
Freescale Semiconductor
Application Note

Document Number: AN3470
Rev. 0, 06/2007

Contents
Introduction . 1
ColdFire TCP/UDP/IP Stack Features. 2
ColdFire TCP/IP Stack and RTOS 2

3.1 RTOS Overview. 2
3.2 RTOS API . 6
3.3 Creating a Task . 10
3.4 Menu System and Serial Driver. 10
3.5 Sample Serial Console Menu Output 11
3.6 Sample User Defined Menu Options 12
3.7 TCP/IP Stack Overview. 13
3.8 Configuring the TCP/IP Stack 14
3.9 Setting the MAC and IP Addresses. 15
3.10 DHCP Client . 15
3.11 DNS Client. 16
3.12 Stack RAM Usage . 17
3.13 Tested TCP/IP Stack Parameters 19
3.14 Reduced RAM TCP/IP Stack Parameters 19
3.15 TCP/UDP/IP Stack API . 20
3.16 TCP/IP Stack Zero-Copy API 23
3.17 UDP/IP Stack API . 24
3.18 TCP/UDP/IP Stack API Return Codes 24
3.19 DHCP Client API . 25
3.20 DNS Client API . 25
The Ethernet PHY . 46

4.1 Initializing MII Interface in MCF5223X (in mii.c) . . 46
4.2 MII Management Frame Write Function (in mii.c) . 47
4.3 MII Management Frame Read Function (in mii.c) 48
4.4 Media Management Interface (in menulib.c) 49
Porting the ColdFire TCP/UDP/IP Stack Project Using
CodeWarrior . 50

ColdFire TCP/UDP/IP Stack and
RTOS
by Eric Gregori
1 Introduction
Transmission Control Protocol /Internet Protocol
(TCP/IP) is the Internet’s communication protocol. The
acronym is derived from two layers of the
communication stack, TCP and IP. The term TCP/IP
actually describes multiple protocols in both stacks. Each
protocol is defined by a Request For Comment (RFC).

Proper TCP/IP stack operation requires multi-tasking.
The ColdFire® TCP/IP stack is integrated with a simple
operating system. This simple round-robin OS can also
be used by the application code. The OS is
non-preemptive, provides two modes of operation
(single stack, or superloop, and multi-stack). Additional
OS features include a interactive real-time upgradeable
menu system, user timers, and heap memory
management.

1
2
3

4

5

© Freescale Semiconductor, Inc., 2007. All rights reserved.

5.1 Modifying common.h from New Project For
Stack Usage . 51

http://www.rfc-editor.org/rfcxx00.html

ColdFire TCP/UDP/IP Stack Features
2 ColdFire TCP/UDP/IP Stack Features
• HyperText Transport Protocol (HTTP), Serial to Ethernet, Trivial File Transfer (TFTP)
• Mini IP Application’s Interface
• Dynamic Host Configuration Protocol (DHCP) or manual IP configuration, DNS
• Transmission Control Protocol (TCP), User Datagram Protocol (UDP)
• Internet Control Messaging Protocol (ICMP), BOOTP (BOOTstrap Protocol)
• Address Resolution Protocol (ARP), Internet Protocol (IP)

Figure 1. ColdFire TCP/IP Stack and RTOS

3 ColdFire TCP/IP Stack and RTOS

3.1 RTOS Overview
The TCP/IP stack requires that multiple processes or tasks occur simultaneously. This is accomplished
using one of two methods: superloop (RTOS disabled) or a multi-tasking operating system (RTOS).

In superloop mode, each task is a function call. All the tasks share a common stack. This mode is the most
efficient in terms of memory usage. By using only one stack, less space is wasted. Also, with the RTOS
disabled there are no RTOS RAM requirements (TCBs and other structures) using valuable RAM
resources. The disadvantage of superloop mode is that it is static. Tasks cannot be created or deleted at
runtime. Depending on the architecture/requirements of the system, this may end up using more RAM
instead of less.

Sleep is not supported in superloop mode (the RTOS is disabled). Each task function must return to the
main loop after its job is done. This requires a very different task architecture then when using the RTOS.

init
main.c

Application
Allports.c

TCP/IP Stack

Scheduler/API
task.c

Menu system
menu.c,

Timers
timeouts.c

Packet manager
q.c.,pktalloc.c

Hardware abstraction Layer (drivers)
ifec.c,iuart.c,mii.c,m5223evb.c,tecnova_i2c.c,
freescale_serial_flash.c

Heap manager
memio.c

ColdFire Hardware (FEC, PHY, Timers, A/D, GPIO, RAM, SPI, SCI, IIC)

nrmenus.c
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor2

ColdFire TCP/IP Stack and RTOS
Figure 2. Superloop Structure and Stack Usage

3.1.1 Sample Superloop Code
void emg_superloop(void)
{
While(1)
{

kbdio(); // Call menu task (function)
packet_check(); // Call network stack state machine
inet_timer(); // Check for timer timeouts
task1(); // Call user task1
task2(); // Call user task2
task3(); // Call user task3
task4(): // Call user task4

}

When the RTOS is enabled, it provides a dynamic mode of operation for the stack. Tasks can be created
and destroyed at runtime. When a task is created, a new stack is created for the task by allocating RAM
from the heap. When the task is destroyed, the RAM allocated for the task’s stack is returned to the heap.
In this way, if your application is dynamic, using the RTOS may be more RAM efficient.

Static Task (1)

Static Task (2)

Static Task (4)

Static Task (3)

While (1) System Stack

Task 1 Data

Task 2 Data

Task 3 Data

Unused

Task 4 Data
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 3

ColdFire TCP/IP Stack and RTOS
When a task is created, memory is allocated from RAM (via the heap) for the new tasks stack. The size of
each stack is static, and determined at compile time. The stack size must be big enough to accommodate
not only the task needs, but any interrupts used by the system as well.

