resident in SRAM or flash.
Some example code detailing entry into and exit from LPM is included in Appendix D, “Example Code.”

• Disable DMA and FlexRay bus masters (if applicable, depending on family member)
• Halt all modules (SIU_HLT), verify HLTACK
• Shut down RTI (optional)
• Set system clock to 16 MHz IRC

— This clock drives CRP module
• Disable PLL
• Shut down XOSC (optional)
• Select sleep or stop

— CRP_PSCR(SLEEP:STOP)
• Execute wait instruction on any active core
• CRP module now controls power down sequence

1 and 2 disable DMA and FlexRay bus masters and halt all modules

The SIU_HLT register contains halt bits for all of the MPC5510 modules.
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 5

Low Power Entry
Writing a 1 to the relevant bit enables the halt logic built into the module to perform a controlled shutdown
of the module rather than just simply stopping the clock to the module. This allows a module currently
performing a task to complete the task and stop gracefully (such as a DSPI in the middle of transmitting a
message). Each module also has a corresponding flag in the HLTACK (halt acknowledge) register.

When a module is requested to halt, and has completed its halt sequence, it sets the appropriate halt
acknowledge flag in the HLTACK register. In this way, software can easily monitor the progress of any
modules requested to halt.

When entering a low power mode, because all modules are going to be halted, writing $FFFFFFFF to the
32-bit SIU_HLT register and then waiting for the flags to assert appears to be sufficient. However, on the
MPC5510 family, the DMA and the FlexRay modules (if on device) do not contain the halt logic necessary
to perform a graceful halt. This is mainly because of the complex nature of these particular modules. Hence
if either of these two modules is being used, the user must take care of shutting them down.

Table 2. HLTACK Register Field Descriptions

Field Description

0–31
HLTACK[0:31]

Halt Flags. Each bit corresponds to a separate module, as mapped below.
0 e200z1
1 e200z0
2 FLEXRAY
3 DMA
4 Reserved
5 Reserved
6 NPC
7 EBI
8 EQADC
9 MLB
10 EMIOS200
11 Reserved
12 IIC_A
13 PIT
14 FLEXCAN_F
15 FLEXCAN_E
16 FLEXCAN_D
17 FLEXCAN_C
18 FLEXCAN_B
19 FLEXCAN_A
20 DSPI_D
21 DSPI_C
22 DSPI_B
23 DSPI_A
24 ESCI_H
25 ESCI_G
26 ESCI_F
27 ESCI_E
28 ESCI_D
29 ESCI_C
30 ESCI_B
31 ESCI_A
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor6

Low Power Entry
NOTE
The halt bits in the SIU_HLT register do not directly affect the FlexRay and
DMA modules. These modules must still be set. The set action sets the halt
flags for these modules. All bus masters must be halted prior to low-power
mode entry. The DMA and the FlexRay module are bus masters. Failure to
set the halt bits for these modules prevents the device from entering
low-power mode.

6.1 Shutdown RTI
The RTI circuit is unaffected by the SIU_HLT bits or the MDIS (module disable). It must be manually shut
down by user software. Because the RTI function is mapped to PIT0, this is accomplished by writing a 0
to bit 31 of the PITEN register.

Figure 1. PIT Timer Enable Register (PITEN)

6.2 Set System Clock to 16 MHz IRC
While the MPC5510 is in low-power mode, any operation of the CRP module is clocked by the 16 MHz
IRC. Thus prior to LPM (low power mode) entry the system clock must be set to the 16 MHz IRC. This is
achieved by writing 00 to the SYSCLKCEL bits in the SIU_SYSCLK register. If the 16 MHz IRC is not
selected prior to execution of the HALT command, the 16 MHz IRC is automatically started by the system
to clock the CRP module. In this case, whichever clock source that was clocking the system prior to sleep
mode entry (most likely PLL/XOSC) is still active and using power.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
PEN8 PEN7 PEN6 PEN5 PEN4 PEN3 PEN2 PEN1 PEN0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

0–22 Reserved.

23–31
PENn

Timer Enable Bit
0 Timer is disabled
1 Timer is active
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 7

Low Power Entry
Figure 2. System Clock Register (SIU_SYSCLK)

6.3 Disable the PLL (Stop Only)
In sleep mode, the power to the PLL is removed and hence the PLL stops automatically. However, if
entering stop mode, the user must take care of disabling the PLL themselves. Writing 000 to the CLKCFG
bits in the ESYNCR1 register disables the PLL.

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYSCLKSEL SYSCLKDIV

SWT
CLKSEL

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LPCLKDIV7 LPCLKDIV6 LPCLKDIV5 LPCLKDIV4 LPCLKDIV3 LPCLKDIV2 LPCLKDIV1 LPCLKDIV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

0–1
SYSCLKSEL

System Clock Select. The SYSCLKSEL bit selects the source for the system clock.
00 System clock supplied by 16 MHz IRC
01 System clock supplied by XOSC
10 System clock supplied by PLL
11 Reserved (defaults to 16 MHz IRC)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1
CLKCFG[2:0]

0 0 0 0 0 0 0 0
EPREDIV[3:0]

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
EMFD[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor8

Low Power Entry
Figure 3. FMPLL Synthesizer Status Register (SYNSR)

6.4 Shut Down the External Oscillator Circuit (XOSC)
Care needs to be taken to disable the external oscillator circuit prior to LPM entry. In stop and sleep modes
the output from the XOSC is disabled. Leaving it running inadvertently is simply a waste of power.

Figure 4. Clock Source Register (CRP_CLKSRC)

XOSC is disabled by writing a 0 to the XOSCEN bit in the CRP_CLKSRC register.

6.5 Select Sleep or Stop Mode and Execute WAIT Instruction
The final elements of entry into LPM is to select whether the device is required to enter stop or sleep mode,
and then execute the WAIT instruction.

Field Description

0 Reserved.
Note: This bit is set to 1 on reset and always reads as 1.

1–3
CLKCFG[2:0]

Clock Configuration. The CLKCFG[2:0] bits are a writable version of the MODE, PLLSEL, and PLLREF bits
in the SYNSR. These change the clock mode, after reset has negated, via software. CLKCFG[2:0] maps
directly to MODE, PLLSEL, and PLLREF to control the system clock mode. (For more detailed information,
refer to the “Frequency Modulated Phase Locked Loop (FMPLL)” chapter in the MPC5510 reference manual.)
CLKCFG[2:0] = 0b101 can produce an unpredictable clock output.
The ESYNCR2[LOLRE] and ESYNCR2[LOCRE] must be set to 0 before changing the PLL mode, so that a
reset is not immediately generated upon the write to CLKCFG[2:0].

4–11 Reserved.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 32KIRC
EN

XOSC
EN

0 32KOSC
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TRIM32IRC[0:7] TRIMIRC[0:7]

W

Reset 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1

Field Description

13
XOSCEN]

External Oscillator Enable. The XOSCEN bit continuously enables the external oscillator or puts it in a lower
power state when a low-power mode is entered.
0 XOSC disabled, but crystal remains powered to reduce start up time after low-power mode exit.
1 XOSC enabled
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 9

Low-Power Mode Exit
Figure 5. Power Status and Control Register (CRP_PSCR)

The required LPM is specified by writing a 1 to bit 16 or 17 of the CRP_PSCR register. If sleep mode is
selected, the user must also specify the amount of RAM to remain powered after sleep mode is entered but
write the relevant value in the RAMSEL bits of the same register.

After the WAIT command is executed, control of the device is handed over to the CRP module. If the
device is entering sleep mode, the I/O state is held and power gating circuits are enabled to remove power
to most of the device. Power is however retained in the CRP module and any RAM specified as RAM to
remain powered in the CRP_PSCR register, and any clocks that are running.

If the device is entering stop mode, the system clocks are stopped, the flash is disabled, and an active well
bias is applied to the standard cell logic to reduce leakage currents.

Appendix A, “Low Power Entry Sleep,” and Appendix B, “Low Power Entry Stop,” are flowcharts to
logically illustrate the sleep and stop entry sequences.

7 Low-Power Mode Exit
Exit from low-power mode is caused by a reset (power on reset or external reset pin) or the occurrence of
a pre-defined wakeup event that was specified prior to entry into LPM.

The programmable wakeup events are discussed in more detail in the next section.