With the RTOS enabled each task has a task control block. The TCBs are linked by a linked list. The TCB
structure is declared in task.h. This simple RTOS does not support task priorities. The scheduler simply
increments to the next TCB in the list, executing the task pointed to by the TCB if the task is ready to
execute (not sleeping). Since this RTOS is also non-preemptive, task switching only occurs when a task
wants to give up control. A task gives up control by calling tk_block() or going to sleep (tk_sleep()).
struct task
{
 struct task *tk_next; /* pointer to next task */
 stack_t *tk_fp; /* task's current frame ptr */
 char *tk_name; /* the task's name */
 int tk_flags; /* flag set if task is scheduled */
 unsigned long tk_count; /* number of wakeups */
 stack_t *tk_guard; /* pointer to lowest guardword */
 unsigned tk_size; /* stack size */
 stack_t *tk_stack; /* base of task's stack */
 void *tk_event; /* event to wake blocked task */
 unsigned long tk_waketick; /* tick to wake up sleeping task */
};
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor4

ColdFire TCP/IP Stack and RTOS
Figure 3. RTOS Structure and Stack Usage

Static Task1()

Static Task2()

Static Task3()

Static Task4()

Tk_block()

Tk_block()

Tk_block()

Tk_block()

TCB1
Stack *
Stack Size
Next TCB

TCB1
Stack *
Stack Size
Next TCB

TCB2
Stack *
Stack Size
Next TCB

TCB1
Stack *
Stack Size
Next TCB

Task1 Stack

Task2 Stack

Task3 Stack

Task4 Stack

Unused

Unused

Unused

Unused

All stacks
are
allocated
out of the
heap
(RAM)
via the
stack
memory
manager
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 5

ColdFire TCP/IP Stack and RTOS
3.1.2 Configuring the RTOS

The RTOS mode is configured in the ipport.h file. There are two defines that set the RTOS mode; they
cannot be defined at the same time. If superloop is set to 1, then the RTOS is configured in superloop mode.
If the INICHE_TASKS define is set to 1, then the multi-stack mode is enabled. Define one or the other and
undefine the other.

3.1.3 RTOS Configuration for Superloop Operation
#define SUPERLOOP 1 // EMG 07
// #define INICHE_TASKS 1 // EMG 07 /* InterNiche multitasking system */

3.1.4 RTOS Configuration for Multi-Stack Operation
// #define SUPERLOOP 1 // EMG 07
#define INICHE_TASKS 1 // EMG 07 /* InterNiche multitasking system */

When the RTOS is enabled, there are additional configuration parameters. The additional parameters in
osport.h set the stack sizes for each stack. Each stack can be initialized to a unique size. You must consider
not only the requirements for the task, but also the requirements of any interrupts when setting a task’s
stack size. Since any task can be running when an interrupt occurs, the context for the interrupt is stored
in the current running task’s stack. This requires more RAM when using the RTOS. Since there must be
enough room for any interrupts context in all the task’s stacks, each stack must be larger than the task
requires. This results in wasted RAM.

When the a new task is created, the RTOS allocates RAM from the heap for the new RTOS stack. It then
fills this stack with guardwords (defined in task.h). After the stack begins executing, the task naturally
writes over the guardwords as it uses the stack. If the task overruns the stack, the RTOS can detect this.
This is because the last guardword is overwritten and can throw a fault.

The RTOS needs a global variable cticks (declared in main.c) to be incremented periodically for sleep
timing. This is done using a ColdFire® timer. The timer interrupts (timer_isr) are called at a rate initialized
by the function clock_init() in main.c.
/* task stack sizes */
#define NET_STACK_SIZE 4096
#define APP_STACK_SIZE 4096 /* default for applications */
#define CLOCK_STACK_SIZE 2048

#define IO_STACK_SIZE 2048
#define WEB_STACK_SIZE APP_STACK_SIZE
#define FTP_STACK_SIZE APP_STACK_SIZE
#define PING_STACK_SIZE 2048
#define TN_STACK_SIZE APP_STACK_SIZE
#define IKE_STACK_SIZE APP_STACK_SIZE

3.2 RTOS API
There is no API when using the superloop. Each task returns when it is ready to give up control. With the
RTOS enabled, there are more options. Each task has two possible states, sleeping or running. A task can
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor6

ColdFire TCP/IP Stack and RTOS
be asleep if it is time-based or if waiting for an event. When a task is sleeping based on time, it changes
to the run state after the timeout. When a task is sleeping on an event, it cannot be run until the event
occurs. Events are essentially flags.

When a task is in the sleeping state, it is skipped by the round-robin scheduler. The task cannot run again
until the round-robin scheduler comes back to it. If a task is runnable, it is executed when the round-robin
scheduler comes to it. The state of the next task is tested by the tk_block() function.

The RTOS does not need interrupts to operate (it is not pre-emptive). A timer must increment the variable
cticks (declared globally in main.c) periodically. This global variable is referenced by the scheduler in the
tk_block() function to determine how long a task has been sleeping. When a task goes to sleep, the value
of cticks + sleep time is stored in the task’s TCB. When tk_block() is called, it checks the next task’s TCB
to see if cticks has passed the value stored in the TCB.

3.2.1 Example: cticks = 100

Sleep (65) sets current_TCB->tk_waketick = cticks + 65 = 165

The current task is also put into a non-running state. cticks is incremented periodically by a timer. The next
time tk_block() is executed, it checks if cticks > TCB->tk_waketick. If so, then it sets the task to runnable
and runs it.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 7

ColdFire TCP/IP Stack and RTOS
Figure 4. Scheduler Coming to a Sleeping Task

3.2.2 RTOS Functions

The RTOS API has nine functions, listed below:
task * tk_init(stack_t * base, int st_size) // Init the RTOS

• Initializes the RTOS and creates the first task. The base address and size of the first task’s stack is
passed to tk_init() as parameters.

• The first task’s default name is “Main”.
• The first task’s stack is actually on the system stack.

task * tk_new (task * prev_tk /* predecessor to the new task */

int (*start)(int) /* Where the new task starts execution. */

int stksiz /* The size in bytes of the stack of the new task. */

char * name / * The task's name as a string */

Static Task1()
Runnable

Static Task2()
Sleeping

Static Task3()
Runnable

Static Task4()
Runnable

Tk_block()

Tk_block()

Tk_block()
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor8

ColdFire TCP/IP Stack and RTOS
int arg) /* argument to the task */

The tk_new() function creates a new task. The new TCB is inserted after the TCB pointed to by prev_tk.
This is as close as it gets to being able to setting a tasks priority. A user can insert a new task anywhere in
the TCB ring using this parameter. The TK_NEWTASK wrapper macro (defined in osport.h) calls
tk_new() with the prev_tk parameter set to the TCB for the current running task. When this macro is used,
the new task is inserted directly after the current running task.

The start parameter is a pointer to the new task’s function. The stksiz parameter defines the size of the
task’s stack. The stack for the new task will be allocated from the heap. The name parameters give the new
task a name. The arg parameter passes the new task an integer argument at startup.
void tk_block(void) // switch to next runnable task

The tk_block() function first verifies that the current task’s stack is not corrupt by verifying the guardword.
The tk_block() function then walks the TCB linked list, looking for the next task that is ready to run. The
tk_block() function forces a task switch by calling the tk_switch assembly language function in tk_util.s.
Interrupts are disabled during task switching.
void tk_exit(void) // kill & delete current task

The tk_exit() function sets the current task to be deleted after the next switch. It then forces a task switch.
The task is deleted during the task switch.
void tk_kill(task * tk_to_die) // mark any task for death

tk_kill() sets the task pointed to by the tk_to_die parameter for death. If the task to die is the current task,
it dies as soon as it blocks.

If the task to die is not the current task, it is killed immediately.
void tk_wake(task * tk) // mark a task to run

tk_wake() forces the task tk to the run state. The tk task does not run immediately; instead, it is put into a
run state so that it runs the next time the scheduler comes around.
void tk_sleep(long ticks) // sleep for number of ticks

tk_sleep() puts the current task to sleep for ticks number of cticks.

current_TCB-> tk_waketick = cticks + ticks;

current_TCB->tk_flags &= ~TF_AWAKE; // clear wake flag

tk_sleep() calls tk_block(), causing an immediate task switch.
void tk_ev_block(void * event) // block until event occurs

tk_ev_block() puts the current task into a non-running state (sleep) until an event occurs. The event is a
32-bit value.
void tk_ev_wake(void * event) // wake tasks waiting for event

Walk through the TCBs, comparing the event parameter to the event entry in the TCB structure. If the
TCB’s event equals the parameter event then the task is marked as runnable.

Events provide a communication mechanism between tasks. The stack uses events to support blocking
sockets. When a socket is waiting for data, it blocks until the data arrives. The stack puts the calling task
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 9

ColdFire TCP/IP Stack and RTOS
to sleep on a unique event (the address of the socket). When data arrives on that socket from the network,
the stack wakes the blocking task by sending the event.

3.3 Creating a Task
TK_OBJECT(to_keyboard); in tk_ntask.h task *to_keyboard
TK_ENTRY(tk_keyboard); in tk_ntask.h int tk_keyboard(int parm)

e = TK_NEWTASK(&keyboardtask); in osporttk.c
 // function adds keyboard task descriptor to tcb list

struct inet_taskinfo keyboardtask = {
 &to_keyboard, // Returns pointer to TCB"console" // Task name
 tk_keyboard, // Pointer to task function

NET_PRIORITY - 1, // NOT USED
 IO_STACK_SIZE, // Stack size

};

TK_ENTRY(tk_keyboard) in tk_ntask.h int tk_keyboard(int parm)
{
 for (;;)
 {
 TK_SLEEP(1); /* make keyboard yield some time */
 kbdio(); /* let Iniche menu routines poll for char */
 keyboard_wakes++; /* count wakeups */

 if (net_system_exit)
 break;
 }
 TK_RETURN_OK();
}

#define TK_OBJECT(name) task *name

This macro declares a pointer to a task structure (TCB).
#define TK_ENTRY(name) int name(int parm)

This macro declares a task function.
TK_NEWTASK(struct inet_taskinfo * nettask)

Translates the inet_taskinfo into a call to tk_new(). A pointer to the newly created TCB is returned in the
pointer pointed to by tk_ptr.
new_task = tk_new(tk_cur, nettask->entry, nettask->stacksize, nettask->name, 0);
*nettask->tk_ptr = new_task;

3.4 Menu System and Serial Driver
A simple serial console and menu system is provided for your convenience. The console uses the iuart.c
serial driver. The menu system is dynamic and user configurable. The menu subsystem runs as a task. It is
implemented in the files menus.c, menulib.c, and nrmenus.c. User applications can insert menu items at
run-time using a menu system API. The API is contained in the file menus.c. The file nrmenus.c contains
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor10

ColdFire TCP/IP Stack and RTOS
initial menu items, with the functions associated to each menu item in the menulib.c and nrmenus.c
modules.

The install_menu() function inserts a new menu item into the menu array. Each item includes a short
description string and a pointer to a function that is called when the command is entered. The menu array
is a global structure declared in nrmenus.c.
struct menu_op * menus[] = /* array of ptrs to menu groups */

// Fill out structure for EMG FFS DIRectory menu command
struct menu_op emg_ffs_dir_menu[] =
{
// commandfunction description string

"EMG HTTP", stooges, "EMG HTTP menu",
"dir", emg_ffs_dir, "Dir of EMG FFS", "flash_erase",

flash_erase, "Erase the dynamic FLASH area",
"var", emg_http_var, "Dynamic HTML variable",
"http", emg_http_sessions, "Dump HTTP sessions array",
NULL,

};

// Install Menu item 'DIR' for EMG FFS
if(install_menu(emg_ffs_dir_menu))
printf("\nCould not install DIR menu item for EMG FFS");

The serial driver can be used in an interrupt or polling mode. The driver is configured for polling mode
by setting POLLED_UART to 1 in iuart.c. If POLLED_UART is not defined, the driver is in interrupt
mode. The baudrate for the driver is set with the UART0_SPEED defined in the iuart.c module. The
default baudrate is 115200.

The driver uses both a TX and RX buffer. The buffers are declared out of global RAM (not allocated out
of the heap). The defines UART_RXBUFSIZE and UART_TXBUFSIZE set the size of the RX and TX
serial buffers, respectively. The RX buffer size should be large enough to hold a complete command line
(32 bytes has worked very well). The TX buffer size is a trade-off between performance and RAM. If the
TX buffer is too small, application will wait longer for free space in the buffer when sending data to the
terminal. If the TX buffer is too big, RAM is being wasted.

3.5 Sample Serial Console Menu Output
INET> help EMG

SNMP Station: EMG HTTP commands:
• dir - Dir of EMG FFS
• flash_erase - Erase the dynamic FLASH area
• var - Dynamic HTML variable
• http - Dump HTTP sessions array
• INET> http
• HTTP sessions array Dump

STATE VALID KEEP_ALIVE FILE_POINTER SOCKET
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 11

ColdFire TCP/IP Stack and RTOS
Wait for header Not Valid 0 0x0 0x0

Wait for header Not Valid 0 0x0 0x0

Wait for header Not Valid 0 0x0 0x0

Wait for header Not Valid 0 0x0 0x0

INET>

3.6 Sample User Defined Menu Options
The INET> prompt is the default prompt. It can be overridden in the allports.c module.

INET> tkstats

tasking status:task wakeups: D

name state stack used wakes

console running 2048 536 1216676

EMG HTTP server ready 2048 192 51859563

clock tick sleeping 2048 104 42047

Main blocked 4096 392 0

INET>

Above are the tasks for a standard system using the HTTP server. The “Main” task is the first task created
by the system using the tk_init() call. The blocked task waits on an event. The sleeping task waits for cticks
to be greater then the sleep timer. The ready task is ready to run as soon as the round robin scheduler gets
to it. Of course, the console task must also be running to process the command.