Because sleep and stop modes are inherently different in that large areas on the device are powered down
in sleep but not in stop, the exit from sleep and stop modes are managed differently.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
LE

E
P

F

S
TO

P
F

0 0 0

W
K

R
LL

O
V

R
F

W
K

A
P

IF

W
K

R
T

C
F PWKSRCF[0:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SLEEP STOP

0 0

S
LP

12
E

N

RAMSEL[0:2] PWKSRIE[0:7]W
PKREL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

21–23
RAMSEL[0:2]

RAM Selects. The RAMSEL bits select which ram configuration retains power during the sleep mode.
000 All RAMs powered down
001 8K RAM retains power (0x4000_0000 – 0x4000_1FFF)
010 16K RAM retains power (0x4000_0000 – 0x4000_3FFF)
011 32K RAM retains power (0x4000_0000 – 0x4000_7FFF)
110 64K RAM retains power (0x4000_0000 – 0x4000_FFFF)
111 80K RAM retains power (0x4000_0000 – 0x4001_3FFF)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor10

Low-Power Mode Exit
7.1 Sleep Mode Exit
If a pre-defined wakeup event occurs during sleep mode, the 16 MHz IRC is enabled (if not already
enabled). When this pre-defined event stabilizes, it begins to clock the CRP module. The CRP module then
executes the control sequence to bring the part out of sleep mode. After the device is in a stable voltage
and clocking state (or both) the e200z1 or e200z0 core begin code execution from the address contained
in the CRP_Z1VEC or CRP_Z0VEC registers.

Figure 6. Reset Vector Register (CRP_Z1VEC)

This register is set up prior to LPM entry. It resides in the CRP and retains its power and hence value
during LPM. What determines whether a core begins execution or not is the RST bit (bit 30) of the
CRP_Z1(0)VEC register.

If the RST bit is set to a 0 the core begins execution at the address location specified by Z1(0)VEC. If the
RST bit is set to a 1 the core does not execute code from Z1(0) VEC because it is held in reset.

After being released from reset, the core begins execution from the location specified. It is not allowed for
both cores to be held in a reset state. If one core is in reset and the other core tries to put itself into reset,
then the internal logic prevents this from happening.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

Z1VEC

Z1
R
S
T

V
L
E

W

Reset 1 0 1

Field Description

30
Z1RST

Controls the assertion of RESET to the Z1 core. Writes to this bit cause the Z1 to immediately enter/exit reset.
Reads of this bit indicate if the core is being held in reset.
0 Z1 not in reset
1 Z1 in reset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
LE

E
P

F

S
TO

P
F

0 0 0

W
K

R
LL

O
V

R
F

W
K

A
P

IF

W
K

R
T

C
F PWKSRCF[0:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SLEEP STOP

0 0

S
LP

12
E

N

RAMSEL[0:2] PWKSRIE[0:7]W
PKREL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7. Power Status and Control Register (CRP_PSCR)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 11

Low-Power Mode Exit
If multiple wakeup sources were enabled, user code located at the vector address is now able to determine
which source caused the wakeup by reading the flags (bits 5–15) in the CRP_PSCR.

User code must also release the state of the pads. Upon entry into sleep mode, the state of the pads is held
in their current state. On exiting sleep mode the pad state is still held. This pad state can be released only
by user software writing a 1 to the PKREL bit in CRP_PSCR.

Here are some important things to remember while exiting sleep mode (also refer to Appendix A, “Low
Power Entry Sleep,” and Appendix B, “Low Power Entry Stop”).

Because most of the device is powered down, all logic except that in the CRP module is reset. Hence any
context or register states are lost and revert back to their reset state.

Therefore:
• The user must re-initialize the watchdog circuit.
• The user must re-initialize any RAM that did not remain powered during sleep mode.
• The user must take care not to access the flash until approximately 120 μs after the wakeup event

occurred. (If fast recovery is enabled, see below).
• The pads, pad functions, and pin multiplexing scheme must be reconfigured by user software.

7.1.1 Fast Recovery

On exiting from sleep mode, an automatic reset sequence is generated that allows time for the flash
memory to recover and stabilize so that program execution from flash can occur. This reset sequence takes
2400 (if PLL is not enabled) or 9600 (if PLL is enabled) cycles. However, the MPC5510 family also has
a fast recovery feature that allows the reset sequence to be shortened to only 64 cycles. To use this feature,
ensure that exit code is located in RAM that remains powered and that the Z1(0)VEC register is pointing
to it. Execution can then occur within 64 cycles.

Fast recovery is enabled by setting the FASTREC bit in the CRP_RECPTR register.

It must be noted that the rest of the bits in this register have no purpose and because this register resides in
the CRP module, it could thus be used by a user to store data not lost during a low power entry.

7.2 Stop Mode Exit
After a pre-defined wakeup event has occurred, exit from stop mode is essentially a two-stage process.

First, the clocks become stabilized and are applied to the device. After this has happened the core remains
in the wait state until it receives an interrupt.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RECPTR FASTREC

0

W

Reset 1 0 0

Figure 8. Reset Recovery Pointer (CRP_RECPTR)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor12

Wakeup Sources
Some important things while exiting stop are:
• Even though power is not gated in stop mode, the flash is disabled to reduce leakage in the control

circuits. This means that any ISR (interrupt service routine) must reside in RAM to enable
immediate execution. Additionally, the flash must not be accessed until it has stabilized (around
70 μs).

• Unlike sleep mode where the user must release the state of the pads manually, the I/O states out of
stop mode are automatically released by hardware.

• Fast recovery is not available from stop mode.

8 Wakeup Sources
As discussed previously, there are four ways to wake the device from stop or sleep mode:

• RTC counter match
• RTC counter rollover
• API counter match
• External pin transition (positive, negative, or edge)

8.1 Low Power Timer Wakeups
The RTC counter match, RTC counter rollover, and API counter match wakeup sources are all related to
the low power timer system on the MPC5510.
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 13

Wakeup Sources
Figure 9. RTC Block Diagram

As can be seen in Figure 9, the RTC and the API share a common 32-bit, free-running counter. The counter
clock source is selectable from the 16 MHz IRC, 32 kHz IRC, or 32 kHz OSC. There is a fixed 32-bit
divide going into the counter that provides a 1 ms resolution for the 32 kHz sources. The 16 MHz IRC is
another source, and this can be the full 16 MHz or passed through a fixed divide-by-512 counter. This fixed
divider again provides a 1 ms resolution on the 32-bit counter. This 1 ms resolution provides up to 1.5
months time period.

In choosing to use the RTC or the API, the user needs to trade off the length of time the timer may have to
wait before wakeup against resolution:

• The RTC system with its 12-bit compare gives a 1 s to 1 hour timeout with a 1 s resolution.
• The API system with a 10-bit compare supports wakeup intervals 1 ms to 1 s.

The compare values of these timers can be changed while they are running although clearly if the part is
in LPM, there is no mechanism to achieve this.

+
9–0

Offset RegAPIEN
Reset

9–0

APIVAL

RTCCNT

sync

sync

APIF

APIE
API
Interrupt

32-bit counterDiv 32Div
512 0

1
2

316 MHz IRC

32 kHz OSC
32 kHz IRC

C
LK

S
E

L

C
E

N
T

E
N

reset

Sync

ROVRF

ROVREN

21–10

RTCVAL

Sync

RTCF
RTCIE RTC interrupt

RTC wakeup
RTC rollover
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor14

Wakeup Sources
There are separate fields within the RTC status and control register (CRP_RTCSC) to control the operation
and parameters for the RTC and API systems. The clock source select bits and initial values are all
assignable as is the rollover enable for the RTC and the individual enable bits for the counters. Bits are
available to enable interrupts for each of the mechanisms as well as flag bits that are set if an event occurs.

For these mechanisms to wake the device from LPM they must be both enabled and assigned as a wakeup
source.

8.1.1 RTC/API Clock Source

In sleep and stop modes, most clocks are stopped. However, there always has to be a reference clock
running to feed the RTC/API counter to enable wakeups. If the RTC or API is not configured as a wakeup
source, and the only wakeup source is on an external pin transition, there must still be one of the internal
clocks running to latch the pin transition. In short, in LPM the user must always have a clock running.

There are three choices of clocks to drive the low power circuitry in LPM. The clock choice is made in the
CLKSEL bits (19–20) of the CRP_RTCSC register as shown above.

• 16 MHz IRC: CLKSEL = 10
• 32 kHz IRC: CLKSEL = 00
• 32 kHz XOSC: CLKSEL = 01

The choice again comes down to a trade-off between accuracy, power, and recovery time.

The lowest power option is the 32 kHz IRC that consumes around only 1 μA. The disadvantage is that the
clock is accurate to around only 10% deviation. If a pin transition occurs immediately after a clock edge,
the edge won’t be latched and acted upon until the next clock edge. At 32 kHz, the clock is over 30 μs.
That may not be a problem in most applications.