The stack column shows the size of the stack defined for each stack. The used column shows the
watermark created by the guardword. The tkstats function simply walks the stack from the beginning
looking for the guardword.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor12

ColdFire TCP/IP Stack and RTOS
Figure 5. TCP/IP Stack

3.7 TCP/IP Stack Overview

Figure 6. TCP/IP Stack Overview

Freescale
Web Server

Freescale
Compile Time FFS

Freescale
Run Time FFS

Freescale
Hardware API

Freescale
Ethernet PHY

ColdFire_TCP/IP FEC Driver
ColdFire_TCP/IP IP layer

ColdFire_TCP/IP TCP ColdFire_TCP/IP UDP ColdFire_TCP/IP ICMP

ColdFire_TCP/IP RTOS and Console

ColdFire_TCP/IP Mini-Socket TCP API

Physical Layer (10BaseT/100BaseT)

Data Link Layer (Ethernet)

Network Layer (IP)

Network Layer

Session/Presentation Layer

Transport Layer
(TCP)

Network Layer (ARP)

(ICMP)

Application Layer
(DHCP)

Application Layer
(HTTP/TFTP/DNS/...)

(Socket Interface)

Transport Layer
(UDP)
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 13

ColdFire TCP/IP Stack and RTOS
The TCP/IP stack implements the protocols described in the following RFC’s (refer to
http://www.rfc-editor.org/rfcxx00.html for details):

• RFC791: Internet protocol (IP)
• RFC792: Internet Control Message protocol (ICMP)
• RFC768: User Datagram Protocol (UDP)
• RFC793: Transmission Control Protocol (TCP)
• RFC826: Ethernet Address Resolution Protocol (ARP)
• RFC1035: Domain Name Server (DNS)
• RFC2131: Dynamic Host Configuration Protocol
• RFC2132: DHCP options

The Session/Presentation layer is a mini-socket interface similar to the BSD socket interface. The stack
has been optimized for embedded application using zero-copy functionality for minimum RAM usage.

3.8 Configuring the TCP/IP Stack
The TCP/IP stack is configured from the ipport.h header file. Option macros to trade off features for size.
Do not enable options for modules you don't have or your link will receive unresolved externals.
*/
#define INCLUDE_ARP 1 // use Ethernet ARP
#define FULL_ICMP 1 // use all ICMP || ping only
#define OMIT_IPV4 1 // not IPV4, use with MINI_IP
#define MINI_IP 1 // Use Nichelite mini-IP layer
#define MINI_TCP 1 // Use Nichelite mini-TCP layer
#define MINI_PING 1 // Build Light Weight Ping App for Niche Lite
#define BSDISH_RECV 1 // Include a BSD recv()-like routine with mini_tcp
#define BSDISH_SEND 1 // Include a BSD send()-like routine with mini_tcp
#define NB_CONNECT 1 // support Non-Blocking connects (TCP, PPP, et al)
#define MUTE_WARNS 1 // gen extra code to suppress compiler warnings
#define IN_MENUS 1 // support for InterNiche menu system
#define NET_STATS 1 // include statistics printfs
#define QUEUE_CHECKING 1 // include code to check critical queues
#define INICHE_TASKS 1 // InterNiche multitasking system
#define MEM_BLOCKS 1 // list memory heap stats
// EMG #define TFTP_CLIENT 1 // include TFTP client code
// EMG #define TFTP_SERVER 1 // include TFTP server code
// EMG #define DNS_CLIENT 1 // include DNS client code
#define INICHE_TIMERS 1 // Provide Interval timers

// EMG - To enable DHCP, uncomment the line below
#define DHCP_CLIENT 1 // include DHCP client code

// EMG #define INCLUDE_NVPARMS 1 // non-volatile (NV) parameters logic
#define NPDEBUG 1 // turn on debugging dprintf()s
// EMG #define VFS_FILES 1 // include Virtual File System
// EMG #define USE_MEMDEV 1 // Psuedo VFS files mem and null
#define NATIVE_PRINTF 1 // use target build environment's printf function
#define NATIVE_SPRINTF 1 // use target build environment's printf function
#define PRINTF_STDARG 1 // build ...printf() using stdarg.h
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor14

ColdFire TCP/IP Stack and RTOS
#define TK_STDIN_DEVICE 1 // Include stdin (uart) console code
#define BLOCKING_APPS 1 // applications block rather than poll
#define INCLUDE_TCP 1 // this link will include NetPort TCP w/MIB

/**** end of option list ***/

As stated above, static applications use less RAM if they are not configured for INICH_TASKS and use
superloop instead. To do this, undefine INICHE_TASKS and set superloop to 1.

3.9 Setting the MAC and IP Addresses
To enable the DHCP client, set DHCP_CLIENT to 1. If DHCP_CLIENT is not defined, the stack uses the
IP address set in the netstatic[] array declared in m_ipnet.c. The netstatic array must be set at zero for the
DHCP client to work correctly. If the netstatic IP address is anything other than zero, the DHCP client tries
to renew its IP address instead of obtaining a new one.

When DHCP is enabled, the TCP/IP stack cannot finish initializing until after the DHCP transaction is
complete. The function netmain_init() in the module allports.c calls the function dhc_setup() in
dhcsetup.c. dhc_setup() runs the DHCP protocol which will contact the DHCP server to acquire an IP
address and other network related data.

The IP address (DHCP disabled) and MAC address are set using the netstatic[] and mac_addr_fec[] arrays.
The netstatic[] array is declared in m_ipnet.c, and the mac_addr_fec[] array is declared in ifec.c.
// to set the IP address manually to 192.168.1.99
netstatic[0].n_ipaddr = (0xC0A80163);
netstatic[0].n_defgw = (0xC0A80101);
netstatic[0].snmask = (0xffffff00);

// to set the MAC address to 0x00badbad0102
tmp = 0x00badbad;
mac_addr_fec[0] = (u_char)(tmp >> 24);
mac_addr_fec[1] = (u_char)(tmp >> 16);
mac_addr_fec[2] = (u_char)(tmp >> 8);
mac_addr_fec[3] = (u_char)(tmp & 0xff);

tmp = 0x01020304;
mac_addr_fec[4] = (u_char)(tmp >> 24);
mac_addr_fec[5] = (u_char)(tmp >> 16);

These structures must be configured before the stack is initialized with a call to netmain_init() in the
module allports.c

3.10 DHCP Client
The Dynamic Host Configuration Protocol acquires network parameters at runtime. The protocol uses the
UDP layer of the stack. The stack must be initialized with a call to ip_startup() before the DHCP client can
be called.

The DHCP protocol is defined in RFC2131 and RFC2132. The stack runs a DHCP client which searches
for a DHCP server (this is referred to as discovery). Packets are transferred using the UDP layer and
BOOTP ports (67 and 68). Since the IP stack does not have an IP address yet, it discovers using broadcast
addresses. Included in the discovery packet is a unique transaction ID (xid). A listening DHCP server
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 15

ColdFire TCP/IP Stack and RTOS
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

sends an offer message containing the xid sent by the client and the suggested network parameters, again
using broadcast addressing. Also encoded in the offer is a unique server ID. The client uses this server ID
when sending a request packet back to the server indicating that it accepts the network parameters that
were offered. Finally, the server ACKS the client using it’s new IP address.

RFC2132 specifies various options that can be requested by the DHCP client. These options can also report
information to the DHCP server. The options supported by the DHCP client are listed in the dhcpclnt.h
module. Two reporting options of special interest are 12 and 15 (DHOP_NAME and DHOP_DOMAIN).
These two options are passed to Domain Name Servers (DNS) by most DHCP servers. The DHCP client
is contained in the modules dhcpclnt.c, dhcpclnt.h, and dhcsetup.c.

Figure 7. DHCP Client

The netstatic[] structure must be cleared to zero before calling dhc_setup() to start the DHCP transactions.
If not, the DHCP client attempts to renew whatever IP address is in the netstatic[] structure. This is a valid
process only if the IP address in the netstatic[] structure was originally provided by the DHCP server.

3.11 DNS Client
The DNS client communicates with the DNS (Domain Name Server). The DNS system translates domain
names into IP addresses. The DNS protocol is described in RFC1035. DNS can use UDP or TCP, with port
53. The DNS protocol is stateless. All the information is contained in a single message. This message is
fully documented in RFC1035. Figure 8 shows the DNS message.

Broadcast Discover messg (xid = 1234)

Broadcast Offer messg (xid=1234)

Broadcast Request messg (xid = 1234)

Broadcast ACK messg (xid=1234)

dhc_discover()

client

dhc_upcall()

dhc_extract_opts()

dhc_request()

dhc_setip()

server
Freescale Semiconductor16

ColdFire TCP/IP Stack and RTOS
Figure 8. DNS Message

• Question: The question for the name server
• Answer: RR’s answering the question
• Authority: RR’s pointing toward authority
• Additional: RR’s holding additional information

The DNS client is enabled by setting the DNS_CLIENT macro to 1 in the ipport.h file. The DNS client is
maintained by calling the dns_check() function every second. This keeps the DNS cache up to date. The
DNS client must be initialized by filling the dns_server[] array with the IP addresses of DNS name servers.
The dns_servers[] array is declared globally in dnsclnt.c. Unused entries should be filled with zeros.
ip_addr dns_servers[MAXDNSSERVERS]

Calls an API function to use the DNS client. When first requested, a name translation must be called using
either the dns_query(), dns_query_type(), or gethostbyname() functions. Each of these functions inserts a
name and returned IP address to a cache. After the query is performed once, the dns_lookup() function gets
the information from the cache.

3.12 Stack RAM Usage
The TCP/IP stack uses RAM for packet storage. Packets are stored in buffers managed by a dedicated
buffer queue, not the heap manager. The module pktalloc.c contains the packet buffer memory manager.
There are two categories of packet buffers, based on the size of the buffer. bigbufsiz is declared in
pktalloc.c and determines the size of the big buffers. lilbufsiz is declared in pktalloc.c and determines the
size of the small buffers.

Ethernet-receive operations use only the bigbufs, while transmit operations use either bigbufs or lilbufs
depending on the size of the packet. The receive operation must use bigbufs only because the size of the
packet received is not known until the whole packet is received. Bigbufsiz is set to be larger then any
received packet.

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 17

Figure 9. Stack RAM Usage

When the stack wants to send a packet, it calls pk_alloc(length) with a length equal to the desired packet
length. Pk_alloc() uses either a bigbuf or lilbuf depending on the desired packet size. This is done for RAM
efficiency. For TCP applications, make sure lilbufsiz is greater then the size of a ACK packet (60 bytes
with ETHER header).

RX buffers must be large enough to accept a full size ethernet packet. The macro MAX_ETH_PKT
defined in fecport.h sets the maximum packet size that can be received or transmitted by the Fast Ethernet

HARDWARE
 (FEC)

TCP/IP STACK
 (pktalloc.c)

TxBDs [0]

TxBDs [1]
NUM_TXBDS

RxBDs [0]

RxBDs [1]
NUM_RXBDS

lilbuff

lilbuff
lilbufs

lilbufsiz

bigbuff

bigbuff

bigbuff

bigbuff

bigbufsiz

bigbufs

Buffers are allocated from HEAP

ColdFire TCP/IP Stack and RTOS
Controller (FEC). Bigbufsiz must be larger then MAX_ETH_PKT. The FEC requires that the packet buffer
be on a 16 byte boundary. Add 16 bytes to the buffsize to accommodate alignment.

• bigbufsiz >= MAX_ETH_PKT + 16
• lilbufsiz should be greater then TCP ACK packet size (60)

The number of buffers is a trade-off between performance and available RAM. The stack allocates packet
buffer RAM from its heap during init. The packets buffer RAM is never returned to the heap. They are
managed by a separate independent memory manager (pktalloc.c). When determining the number of
buffers, you must consider network performance requirements and traffic. Even if the embedded
application does not require heavy ethernet traffic, if there is heavy traffic on its network it will need more
buffers. Although the FEC filters ethernet addresses, broadcast addresses from ARP requests are passed to
the stack using packet buffers. With a small number of packet buffers, broadcast packets can have a drastic
effect on stack performance. It is important that any changes to the number of bigbufs be tested in a
network environment similar to the environment the final device will be used in.

TCPTV_MSL defines the amount of time a TCP connection will wait in the CLOSE-WAIT state. A socket
does not close immediately. It waits TCPTV_MSL * 2 seconds before actually closing and releasing the
packet buffers. In an environment where the connection is frequently opened and closed (e.g. a webserver),
waiting too long to free up a packet buffer from a previously closed connection can result in all the packet
buffers being locked up waiting for TCPTV_MSL timeouts.

TCP_MSS or TCP Maximum Segment Size sets the max number of data bytes a TCP segment can hold.
This value must be smaller then bigbufsiz. In fact, the MSS must be less then (bigbufsiz – TCP header –
IP header – Ethernet header). When sending large amounts of data, the higher the TCP_MSS the better
(within the limits mentioned above). The total data sent is broken up into (total data size)/TCP_MSS TCP
segments. A greater the number of segments leads to more overhead to ACK the segments, causing
worsened performance.

3.13 Tested TCP/IP Stack Parameters
MAX_ETH_PKT (in fecport.h) = 1520;
bigbufsiz (main.c) = 1542 // could be reduced to 1536
lilbufsiz (main.c) = 200 // could be reduced to 76 depending on app

 // if app is sending small packets > 60 then
// increase to small packet size + 16

bigbufs (NUMBIGBUFS ipport.h) = 8 // 8 * 1542 = 12336
lilbufs (NUMLILBUFS ipport.h) = 6 // 6 * 200 = 1200
TCP_MSS = 1456 // Allows room for TCP options
TCPTV_MSL = 1 // Fast close of sockets

Using the numbers above requires 12336 + 1200 bytes of heap space (RAM) just for the packet buffers.