The next lowest power option is using the 32 kHz external oscillator facility. This option consumes around
3 μA of current but requires the addition of a 32 kHz crystal. The advantage is that this is a much more
accurate clock than the internal IRC and could potentially be used to track “time of day.”

The 16 MHz IRC is the most accurate internal clock available (<5%), consuming a higher current of
160 μA. This is always used as the default system clock from low power mode, hence allowing near
instantaneous recovery. This capability allows registers, modules, etc., to be configured while waiting for
the external crystal to stabilize. Alternatively, it supports rapid code execution during short run cycles,
enabling the device to return to an LPM much more quickly.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CNTEN RTCIE RTCF ROVRF RTCVAL[0:11]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APIEN APIIE APIF CLKSEL[0:1] ROVREN APIVAL[0:9]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10. RTC Status and Control Register (CRP_RTCSC)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 15

Wakeup Sources
8.2 External Pin Wakeup
It is possible to assign up to eight pins (from a possible total of 64) to wake the part from LPM should a
transition occur at the specified pin.

Each of the eight pins are assigned in the wakeup pin source select (CRP_WKPINSEL) register from the
total group of 64. A partial list of the possible wakeup sources is shown below.

For example, if the user requires PG11 to be assigned as a wakeup pin, they write b0111 to bits 28–31 of
the CRP_WKPINSEL register. Again, as with the timers, the user must first assign and then enable.
Selecting the sources as above simply determines which pins are to be assigned if the wakeup function for
the pins is in fact enabled.

8.3 Wakeup Source Enable
Up until this point, we have configured and assigned potential wakeup sources.

Sources are disabled by default and are only finally enabled as wakeup sources in the wakeup source
enable (CRP_WKSE) register shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 WKPSEL
7

0 WKPSEL
6

0 WKPSEL
5

0 WKPSEL
4

0 WKPSEL
3

0 WKPSEL
2

0 WKPSEL
1

0 WKPSEL
0W

Reset 0

Figure 11. Wakeup Pin Source Select Register (CRP_WKPINSEL)

Table 3. Wakeup Source Selects

111 110 101 100 011 010 001 000 1xxx

WKPSEL0 PG11 PD15 PD10 PD0 PC2 PB13 PA4 PA0 Reserved

WKPSEL1 PJ12 PG15 PD14 PD13 PC4 PB15 PA5 PA1 Reserved

WKPSEL2 PF10 PD6 PD1 PC0 PB8 PB5 PA6 PA2 Reserved

WKPSEL3 PG6 PD8 PD7 PC5 PC1 PB14 PB10 PA3 Reserved

WKPSEL4 PH5 PH4 PG12 PG5 PD12 PD5 PB9 PB6 Reserved

WKPSEL5 PH8 PH7 PG10 PF12 PE2 PD2 PB7 PA7 Reserved

WKPSEL6 PH9 PG13 PG7 PF14 PF13 PD9 PD3 PC6 Reserved

WKPSEL7 PH6 PG14 PG9 PF15 PF11 PD11 PD4 PB12 Reserved
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor16

Wakeup Sources
The RTCOVREN, APIWKEN, and RTCWKEN bits enable the RTC rollover, API, and RTC match
wakeups, respectively.

Each of the wakeup pins is enabled in the 2-bit WKPDETx fields:
• 00 — Disables the pin as a wakeup source
• 01 — Enables the pin to wake the part on a positive edge
• 01 — Enables the pin to wake the part on a negative edge
• 11 — Enables the pin to wake the part on any edge

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WKPDET7 WKPDET6 WKPDET5 WKPDET4 WKPDET3 WKPDET2 WKPDET1 WKPDET0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 RTCOVR
EN

RTCWK
EN

APIWK
EN

0 0 0 0 0 0 0 WKCLK
SELW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12. Wakeup Source Enable Register (CRP_WKSE)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 17

Conserving Run Time Power
8.4 Wakeup Source Determination
After a wakeup event takes place, assuming that more than one wakeup source was enabled, user software
can quickly determine what the source of the wakeup event was by reading the wakeup flags in the power
status and control register (CRP_PSCR).

Bits 5, 6, and 7 indicate which of the RTC and API match and RTC rollover was responsible for the exit
from LPM. Bits 8–15 indicate which of the eight possible wakeup pins was responsible for the LPM exit.

9 Conserving Run Time Power
There are various ways to slow down or turn off clocks on the MPC5510 family to various modules or
groups of modules. Because dynamic run current is a direct result of clocking gates (capacitive charging
and discharging), anything that can be done to eliminate unneeded clocking or slow down clocks has a
dramatic effect on current. For example, slowing a clock to a group of gates (module) down to half
frequency reduces the dynamic current by half.

9.1 Disabling Modules
The simplest way to conserve run power is to disable any unused modules on the device. All modules are
disabled by default, so rather than disabling unused modules, the user must simply not enable them.

Each module on the MPC5510 family contains an MDIS bit within its control register structure. The MDIS
bit is disabled by default. This default state means clocking is disabled to the non-memory-mapped
portions of the module. The memory-mapped portions, such as control registers, related to the module
operation continue to be accessible.

If a module is enabled and functioning but unlikely to be used for a significant period of time, the user
software may choose to disable the module temporarily. To achieve this, the user could simply clear the
MDIS bit within the module.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
LE

E
P

F

S
TO

P
F

0 0 0

W
K

R
LL

O
V

R
F

W
K

A
P

IF

W
K

R
T

C
F PWKSRCF[0:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SLEEP STOP

0 0

S
LP

12
E

N

RAMSEL[0:2] PWKSRIE[0:7]W
PKREL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13. Power Status and Control Register (CRP_PSCR)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor18

Conserving Run Time Power
This action however, has the effect of immediately stopping the clocks to the module. This is not
necessarily a good thing to happen because the user has no visibility as to what was happening when the
module suddenly stopped.

For instance, if a DSPI is transmitting data and the clocks stopped to the module, the data is not
transmitted. In short, setting the MDIS bit to stop a module is a very clumsy solution. This type of action
is typically used where there is a more urgent requirement to stop all activity instantaneously.

9.1.1 Halt

A much better way of disabling an unused module is to use the halt function. In this way, system clock
gating is forced via the centralized halt mechanism. The SIU_HLT register’s bits corresponding to
individual modules are configured to determine which modules are clock gated.

The HLT bits are used to drive the stop inputs to the modules. After the module completes a clean
shutdown, the module asserts the stop acknowledge handshake. The stop acknowledge is visible in the
SIU_HLTACK read-only register bits. The modules are individually controlled and halted.

This mechanism is described in more detail in Section 6, “Low Power Entry.”

9.2 Slowing Down Clocks

9.2.1 System Clock

The system clock on the MPC5510 family has clock dividers present that can be programmed to create a
system clock from the selected clock source divided by one, two, four, or eight. This feature can be used
if a system is going into a period where the full performance of the device may not be fully necessary. The
divider is set in the SYSCLKDIV bits within the SIU system clock register.

• 00 = Div 1
• 01 = Div 2
• 10 = Div 4
• 11 = Div 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYSCLKSEL SYSCLKDIV

SWT
CLK
SEL

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LPCLKDIV7 LPCLKDIV6 LPCLKDIV5 LPCLKDIV4 LPCLKDIV3 LPCLKDIV2 LPCLKDIV1 LPCLKDIV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14. System Clock Register (SIU_SYSCLK)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 19

Conserving Run Time Power
9.2.2 Peripheral Clocks

Peripheral clock dividers on the MPC5510 family provide a mechanism to reduce run current when it is
not necessary to run the peripherals at the full system clock frequency.

Each peripheral on the device does not have its own divider to divide down the system clock. The
peripherals are grouped together in predefined sets and share a common divider. Within the SIU_SYSCLK
register (above), the LPCLKDIVx bits control the clock divide value for each specific group of modules.
Table 4 shows how the groups are defined.

For example, if a user wishes to run group 1 (ESCI_A, IIC_A, PIT_RTI) at one fourth of the system clock
frequency, they write 10 to bits 28 and 29 of SIU_SYSCLK register.

Aspects that need to be considered by the user when scaling down clocks to a group of modules include:
• Adjusting the module function, prescalers or protocol timings that may be affected by the reduction

in module frequency
• Register accesses within the module is proportionally longer
• Other functions such as DMA and interrupts

9.3 System Clock Choice
There are three possible clock sources available for use as the main system clock on the MPC5510 family:

• 16 MHz IRC
• PLL
• XOSC

Essentially, the choice of clock source is a trade off between performance, accuracy, and power.

The choice of system clock is made in the SIU_SYSCLK register (shown above) by writing the
SYSCLKSEL bits.

• 00 selects the internal 16 MHz IRC as the clock source, which is also the default system clock
source out of reset. It has a frequency deviation of ≤ 5% and consumes around 160 μA of current.

Table 4. LPCLKDIV Module Groups

LPCLKDIV (n) Modules

0 FlexCAN_A DSPI_A

1 ESCI_A
IIC_A

PIT_RTI

2 FlexCAN_B-F

3 DSPI_B-C

4 ESCI_B-H

5 eMIOS

6 Reserved

7 Reserved
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor20

Use Cases
• 01 selects XOSC to be the system clock source. If this is selected, the system is clocked by the
external clock source provided at the EXTAL pin (PLL bypass mode) or a crystal clock reference
attached to the XTAL and EXTAL pins. A frequency of between 4 and 40 MHz must be used as a
reference. The exact consumption varies. It depends on the crystal type used but is typically in the
500 μA range.

• 10 selects the PLL as the system clock. The PLL reference can be an external crystal or an external
clock source. The PLL consumes between 1 mA to 3 mA depending on the frequency. A reference
of between 4 and 40 MHz must be provided. The PLL must be used to run the part at frequencies
above 40 MHz.

10 Use Cases
With the low power flexibility offered by the MPC55xx range, the user is able to select from a number of
different scenarios to optimize their particular system. The following use cases have been documented as
potential implementations of a variety of application scenarios:

• Periodically use eMIOS to control a PWM function
• Periodically measure three analog inputs (fast sensors)
• Periodically measure three analog inputs (slow sensors)
• Full O/S constantly available and achieve lowest possible power
• Execute full O/S periodically
• Periodically trigger an external watchdog communication
• Periodically trigger LIN communication
• Intermittently wakeup in response to CAN activity

Each use case must be taken as an example approach only. The ideal solution may well be a combination
of several use cases.

The relevant sheets are attached for a convenient reference. However, please check the latest MPC5516
data book before arriving at any final conclusions.

10.1 Use Case Solutions
The following application guidelines is assumed in all use cases, unless explicitly stated otherwise:

• Clock only single core and hold second core in reset
• Leave all other modules in default disabled and non-clocked state

10.2 Use Case Factors and Assumptions
The following assumptions are made in all use cases, unless explicitly stated otherwise:

• 20 μs Vreg recovery time
• 10 μs Vreg shutdown time
• Ambient temperature full run current consumed during the regulator startup and shutdown phases
• Current consumption figures taken from MPC5516 data book, rev 0.1
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 21

Use Cases
NOTE
All use cases assume that full run current is consumed at the instant that the
regulator is switched on. In fact this is not the case, because the majority of
the device is power-gated off until the regulator has stabilized.

10.3 List of Use Cases

10.3.1 Use Case 1: Periodically Use eMIOS to Control a PWM Function

Scenario:
• Periodically use eMIOS to control a PWM function
• Timing of PWM not critical (for example a lighting application)
• PWM function active for approximately 80 μs in every 10 ms

Potential solution:
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 10 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for this example
• Execute limited code from RAM at 16 MHz bus speed
• Clock eMIOS from 16 MHz IRC

Factors:
• 80 μs execution time (includes PWM initialization and operation)

Assumptions:
• Accuracy of PWM activity not critical

Figure 15. Use Case 1

Average current consumption calculations (based on above duty cycle):

25
20
15
10
5

Run from RAM,
16IRC+eMIOS
(config & I/O)

20μs 100
μs

110μs 9890μs
10ms

40μA

23mA

18mA Run Current range

Run from RAM,
16IRC+eMIOS
(config & I/O)

Sleep Current (8KRAM, 32KHIRC, API)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor22

Use Cases
MIN: Iave = (40*9890 + 18000*110)/10000 = 238 μA

MAX: Iave = (40*9890 + 23000*110)/10000 = 293 μA

10.3.2 Use Case 2: Periodically Measure Three Analog Inputs (Fast
Sensors)

Scenario:

Periodically:
• Measure three analog inputs using ADC (for example, temperature sensors)
• Check the state of five port inputs
• Perform these checks every 10 ms
• Only continue full power-up if values breech pre-defined conditions
• Timing and absolute accuracy of initial measurements not critical

Potential solution:
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 10 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for this example
• Execute limited code from RAM at 16 MHz bus speed
• Clock ADC from 16 MHz IRC
• Run conversions in ADC fast mode (leave ADC bypass Vcap off)
• Read I/O lines during ADC conversion period
• Return to sleep unless pre-defined conditions exceeded

Factors:
• 10 μs execution time (includes ADC settling and measurement of three inputs)

Assumptions:
• Sensors instantly available for reading (see use case 3 for slower sensor availability)

Diagram:
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 23

Use Cases
Figure 16. Use Case 2

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (40*9960 + 18000*40)/10000 = 111 μA

MAX: Iave = (40*9960 + 23000*40)/10000 = 132 μA

10.3.3 Use Case 3a: Periodically Measure Three Analog Inputs (Slow
Sensors — Solution 1)

Scenario:
• Identical to use case 2, except that the sensors are slower to provide a stable reading
• Periodically:

— Measure three analog inputs and check values (for example, temperature sensors)
— Check the state of five port inputs and check values
— Only continue full power-up if values breech pre-defined conditions

• Timing and absolute accuracy of initial measurements not critical
• ADC function active for approximately 9 μs (3 μs per conversion) in every 10 ms

Potential solution:
• Use sleep -> run -> sleep -> run approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 10 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for this example application (for example,

temperature monitoring)
• Execute limited code from RAM at 16 MHz bus speed
• Set the I/O state to enable/power the external temperature sensors
• Set the API to wake the device after the sensors have stabilized (example 2 ms)
• Return to sleep—the external I/O states is automatically latched and continues to be driven

25
20
15
10
5

40μs 9960μs
10ms

40μA

23mA

18mA Run Current range

Sleep Current (8KRAM, 32KHIRC, API)

Run
from
RAM

20μs 10μs 10μs

Run
from
RAM

20μs 10μs 10μs
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor24

Use Cases
• Recover again from sleep into run (via the API) after the sensors have stabilized
• Clock ADC from 16 MHz IRC
• Run conversions in ADC fast mode (leave ADC bypass Vcap off)
• Read all required I/O lines during ADC conversion period
• Shut down sensor
• Return to sleep unless pre-defined conditions exceeded

Factors:
• 10 μs execution time (includes ADC settling and measurement of three inputs)

Assumptions:
• Sensors not instantly available for reading (see use case two for faster sensor availability)
• Sensor settling time of 2 ms

Diagram:

Figure 17. Use Case 3a

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (40*9929 + 18000*71)/10000 = 168 μA

MAX: Iave = (40*9929 + 23000*71)/10000 = 203 μA

10.3.4 Use Case 3b: Periodically Measure Three Analog Inputs (Slow
Sensors — Solution 2)

Scenario:
• As per use case 3a

Potential solution:
• The solution to 3b is identical, except the stop state is used instead of sleep during the sensor

stabilization period
• Use sleep -> run -> stop -> run approach
• Return to sleep unless pre-defined conditions exceeded

25
20
15
10
5

31μs 2ms
10ms

40μA

23mA

18mA Run Current range

Sleep Current
(8KRAM, 32KHIRC, API)

Run
from

RAM &
enable
sensor

20μs 1μs 10μs

40μs

Run
from

RAM &
read

sensor
20μs 10μs 10μs

Run
from

RAM &
enable
sensor

20μs 1μs 10μs

31μs
7929μs

Sleep Current
(8KRAM, 32KHIRC, API)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 25

Use Cases
Factors:
• 20 μs Vreg recovery time
• 10 μs Vreg shutdown time
• 10 μs execution time (includes ADC settling and measurement of three inputs)

Assumptions:
• Sensors not instantly available for reading (see use case two for faster sensor availability)
• Sensor settling time of 2 ms

Diagram:

Figure 18. Use Case 3b

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (40*7929 + 18000*71 + 2000*300)/10000 = 220 μA

MAX: Iave = (40*9929 + 23000*71 + 2000*300)/10000 = 263 μA

10.3.5 Use Case 4: Full O/S Constantly Available and Achieve Lowest
Possible Power

Scenario:
• Full O/S constantly available, while achieving lowest possible power
• Maintain full core context at all times
• Not required to always execute code operation