3.14 Reduced RAM TCP/IP Stack Parameters
MAX_ETH_PKT (in fecport.h) = 1520

// The MTU size is maintained at the
// internet standard 1520
// This guarantees compatibility

bigbufsiz (main.c) = 1542; // could be reduced to 1536
// Based on MAX_ETH_PKT

lilbufsiz (main.c) = 100; // Reduced assuming an app that sends
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 19

ColdFire TCP/IP Stack and RTOS
 // about 20 bytes / packet
bigbufs (NUMBIGBUFS ipport.h) = 4 // 4 * 1542 = 6168
lilbufs (NUMLILBUFS ipport.h) = 4 // 4 * 100 = 400
TCP_MSS = 1456 // Allows room for TCP options
TCPTV_MSL = 1 // Fast close of sockets

Using the above parameters reduces the stack heaps requirements for packet buffers to 6168 + 400 = 6568
bytes or 6.4 K

3.15 TCP/UDP/IP Stack API
The mini-sockets API is designed to be as close as possible to the BSD Sockets API while still allowing a
small footprint. The primary differences are that passive connections are accomplished with a single call,
m_listen(), rather than the BSD bind()-listen()-accept() sequence. The BSD select() call is also replaced
with a callback mechanism.

BSD = Berkeley Software DistributionTCP/UDP/IP Stack IP

Figure 10. TCP/UDP/IP Stack IP

char *ip_startup()
• Initializes the TCP/IP stack. It returns null if the init is OK. If not, it returns an error string.

int input_ippkt(PACKET pkt, int length)

• Called by the ISR after a packet has been received from the hardware. This function inserts a
received ethernet packet into the stack. It always returns 0. The packet typdef is a pointer to a
netbuf structure.

struct netbuf
{
 struct netbuf * next; // queue link
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor20

ColdFire TCP/IP Stack and RTOS
 char * nb_buff; // beginning of raw buffer
 unsigned nb_blen; // length of raw buffer
 char * nb_prot; // beginning of protocol/data
 unsigned nb_plen; // length of protocol/data
 long nb_tstamp; // packet timestamp
 struct net * net; // the interface it came in on, 0-n
 ip_addr fhost; // IP address associated with packet
 unsigned short type; // IP==0800 filled in by recever(rx)
 or net layer.(tx)
 unsigned inuse; // use count, for cloning buffer
 unsigned flags; // bitmask of the PKF_ defines
 char * m_data; // pointer to TCP data in nb_buff
 unsigned m_len; // length of m_data
 struct netbuf * m_next; // sockbuf que link
 struct ip_socopts *soxopts; // socket options */
};

void packet_check()
• TCP/IP stack state machine. Must be called periodically by a task or from the superloop.

void dhc_setup()

• Called after ip_startup() to kick off the DHCP client. The stack cannot be used until the DHCP
transaction is complete.

M_SOCK m_socket()

• Allocates a socket structure. The socket defaults to blocking. Returns a MSOCK structure if OK,
NULL if error.

int m_connect(M_SOCK so, struct sockaddr_in * sin, M_CALLBACK(name))

• Starts the connection process to a server. The m_connect() function attempts to connect to the IP
address and the port specified in the sockaddr_in structure. If the socket is flagged as blocking,
m_connect() does not return until a timeout defined by TCPTV_KEEP_INIT (in mtcp.h) which
defaults to 75 seconds. If the socket is flagged as non-blocking (via the m_ioctl() function) then
m_connect() returns EINPROGRESS. When the socket is flagged as non-blocking, the
M_CALLBACK parameter signals a completed connection by calling the M_CALLBACK
function.

The m_connect() function returns the error codes specified in the file msock.h (see below). The MSOCK
typedef is a pointer to an msocket structure.
struct msocket
{
 struct msocket * next; // queue link
 unshort lport; // IP/port tupple describing connection, local port
 unshort fport; // far side's port
 ip_addr lhost; // local IP address
 ip_addr fhost; // far side's IP address
 struct tcpcb * tp; // back pointer to tcpcb
 struct m_sockbuf sendq; // packets queued for send, including unacked */
 struct m_sockbuf rcvdq; // packets received but undelivered to app

struct m_sockbuf oosq; // packets received out of sequence
int error; // last error, from BSD list
int state; // bitmask of SS_ values from sockvar.h
int so_options; // bitmask of SO_ options from socket.h
int linger; // linger time if SO_LINGER is set
M_CALLBACK(callback); // socket callback routine
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 21

ColdFire TCP/IP Stack and RTOS
NET ifp; // iface for packets when connected
char t_template[40]; // tcp header template, pointed to // by tp->template
void * app_data; // for use by socket application

};

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The sockaddr_in structure is used extensively by the TCP/IP stack API.
• sin_family must be set to AF_INET.
• sin_port is the 16 bit port number.
• sin_addr is the 32 bit IP address.
• sin_zero[] is not used.

M_SOCK m_listen (struct sockaddr_in * sin, M_CALLBACK(name), int * error)

• The m_listen() function creates its own socket (by calling m_socket()) and listens for a connect
from a remote client. Using the sockaddr_in structure, the listening socket can be assigned a port
to listen on, as well as an IP address to listen to. If the IP address is 0, then m_listen() will listen to
any IP address. If the server only accepts a connection from a single specified IP address, it sets
the IP address in the sin_addr. If the server accepts connections from any IP address (standard
operation), it sets sin_addr to 0. The callback function is called when a connection is established.

Sets:
socket->fhost = sockaddr_in->sin_addr; // far side IP
socket->lport = sockaddr_in->sin_port; // local port

int m_close(M_SOCK so)

• Closes any open connections on the socket, and releases the socket.
int m_send(M_SOCK so, char * data, unsigned datalen)

• The m_send() function is enabled when the BSDISH_SEND macro is defined. The m_send()
function is a “workalike” for the BSD sockets send() function

• Data points to the byte array to send, and datalen is the length of the array
• Returns the number of bytes actually sent on success, or -1 on error

int m_recv(M_SOCK so, char * buf, unsigned buflen)
• The m_recv() function is enabled when the BSDISH_RECV macro is defined. The m_recv()

function is a “workalike” for the BSD sockets recv() function.