Potential solution:
• Use stop -> run -> stop approach
• Use stop and automatically retain all RAM
• All modules and full device context retained during stop
• Transition between run -> stop modes still requires regulator time delays (stop mode regulator

smaller than run regulator)
• Use 16 MHz XOSC for code execution, maintain XOSC operation in stop

25
20
15
10
5

31μs 2ms
10ms

40μA

23mA

18mA Run Current range

Run
from

RAM &
enable
sensor

20μs 1μs 10μs

40μs

Run
from

RAM &
read

sensor
20μs 10μs 10μs

Run
from

RAM &
enable
sensor

20μs 1μs 10μs

31μs
7929μs

Sleep Current
(8KRAM, 32KHIRC, API)

300μ
STOP Current
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor26

Use Cases
• Execute full code from flash at 16 MHz bus speed
• Only enable and clock modules required by application
• Leave all other modules in default disabled and non-clocked state

Factors:
• 10 ms execution time (allowing 10 ticks on a 1 ms tick operating system)
• 90 ms non-execution time (in stop)

Assumptions:
• Ignore regulator switching time in this example (swamped by OS)

Diagram:

Figure 19. Use Case 4

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (300*90 + 18000*10)/100 = 2070 μA

MAX: Iave = (300*90 + 23000*10)/100 = 2570 μA

10.3.6 Use Case 5: Execute Full O/S Periodically

Scenario:
• Execute full O/S periodically and achieve lowest possible power
• Not required to always maintain full core context
• Not required to always execute code operation

Potential solution:
• Use sleep -> run -> sleep approach
• Perform full context save of MCU and registers before entering sleep
• Perform full context restore of MCU and registers while exiting sleep
• Select appropriate amount of RAM required in sleep
• Consider copying relevant OS sections into RAM to facilitate faster recovery/execution

25
20
15
10
5

10ms 90ms
100ms

300μ

23mA

18mA Run Current range

STOP Current

Run from
Flash

Run from
Flash

10ms
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 27

Use Cases
Factors:
• 10 ms execution time (allowing 10 ticks on a 1 ms tick operating system)
• 90 ms non-execution time (in sleep)

Assumptions:
• Ignore regulator switching time in this example (swamped by OS)
• Full context save takes < 1 ms for > 10,000 instructions @ 16 MHz
• Full context restore takes approximately 0.75 ms for > 10,000 instructions @ 16 MHz bus speed
• >10,000 instructions assumes that all registers, peripherals, CAN message buffers, etc., are being

stored—clearly the actual amount stored/restored is application dependent

Diagram:

Figure 20. Use Case 5

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (60*90 + 18000*10)/100 = 1854 μA

MAX: Iave = (60*90 + 23000*10)/100 = 2354 μA

10.3.7 Use Case 6: Periodically Trigger an External Watchdog
Communication

Scenario:
• Periodically use API to trigger an external watchdog communication
• During wakeup event also sample various pins
• MCU is SPI master; external watchdog is SPI slave
• Timing of SPI allows internal 16 MHz IRC to be used
• SPI communication active for approximately 40 μs
• Initialization and I/O reading active for approximately 80 μs
• Watchdog needs to be accessed every 500 ms

Potential solution:

25
20
15
10
5

10ms 90ms
100ms

60μA

23mA

18mA Run Current range

Sleep Current (32KRAM, 32KHIRC, API)

Run
from
Flash

Run
from
Flash

10ms
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor28

Use Cases
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 500 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for this example
• Execute limited code from RAM at 16 MHz bus speed
• Clock SPI from 16 MHz IRC

Factors:
• 120 μs execution time (includes pin sampling, SPI initialization, and operation)

Assumptions:
• Accuracy of SPI activity not critical

Diagram:

Figure 21. Use Case 6

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (40*499850 + 18000*150)/500000 = 45 μA

MAX: Iave = (40*499850 + 23000*150)/500000 = 47 μA

10.3.8 Use Case 7a: Periodically Trigger LIN Communication (Solution 1)

Scenario:
• Periodically use API to trigger LIN communication
• During wakeup event also sample various pins
• MCU is LIN master
• LIN communication requires < 0.5% clock tolerance, hence use XOSC
• Five LIN frames, each eight bytes in length, transmitted at 19,200 baud
• Total LIN communication is 45 ms (assumes 9 ms per frame with no additional wait/break

conditions)

25
20
15
10
5

Run from RAM,
16IRC+SPI

(config & I/O)

20μs 140
μs

150μs 499850μs
500ms

40μA

23mA

18mA Run Current range

Run from RAM,
16IRC+SPI

(config & I/O)

Sleep Current (8KRAM, 32KHIRC, API)
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 29

Use Cases
• Initialization and I/O reading active for approximately 80 μs
• LIN communication required every 500 ms (for example, reading alarm status)

Potential solution:
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 500 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for executing initialization code
• Start the XOSC
• Execute code from flash at 16 MHz bus speed
• Clock SCI from XOSC when stable

Factors:
• 120 μs XOSC stabilization time

Assumptions:
• Initialization / I/O reading / Regulator stabilization is ignored in this use case (negligible)

Diagram:

Figure 22. Use Case 7a

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (60*455 + 18000*45)/500 = 1674 μA

MAX: Iave = (60*455 + 23000*45)/500 = 2125 μA

10.3.9 Use Case 7b: Periodically Trigger LIN Communication (Solution 2)

Scenario:
• As per use case 7a, except that more low power intelligence used during the LIN communication

25
20
15
10
5

45ms 455ms
500ms

60μA

23mA

18mA Run Current range

Sleep Current (32KRAM, 32KHIRC, API)

Run from Flash
& transmit 5 LIN

frames

45ms

Run from Flash
& transmit 5 LIN

frames
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor30

Use Cases
• As before, five LIN frames, each eight bytes in length, transmitted at 19,200 baud
• Total LIN communication remains at 45 ms (assumes 9 ms per frame with no additional wait/break

conditions)
• LIN communication required every 500 ms (for example, reading alarm system status)

Potential solution:
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Use API to wake periodically every 500 ms and transition into run
• Clock the API with the on-chip 32 kHz IRC (very-low-power IRC)
• Use 16 MHz IRC for fast execution, accurate enough for executing initialization code
• Start the XOSC
• Execute code from flash at 16 MHz bus speed
• Set up DMA to transmit five LIN frames
• Set LIN / DMA mode on the SCI to support the automatic transmission/reception of frames
• Configure data to be transmitted
• Configure a second DMA channel for data reception
• Clock system clock (and hence peripherals) from XOSC while stable
• Use clock divider chain to reduce SCI clock speed
• Execute wait mode on main core during LIN communication (rely on autonomous actions of

DMA/SCI)

Factors:
• 120 μs XOSC stabilization time

Assumptions:
• Initialization / I/O reading / regulator stabilization is ignored in this use case (negligible)

Diagram:

Figure 23. Use Case 7b

25
20
15
10

5

45ms 454.94ms
500ms

60μA

23mA

18mA Run Current range

Sleep Current (32KRAM, 32KHIRC, API)

45ms

Init
DMA /
SCI

Flash
10mA Wait Core, tx / rx LIN

frames using DMA

Move /
check
data,

back to
Sleep

50μs 10μs

Init
DMA /
SCI

Flash
Wait Core, tx / rx LIN
frames using DMA

Move /
check
data,

back to
Sleep

10μs 50μs
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 31

Use Cases
<<<get new copy of figure from authors>>>

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (60*454.94 + 18000*0.060 + 10000*45)/500 = 957 μA

MAX: Iave = (60*454.94 + 23000*0.060 + 10000*45)/500 = 957 μA

10.3.10 Use Case 8: Intermittently Wake in Response to CAN Activity

Scenario:
• Intermittently wake in response to CAN activity
• Assume CAN wakeup once in 500 ms for average calculation
• Three standard message CAN frames, each containing eight data bytes, transmitted at 125 Kbps
• Acceptable to miss first message (though must wake)
• Capture second and third CAN messages
• CAN communication requires < 0.5% clock tolerance, hence use XOSC
• Total CAN communication is 2.5872 ms (assumes 3x0.86 ms frames plus 3x24 μs 3-bit interframe

space)

Potential solution:
• Use sleep -> run -> sleep approach
• Use sleep and retain 8K of RAM
• Set CAN Rx line as input wakeup pin
• Use 16 MHz IRC for fast execution, accurate enough for executing initialization code (including

CAN module initialization)
• Start the XOSC
• Execute code from flash at 16 MHz bus speed
• Clock CAN from XOSC when stable

Factors:
• 120 μs XOSC stabilization time

Assumptions:
• During first CAN message wakeup, start XOSC, initialize CAN module

Diagram:
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor32

Use Cases
Figure 24. Use Case 8

Average current consumption calculations (based on above duty cycle):

MIN: Iave = (60*497.42 + 18000*2.58)/500 = 152.57 μA

MAX: Iave = (60*497.42 + 23000*2.58)/500 = 178.37 μA

10.4 Use Case Analysis
In use case 1 and use case 2 it has been assumed that the full run current is consumed during the regulator
startup and shutdown phases. In fact this is not the case, because the majority of the device is power-gated
off until the regulator has stabilized. This factor must be considered while trying to optimize the choice of
solution.

Use case 3a differs from case 2 only in that the external temperature sensor takes a predefined time to
settle. Hence the suggested strategy is to first of all recover from sleep, quickly power the sensor, and then
return to sleep while waiting for the sensor to stabilize. This is possible because during sleep the I/O states
continue to be driven.

After the predetermined settling period, use the API to again wake the device, but this time the sensors are
ready for reading. The alternative is to transition into stop, which is illustrated in use case 3b. Arguably a
simpler implementation, but the average current consumption increases by approximately 30%. This could
be significant in some applications with an aggressive power budget.

The final ideal solution depends on the settling time of the sensors.

Use case 4 (stop–run–stop) appears to be preferable to use case 5 (sleep–run–sleep), because there is little
additional current and it is a simpler environment.

However, if the duty cycle changes to 10 ms run, 990 ms stop/sleep, then the preference might also change:

Use case 4 with 10 ms / 990 ms duty cycle:

MIN: Iave = (300*990 + 18000*10)/1000 = 477 μA

MAX: Iave = (300*990 + 23000*10)/1000 = 527 μA

25
20
15
10
5

2.5872ms 497.4128ms
500ms

60μA

23mA

18mA Run Current range

Sleep Current (32KRAM, 32KHIRC, API)

Miss 1st CAN

frame
Run from RAM,
init CAN, start

XOSC

0.8624ms

Run from
Flash &

capture 2
CAN frames

1.724ms

2.5872ms

0.8624ms

Run from
Flash &

capture 2
CAN frames

1.724ms

Miss 1st CAN
frame

Run from RAM,
init CAN, start

XOSC
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 33

Use Cases
Use case 5 with 10 ms / 990 ms duty cycle:

MIN: Iave = (60*990 + 18000*10)/1000 = 240 μA

MAX: Iave = (60*990 + 23000*10)/1000 = 290 μA

With this duty cycle clearly the potential reductions to be made are much more significant, because the
average consumption can almost be halved. Hence in this example the user might decide to opt for the
added complexity of the store/restore approach, but gain a significant current improvement.

In use case 5 it is indicated that over 10,000 instructions are required to perform the store/restore function.
This assumes that all registers, peripherals, CAN message buffers, etc., are being stored. The actual
amount stored/restored is application-dependent, and the system must be partitioned accordingly during
design.

If the most appropriate design is used, then this allows only the necessary core context, peripherals, data
structures, etc., to be stored/restored, hence reducing the time taken and the capacity needed to perform
the action.
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor34

Low Power Entry Sleep
Appendix A Low Power Entry Sleep

Disable DMA

Disable FlexRay

Complete flash program/
erase operations

Halt Ack
No

Halt all modules

 All

cleared?

Set up low power exit

Copy wakeup routine into RAM

Configure wakeup source(s)

Ensure VPP static low

Select stop mode

Set Z0RST or Z1RST

Set RAMSEL bits

Set Z0VEC and Z1VEC

Set I/O pullups / pulldowns

Execute wait instruction on Z0/Z1

Select 16 MHz
IRC as System

All flash write/erase access must be completed
before entering sleep

Clean up DMA activity, then disable and check

Clean up FlexRay queue, then disable and check

Write HALT bits to all modules in SIU_HLT register

Verify all HLT_FLG bits are clear before proceeding

IRC is lowest consumption system clock source —
can also be allowed to operate in sleep
(Main XOSC will automatically be disabled in sleep)

Wakeup routine must be in RAM
because flash is disabled in sleep

Set up RTC / API for timed periodic recovery
and / or select wakeup pins

Force VPP low externally for lowest current consumption

Select stop mode via CRP_PSCR
No effect until WAIT instruction executed

Select amount of RAM required to be retained in sleep
mode (either 8K, 16K, 32K, 64K, or 80K)

Point core vector(s) to recovery routines

If one core not being used for sleep recovery then hold in reset

Pull down where possible for lowest current consumption

Last user-controlled operation — device now enters sleep

Select 16 MHz IRC as system

controls power down and
recovery sequence

CRP module automatically
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 35

Low Power Entry Stop
Appendix B Low Power Entry Stop

Disable DMA

Disable FlexRay

Complete flash program/
erase operations

Halt AckNo

Halt all modules

 All

cleared?

Set up low power exit

Copy wakeup routine into RAM

Configure wakeup source(s)

Ensure VPP static low

Select stop mode

Set Z0RST or Z1RST

Set Z0VEC and Z1VEC

Set I/O pullups/pulldowns

Execute wait instruction on Z0/Z1

Stop low
power entry

All flash write/erase access must be completed
before entering sleep

Clean up DMA activity, then disable and check

Clean up FlexRay queue, then disable and check

Write HALT bits to all modules in SIU_HLT register

Verify all HLT_FLG bits are clear before proceeding

IRC is lowest consumption system clock source —
can also be allowed to operate in sleep

Main XOSC can be allowed to continue running

Set up RTC/API for timed periodic recovery
and/or select wakeup pins

Force VPP low externally for lowest current consumption

Select amount of RAM required to be retained in sleep
mode (either 8K, 16K, 32K, 64K, or 80K)

Point core vector(s) to recovery routines

If one core not being used for stop recovery then hold in reset

Pull down where possible for lowest current consumption

Last user-controlled operation — device now enters stop

Select 16 MHz IRC as system

controls power down and
recovery sequence

CRP module automatically

Optionally disable main XOSC

Disable PLL

in stop (set XOSCENSTOP bit)

PLL cannot run in stop

Flash powered down in stop, so still necessary to place
recovery routine in RAM
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor36

MPC5516 Electrical Reference Data
Appendix C MPC5516 Electrical Reference Data

Ref Characteristic Symbol
Typical1

@25°C
Ambient

Typical
@70°C

Ambient

Max
–40°C to

150°C
Junction

Unit

Equations
ITotal = IDDE + IPP + IDDA + IDDR
IDDE = IDDE1 + IDDE2 + IDDE3
IDDR = IDD33 + IDDSYN + IFlash + IDDF + IDD

1

VDDE(1,2,3) Current
VDDE(1,2,3) @ 3.0 V–5.5 V

IDDE
Static2

Dynamic3
1

Note3
3

Note3
30

Note3
μA
mA

2

VPP Current

IPP

VPP @ 0 V 1 1 1 μA

VPP @ 5.25 V

Sleep Mode
Stop Mode
Standby, Read
Program/Erase
RWW

15
15
1
3
5

20
20
1
3
5

30
30
2
3
5

μA
μA
mA
mA
mA

3

VDDA Current
VDDA @ 4.5 V–5.25 V

IDDA

Sleep Mode, Stop Mode
Run Mode4

11
1

15
1

25
2

μA
mA

Optional: 32KIRC
Optional: 32KOSC
Optional: 16MIRC (Sleep/Stop Modes)
Optional: ADC Active (Run Mode)

1
1

100
5

1
1

150
5

1
3

200
6

μA
μA
μA
mA

4

VDD33 Current
VDD33 @ 3.0 V–3.6 V5

IDD33
Static1

Dynamic3
1

Note3
1

Note3
1

Note3
μA
mA

5

VDDSYN Current
VDDSYN @ 3.0 V–3.6 V5

IDDSYN

Sleep Mode, Stop Mode
Run Mode6

1
1

5
5

20
20

μA
μA

Optional: XOSC (Sleep and Stop Modes)
Optional: XOSC (Run Mode)
Optional: PLL (Run Mode)

500
0.8
3

600
2
5

900
3
6

μA
mA
mA
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 37

MPC5516 Electrical Reference Data
6

VFlash Current
VFlash @ 3.0 V–3.6 V5

IFlash

Sleep Mode
Stop Mode
Standby
Read
Program/Erase
RWW

1
1
1
1
1
1

10
10
1
1
1
1

50
50
2
2
2
2

μA
μA
mA
mA
mA
mA

7

VDDF Current
VDDF @ 1.35 V–1.65 V5

IDDF

Sleep Mode
Stop Mode
Standby
Read
Program/Erase
RWW

1
1
1
1
1
1

1
1
1
1
1
1

50
50
2
2
2
2

μA
μA
mA
mA
mA
mA

8

VDD Current
VDD @ 1.35 V–1.65 V5

IDD

Sleep Mode
Stop Mode
Run Mode (Static)
Run Mode (Maximum @ 16 MHz)
Run Mode (Maximum @ 66 MHz)