The buflen parameter specifies the max number of bytes that the stack can store in the buf array. The buf
array is filled with data from the stack. buf will not necessarily be on packet boundaries. The buf array can
hold only a portion of a packet or multiple packets. m_recv() and m_send() are streaming functions, in that
there are no boundaries or chunks of data.
int m_ioctl(M_SOCK so, int option, void * data)

• Ioctl is used to configure various socket options.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor22

ColdFire TCP/IP Stack and RTOS
• The options parameter is used to select the option, and the data parameter is used to select the value.

Options (defined in msock.h):
• SO_NONBLOCK sets socket to non-blocking
• SO_BIO sets socket to blocking
• SO_NBIO sets/clears blocking based

Data!=0 is not blocking
• SO_DEBUG sets socket debug mode

With the DO_TCPTRACE

Macro sets, enables TCP

Debug messages
• SO_LINGER sets the time to wait before

Closing a socket

If set to 0, socket closes

Immediately with a call

To m_close().

3.16 TCP/IP Stack Zero-Copy API
The TCP/IP stack supports a zero-copy API. The primary advantage of this API is speed, but the
disadvantage is overhead. When using this API, the application manages packet buffers.
PACKET tcp_pktalloc(int datasize)

• Allocates a packet buffer by calling pk_alloc(datasize+headersize).
• Headersize is hardcoded to 54 bytes when the MINI_IP macro is defined. pk_alloc() will kick out

a request for a packet bigger then bigbufsiz, so datasize must be less then (bigbufsiz – 54).
• The PACKET returned is a pointer to a structure of type netbuf.

int tcp_send(M_SOCK so, PACKET pkt)
• Sends a packet allocated by tcp_pktalloc(). The application should copy its data to *pkt->m_data

and the number of bytes to pkt->m_len. Returns 0 if everything is okay and a error code for failure.
• Error codes can be found in msock.h.
• If a 0 is returned, the stack owns the packet and will free it after sending. If an error message is

returned, the application still owns the packet and must return it.
PACKET tcp_recv(M_SOCK so)

• Returns the next packet the socket receives. Packet data is pointed to by pkt->m_data, with data
length in pkt->m_len. The application must free the packet after it is done processing the data.

• Returns pointer to netbuf structure after packet is received, or NULL if no packet received and
socket is non-blocking.

void tcp_pktfree(PACKET p)
• Free’s netbuf pointed to by p.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 23

ColdFire TCP/IP Stack and RTOS
3.17 UDP/IP Stack API
UDPCONN udp_open(ip_addr fhost, insert fsock, unshort lsock,
 int (*handler)(PACKET, void*), void * data)

• The udp_open() function inserts a callback entry into the udp demux array. When udpdemux() in
m_udp.c is passed a UDP packet from the IP layer, it searches a link list of udp_conn structures
(defined in udp.h) looking for a callback function associated with the port number from the
incoming packet. When udpdemux() finds the correct callback function, it calls the function
passing it the packet from the IP layer. The udp_open() function fills in the udp_conn structure
from the input parameters, then inserts the new udp_conn structure into the linked list. Data points
to a 32-bit value that will be passed to the callback function when it is called. The IP stack only
passes up packets addressed to us (promiscuous mode is not supported).

udp_conn->u_lport = lsock// Local port number
udp_conn->u_fport = fsock// Foreign port number
udp_conn->u_fhost = fhost// Foreign IP address

• Returns a pointer to a udp_conn structure, or NULL if error.
void udp_close(UDPCONN con)

• Removes the udp_conn structure from the linked list. udp_close()
• Frees up the udp_conn structure from the heap. Any UDP packet sent to the port identified in the

udp_conn structure is dropped by the udpdemux() function.
PACKET udp_alloc(int datalen, int optlen)

• Allocates a packet buffer of size datalen + 34 + optlen. The packet buffer must be smaller then
bigbufsiz.

• Returns a pointer to a netbuf packet on success, and NULL on error.
void udp_free(PACKET p)

• Free’s netbuf pointed to by p.
int udp_send(unshort fport, unshort lport, PACKET p)

• Sends the packet pointed to by p from lport to foreign port.
• Copies data to *p->nb_prot and set p->nb_plen = number of bytes.
• Returns 0 on success, or error code.

3.18 TCP/UDP/IP Stack API Return Codes
• ENOBUFS: No packet buffers of requested size available
• ETIMEDOUTTCP: Timeout occurred (No ACK, no connection)
• EISCONN: m_connect() error occurs if socket is already connected.
• EOPNOTSUPP: m_ioctl() error occurs if option is not supported.
• ECONNABORTED: Not used
• EWOULDBLOCK: Indicates that a non-blocking socket would block. This error would occur if a

socket is set to non-blocking and a m_recv() function had been called when the stack had no data
to feed the m_recv().

• ECONNREFUSED: Connection was refused by the server
• ECONNRESET: Connection reset by the host
• ENOTCONN: An attempt was made to communicate on a socket that was not connected.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor24

ColdFire TCP/IP Stack and RTOS
• EALREADY: Not used
• EINVAL: Socket passed to API is not valid. It may have been closed.
• EMSGSIZE: Not used
• EPIPE: Error from tcp_send(); host closed the connection.
• EDESTADDRREQ: Not used
• ESHUTDOWN: Socket disconnected
• ENOPROTOOPT: Not used
• EHAVEOO: Not used
• ENOMEM: Error allocating memory for socket or other required structure
• EADDRNOTAVAIL: Muti-cast address not found.
• EADDRINUSE: Muti-cast address in use
• EAFNOSUPPORT: Not used
• EINPROGRESS: Non-blocking error indicating connection in place (m_connect())
• ELOWER: Not used

3.19 DHCP Client API
void dhc_setup(void)

• Initializes the DHCP client. The client attempts to acquire an IP address for 30 seconds, then fails.
The function does not return until an IP address is acquired (DHCP in the BOUND state) or the
timer times out. The 30 second timeout is specified in the dhc_setup() function in dhcsetup.c. The
timeout is hardcoded in a while loop about ¾ of the way into the function (look for TPS).
— while (((cticks - dhcp_started) < (30*TPS)) &&
— (dhc_alldone() == FALSE))

int dhc_second(void)
• This function is in dhcpclnt.c. It must be called once each second to support the DHCP

specification for lease times and IP renews and expirations fully.

3.20 DNS Client API
int dns_query(char * name, ip_addr * ip_ptr)

• Requests a host name to IP address translation
• The name parameter is the host name string. The ip_ptr will be filled in with the IP address if

available.
• Returns 0 on successful translation; otherwise, it returns an error number.

int dns_query_type(char * name, char type, struct dns_querys ** dns_ptr)

• Requests a specified type of data from the name server.
— Types: DNS_TYPE_QUERY // Type value for question

– DNS_TYPE_IPADDR // Type value for IPv4 address
– DNS_TYPE_AUTHNS // Authoritative name server
– DNS_TYPE_ALIAS // Alias for queried name

void dns_check(void)
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 25

ColdFire TCP/IP Stack and RTOS
• Should be called once a second to support DNS timeouts and retries
int dns_lookup(ip_addr * ip, char * name)

• Looks in DNS cache for name-to-IP address translation.
• If found in cache, returns 0.

struct hostent *gethostbyname(char * name)

• “Standard” API for name translation. Returns pointer to hostent structure on success, NULL on
failure. Hostent is defined in dns.h.