15
300
10
35

100

30
600
15
40
110

120
2000
20
45

120

μA
μA
mA
mA
mA

Optional: RTC/API
Optional: Each 8K RAM Block (Sleep Mode)

1
0.8

1
7

3
45

μA
μA

1 Typical — nominal voltage levels and functional activity. Max — maximum voltage levels and functional activity.
2 Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not

toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads.
3 Dynamic current from pins is application specific and depends on active pull devices, switching outputs, output capacitive

loads, output current loads, and switching inputs. Refer to MPC5510 Microcontroller Family Data Sheet for more information.
4 16MIRC optionally disabled in sleep and stop modes, always active in run mode. 32KIRC and 32KOSC optionally

enabled/disabled independent of mode. ADC always disabled in sleep and stop modes, optionally enabled in run mode. Base
sleep and stop modes assume 16MIRC, 32KIRC, and 32KOSC are disabled. Base run mode assumes 32KIRC, 32KOSC, and
ADC are disabled.

5 Voltage generated from internal regulator.
6 XOSC optionally enabled in sleep and stop modes (oscillator remains running from crystal but XOSC clock output disabled);

XOSC optionally enabled in run mode. PLL only optionally enabled in run mode. Base sleep and stop modes assume XOSC
is disabled. Base run mode assumes XOSC and PLL are disabled.

Ref Characteristic Symbol
Typical1

@25°C
Ambient

Typical
@70°C

Ambient

Max
–40°C to

150°C
Junction

Unit
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor38

Example Code
Appendix D Example Code

/***/
/* Code to enter and exit Low Power Modes. */
/***/

#include "mpc5516.h"
#include "typedefs.h"

#define PULL_DOWN0
#define LPM_SLEEP0

extern execute_wait(void); /* defined in execute_wait.s */
extern sleep_recovery(void); /* " */
extern void _start(void); /* defined in z1_crt0.s */

void enter_low_power_mode(uint32_t LPM);
void Enable_all_internal_pull_devices (uint32_t pull_select);
void wake_up(void);
void release_padkeepers(void);
void delay(void);

int8_t counter;

int32_t test[76];

/***/
/* define the z0 code start location. This address is where the z0 start code is forced in
z0_crt0.s */
/* using the.org assembler directive. */
/***/
#define Z0_ENTRY_POINT 0x00002000

void main()
{

int i;

/* RAM CODE; setup MMU, disable watchdog, set value on port pin PD12, turn on PD12 as
output, release padkeepers, setup stack , delay, and branch using link register to the */
/* function enter_low_power_mode() residing in FLASH. While going to sleep, Z1VEC will
be written with the starting address of the array "test" in RAM */
/* delay is currently set to 100uS approx */

int32_t temp[76] =
{0x7162E000,0x7160C000,0x7D709BA6,0x7178E000,0x7160C400,0x7D719BA6,0x7168E000,0x7160C02
8,0x7D729BA6,0x7168E000,0x7160C03F,0x7D739BA6,0x7C0004AC,0x00017C00,0x07A40001,0x7162E0
01,0x7160C000,0x7D709BA6,0x7178E000,0x7160C500,0x7D719BA6,0x717FE7F0,0x7160C02A,0x7D729
BA6,0x717FE7F0,0x7160C03F,0x7D739BA6,0x7C0004AC,0x00017C00,0x07A40001,0x7162E002,0x7160
C000,0x7D709BA6,0x7178E000,0x7161C100,0x7D719BA6,0x7160E000,0x7160C020,0x7D729BA6,0x716
0E000,0x7160C03F,0x7D739BA6,0x7C0004AC,0x00017C00,0x07A40001,0x73FFE7F4,0x4806AB0F,0x74
C03E30,0xBB0FE801,0x73E8E000,0x807F2007,0x907F73FF,0xE7FE73F0,0xC63C907F,0x73FFE7FE,0x7
3F0C0B8,0x480770E0,0xC20CB07F,
0x73FFE7FE,0x73F8C060,0x480770E2,0xC000D07F,0x480770E0,0xC1482A07,0xE6032407,0xE8FD7028
,0xE0017034,0xC00071A8,0xE00071AF,0xC7F07040,0xE0017050,0xC0001801,0x06C04807,0x70E0C07
0,0x00970004,0xAAAAAAAA};

MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 39

Example Code
MCM.SWTCR.B.SWE = 0;/*disable watchdog*/
counter = 0;

/* Peripherals can be "init"ed here. */
{

SIU.GPDO[60].R = counter; /* Start at high for starters */
SIU.PCR[60].R = 0x020c; /* Setup PD12 for output; max slew rate */

}

/* Copy "temp" onto "test" */
for(i = 0; i < 76; i++)
{

test[i] = temp[i];
}

/* Your main run code here. This test code toggles port pin PD12 */
{

SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();
SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();
SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();
SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();
SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();
SIU.GPDO[60].R = ~(SIU.GPDO[60].R);
delay();

}

/* Setup wakeup source(API) and 32 kHz IRC */
{

CRP.CLKSRC.B.KIRCEN = 1; /* enable 32K IRC */
CRP.RTCSC.R = 0x8000000A; /* set value for API : count of 0x0A for a 10 ms

pulse width. */
CRP.RTCSC.R = 0x8000800A; /* enable counter, API with 32 kHz IRC */
CRP.WKSE.B.APIWKEN = 1; /* select API as wake up source*/

}

/* Enter sleep mode */
{

enter_low_power_mode(LPM_SLEEP);
}

} /* END of Main */

/***
FUNCTION : enter_low_power_mode
PURPOSE : Configures part for stop mode and executes wait instruction
INPUTS NOTES : LPM_STOP goes to stop mode and LPM_SLEEP goes to sleep mode
RETURNS NOTES : If LPM_STOP enabled, then function will return a PASS if if successfully

recovers from stop mode and ISR. If LPM_SLEEP
enabled, Z1VEC register

will be written to beginning of __start routine and
it will begin execution
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor40

Example Code
there.
GENERAL NOTES : Writes to CRP stop/sleep mode, halts all modules, executes wait.

*/
void enter_low_power_mode (uint32_t LPM)
{

{
counter++;
SIU.GPDO[60].R = counter;

}

{
CRP.PSCR.B.SLEEP = 1; /* Set the sleep bit; following a WAIT instruction,

the device will go to sleep */
CRP.PSCR.B.STOP12EN = 1;/* enable the 1.2V internal regulator when in sleep mode

only */
CRP.PSCR.B.RAMSEL = 0x6;/* 0x1 8k, 0x2 16k, 0x3 32k, 0x6 64k -- RAMs maintain

power */
}

/***/
/* NOTE: Z1VEC.R must be forced to be near the beginning of a 4k boundary if */
/* the Z1 core is to be used when coming out of sleep so that there is adequate */
/* room for code to reside in the 4k boundary that sets back up the MMU */
/* This is done by using the .org directive to ensure that the sleep_recovery */
/* function starts from a 4k aligned address. This address could be location in */
/* RAM or FLASH. 1 is added to the recovery address to ensure that the VLE bit */
/* is set in Z1VEC.R NOTE(2): Z0 can also be used and it does not need the 4k */
/* alignment because it doesn't go through the MMU. */
/***/

{
vuint32_t temp = 0;
temp = (uint32_t)(test) + 1;
CRP.Z1VEC.R = temp;
CRP.RECPRTR.B.FASTREC = 1; /* turn on fast recovery from sleep */

}

/**/
/* halt all modules except Z1 and Z0. Note DMA and FlexRay must have had a controlled
shut down */
/* before writing to the halt register (because the Halt bits will immediately stop these
two modules) */
 /* The timeout value needs to be asjusted to the system requirements to reflect the
time needed to */
/* complete pending module activities i.e., CAN transmissions, SPI transmissions etc.*/
/**/
{

vuint32_t timeout = 0;
vuint32_t xtemp = 1;
SIU.HLT.R = 0x3FFFFFFF;
while((SIU.HLTACK.R != 0x3FFFFFFF) && (timeout<3000))
{

xtemp = SIU.HLTACK.R;
timeout++;
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 41

Example Code
}
CRP.Z0VEC.B.Z0RST = 1; /* put Z0 in reset if not used for wakeup */

}

 /* Enable_all_internal_pull_devices() is called to eliminate floating inputs in sleep
*/
Enable_all_internal_pull_devices (PULL_DOWN);

execute_wait(); /* Part enters sleep here; returns to" ZOVEC" or " Z1VEC" */
}

/***
FUNCTION : Enable_all_internal_pull_devices
PURPOSE : to pull up or pull down all I/O pins except Port Pin PD12.
INPUTS NOTES : Pass in PULL_UP to enable the pull ups and PULL_DOWN to enable the pull downs..
RETURNS NOTES : none
GENERAL NOTES :
***/
void Enable_all_internal_pull_devices (uint32_t pull_select)
{

/***/
/* Pull DOWN all pins on EVB for the lowest currents [except EVTI . EVTI (PCR[80]) */
 /* has to be pulled up because the EVB has it pulled high(Nexus enable)
*/
/***/
uint32_t i=0;
for(i = 0; i <= 59; i++)
{

SIU.PCR[i].R = 0x0002 + pull_select;
}

/* Skipping PCR[60] which is Port Pin PD12 */

for(i = 61; i <= 145; i++)
{

SIU.PCR[i].R = 0x0002 + pull_select;
}
SIU.PCR[80].R = 0x3; /* Pull up enabled due to EVTI pull up on EVB */

}

/**/
/* In the execute_wait.s file, the recovery routine "sleep_recovery" configures */
/* the MMU, sets up the stack and then calls this function. */
/**/
void wake_up(void)
{

/**/
/* WatchDog is automatically reset (re-enabled) when exiting sleep, */
/* either service the WatchDog or turn it off. Here it is turned off. */
/**/
{

MCM.SWTCR.B.SWE = 0; /*disable watchdog*/
}

counter++; /* A variable in RAM; gets incremented each time this function
is called */
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor42

Example Code
/**/
/* Sample code after waking up from sleep; here we are toggling PD12 */
/* each time we exit sleep. Incrementing a byte variable "counter" */
/* and writing it to the port register. */
/* NOTE: Pad keepers maintain the state of the outputs in sleep but the */
/* SIU registers are reset in sleep,so setup SIU registers before */
/* releasing the padkeepers. */
/* Also, all peripheral reinitializations [except the CRP] must be done */
/* because they were powered off during sleep. */
/**/
{

SIU.GPDO[60].R = counter;
SIU.PCR[60].R = 0x020c;
release_padkeepers();

}

{
/* code that needs to be run after waking up from sleep can */
/* be put here */

}

enter_low_power_mode(LPM_SLEEP); /* back into sleep */
}

void disable_watchdog(void)
{

MCM.SWTCR.B.SWE = 0;/*disable watchdog*/
}

void release_padkeepers(void)
{

CRP.PSCR.B.PKREL = 1;
}

void delay()
{

unsigned int temp = 0;
while(temp < 0xA)
{

temp++;
}

}

MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 43

Startup Times in Clock Cycles
Appendix E Startup Times in Clock Cycles

18
7.

5
ns

P
M

C

R
U

N

as
se

rte
d

0

W
ai

t 5
 μ

s

5.
18

75
 μ

s P
R

E

R
U

N

as
se

rte
d

W
ai

t
10

cl

ks

5.
81

25
 μ

s

R
U

N

as
se

rt

5.
87

5
μs

N
eg

at
e

S
le

ep
_b

 W
ai

t
10

cl

ks 6.
5

μs

W
ak

e
P

w
r

G
at

es

on

W
ai

t
pG

at
e

ok

6.
62

5
μs

W
ai

t
3 cl
ks

2
cl

ks
 fo

r
on

 +
 o

k

6.
81

25
 μ

s

E
na

bl
e

LV
Is

W
ai

t 5
 μ

s

11
.8

12
5

μs

N
eg

at
e

Is
o-

la
tio

n

Ne
ga

te
Sy

ste
m

PO

R
as

se
rt W

ai
t

10

cl
ks

12
.5

 μ
s

11
.8

75
 μ

s

N
eg

at
e

S
le

ep

1.
25

62
5

μs

K
ee

pe
r

re
le

as
e

12
.6

25
 μ

s R
es

et

R
ec

ov
er

y
(6

4
cl

ks
)

16
.6

25
 μ

s

W
ak

eu
p

Ev
en

t
C

od
e

Ex
ec

ut
io

n

N
ot

e:
 u

si
ng

 1
6

M
H

z
IR

C
,

he
nc

e
1

cl
oc

k
=

62
.5

 n
s

To
ta

l s
ta

rt
up

 ti
m

e
=

16
.6

25
μs

M
P

C
55

16
 S

le
ep

 -
->

 R
u

n
 S

ta
rt

u
p

 T
im

e

MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor44

Startup Times in Clock Cycles

18
7.

5
ns

P
M

C

R
U

N

as
se

rte
d

0

W
ai

t 5
 μ

s

5.
18

75
 μ

s P
R

E

R
U

N

as
se

rte
d

W
ai

t
10

cl

ks

5.
81

25
 μ

s

R
U

N

as
se

rt

5.
87

5
μs

AW
B

on
,

N
eg

at
e

S
oG

W
ai

t
10

cl

ks 6.
5

μs

W
ak

e
E

na
bl

e
LV

Is

W
ai

t 5
 μ

s

11
.5

 μ
s D

is
ab

le

Is
ol

at
io

n
&

N

eg
at

e
S

TO
P

W
ai

t
10

cl

ks

12
.1

25
 μ

s

W
ak

eu
p

Ev
en

t
C

od
e

Ex
ec

ut
io

n

To
ta

l s
ta

rt
up

 ti
m

e
=

12
.1

25
μs

M
P

C
55

16
 S

to
p

 -
->

 R
u

n
 S

ta
rt

u
p

 T
im

e

N
ot

e:
 u

si
ng

 1
6

M
H

z
IR

C
,

he
nc

e
1

cl
oc

k
=

62
.5

 n
s
MPC5510 Family Low Power Features, Rev. 0

Freescale Semiconductor 45

Document Number: AN3584
Rev. 0
5/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Power Problem
	3 MPC5510 Family Low Power Feature Summary
	4 MPC5510 Power Modes
	5 Clock, Reset, and Power Module (CRP)
	6 Low Power Entry
	6.1 Shutdown RTI
	6.2 Set System Clock to 16 MHz IRC
	6.3 Disable the PLL (Stop Only)
	6.4 Shut Down the External Oscillator Circuit (XOSC)
	6.5 Select Sleep or Stop Mode and Execute WAIT Instruction

	7 Low-Power Mode Exit
	7.1 Sleep Mode Exit
	7.1.1 Fast Recovery

	7.2 Stop Mode Exit

	8 Wakeup Sources
	8.1 Low Power Timer Wakeups
	8.1.1 RTC/API Clock Source

	8.2 External Pin Wakeup
	8.3 Wakeup Source Enable
	8.4 Wakeup Source Determination

	9 Conserving Run Time Power
	9.1 Disabling Modules
	9.1.1 Halt

	9.2 Slowing Down Clocks
	9.2.1 System Clock
	9.2.2 Peripheral Clocks

	9.3 System Clock Choice

	10 Use Cases
	10.1 Use Case Solutions
	10.2 Use Case Factors and Assumptions
	10.3 List of Use Cases
	10.3.1 Use Case 1: Periodically Use eMIOS to Control a PWM Function
	10.3.2 Use Case 2: Periodically Measure Three Analog Inputs (Fast Sensors)
	10.3.3 Use Case 3a: Periodically Measure Three Analog Inputs (Slow Sensors - Solution 1)
	10.3.4 Use Case 3b: Periodically Measure Three Analog Inputs (Slow Sensors - Solution 2)
	10.3.5 Use Case 4: Full O/S Constantly Available and Achieve Lowest Possible Power
	10.3.6 Use Case 5: Execute Full O/S Periodically
	10.3.7 Use Case 6: Periodically Trigger an External Watchdog Communication
	10.3.8 Use Case 7a: Periodically Trigger LIN Communication (Solution 1)
	10.3.9 Use Case 7b: Periodically Trigger LIN Communication (Solution 2)
	10.3.10 Use Case 8: Intermittently Wake in Response to CAN Activity

	10.4 Use Case Analysis

	Appendix A Low Power Entry Sleep
	Appendix B Low Power Entry Stop
	Appendix C MPC5516 Electrical Reference Data
	Appendix D Example Code
	Appendix E Startup Times in Clock Cycles