3.20.1 Example UDP Server Pseudo Code

A simple UDP server that will process packets from any IP address or port, sent to my ip address and port
1234.
#define EMGDATA ((void*)0x12345678)
UDPCONN emg_conn = NULL // Declare a pointer to a UDP connection

// structure
emg_conn = udp_open(0, // accept UDP packets addressed to us

// from any ip address 0,
// accept UDP packets FROM any port 1234,
// Only accept UDP packets sent to my
// port number 1234 emg_upcall,
// Callback Function EMGDATA);
// 32 bits value sent to emg_upcall

Now, any UDP packet addressed to my IP and port number 1234 will be passed to the callback function
emg_upcall().
int emg_upcall(PACKET pkt, void *data)
{

int datalength = pkt->nb_len;// datalength = # of bytes received
u_char *data;

data = (u_char *)pkt->nb_prot; // data[0] = first byte of rx data

 udp_free(pkt); // If we return 0, we must free the packet
 return(0);
// return(-1); // Returning anything but zero will force

// the stack to throw out the packet and Free
// the packet buffer

}

3.20.2 Example UDP Client Pseudo Code

A simple UDP client that will send data (‘eric’) from local port 5678 to foreign port 1234, ip address
192.168.1.1.

Since this is a send only app, no need to call udp_open().
PACKET pkt; // Declare a pointer to a packet
u_char *dataout // Pointer to output data

pkt = udp_alloc(100, // Request to send 100 bytes or less 0);
// No addition bytes needed if(pkt != NULL)

{

ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor26

ColdFire TCP/IP Stack and RTOS
dataout = (u_char *)pkt->nb_prot; // dataout points to first byte in data portion
 // of buffer

dataout[0] = ‘e’; // Copy data to packet buffer
dataout[1] = ‘r’;
dataout[2] = ‘i’;
dataout[3] = ‘c’;

pkt->nb_plen = 4; // Set data length

udp_send(1234, // Send to port 1234
 5678, // From local port 5678
 pkt);

}

3.20.3 Example TCP Server Pseudo Code

3.20.3.1 Creating a Listening Socket
// Init a socket structure with our Port Number
emg_http_sin.sin_addr.s_addr = (INADDR_ANY);
emg_http_sin.sin_port = (PORT_NUMBER);
emg_http_server_socket = m_listen(&emg_http_sin, freescale_http_cmdcb, &e);

3.20.3.2 Accepting a Connection
switch(code)
{

// socket open complete
case M_OPENOK:

msring_add(&emg_http_msring, so);
break;

}

3.20.3.3 Receiving TCP Data
length = m_recv(freescale_http_sessions[session].socket, (char *)buffer, RECV_BUFFER_SIZE);

3.20.3.4 Sending TCP Data
bytes_sent = m_send(freescale_http_sessions[session].socket, data, length);

3.20.3.5 Closing the Socket
j = m_close(so);

3.20.4 Example TCP Client Server Code

3.20.4.1 Creating a Socket
M_SOCK Socket = m_socket();
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 27

ColdFire TCP/IP Stack and RTOS
3.20.4.2 Connecting to a Server
int m_connect(M_SOCK socket, struct sockaddr_in * sin, M_CALLBACK(name));
// m_connect is blocking until a connection completes.
// If the socket is configured for non-blocking, then the callback function is used to indicate
when the connection is established.

3.20.4.3 Receiving TCP Data
length = m_recv(freescale_http_sessions[session].socket, (char *)buffer, RECV_BUFFER_SIZE);

3.20.4.4 Sending TCP Data
bytes_sent = m_send(freescale_http_sessions[session].socket, data, length);

3.20.4.5 Closing the Socket
j = m_close(so);

3.20.5 TCP/IP Stack Packet Flow

Figure 11. TCP/IP Stack Packet Flow

When a packet is received, the FEC ISR passes the packet to the stack by calling input_ippkt() in ifec.c
with a pointer to the packet and the length of the packet. The packet is inserted into an input packet queue
with a call to putq() in the module q.c. Then the function SignalPktDemux() is called to wakeup the TCP/IP
stack.

The function packet_check() in allports.c must be called routinely from either a task or the superloop. This
function calls pktdemux() in m_ipnet.c to start the actual processing of the packet. The pktdemux()
function looks at the ethernet header to determine the packet type. ARP packets are sent to the arprcv()
function for processing, while IP packets are sent to the ip_rcv() function.

dhcpclnt.c
dhcputil.c

m_udp.c

(HTTP/TFTP/DNS/...)

(Socket interface)

tcpapi.c,

tcpin.c, tcpout.c, m_icmp.c

m_ip.c, m_ipnet.c (IP) m_arp.c

ifec.c, fec.h, fecport.h (Ethernet)

mii.c, mii.h, mii_main.c (10BaseT/100BaseT)

(UDP) tcputil.c (TCP) (ICMP)

ARP
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor28

ColdFire TCP/IP Stack and RTOS
If the packet is type ARPTP, the arprcv() function in m_arp.c is called. Address Resolution Protocol, or
ARP, is used to match an IP address with an ethernet MAC address. The arprcv() function handles both
ARP requests from other devices. ARP replies from other devices. ARP requests from other devices cause
the arpReply() function in m_arp.c to be called, which will send out information to the other device. ARP
replies from other devices are responses to ARP requests. These replies are stored in the ARP table.

If the packet is type IPTP, then the ip_rcv() function in m_ip.c is called. The ip_rcv() function filters the
IP layer of the packet. It first verifies that the packet is the correct type. The free version of the stack only
supports IPV4. IPV6 packets are dropped. The checksum for the IP layer of the packet is then tested. If
the IP layer checksum is bad, the packet is dropped. Finally, the packet address is checked to see if it is
addressed to us. Packets not addressed to us are dropped. After the packet is verified for type, checksum,
and IP address, the packets is passed up the stack depending on the protocol field in the IP header.

The ColdFire TCP/IP stack supports three IP protocols: UDP, ICMP, and TCP. User Datagram Packets, or
UDP, are passed up to the udpdemux() function. ICMP packets are passed to the icmprcv() function. TCP
packets are passed to the tcp_rcv() function.
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 29

ColdFire TCP/IP Stack and RTOS

fec_isr()
ifec.c

input_ippkt()
ifec.c

putq(rcvdq)
q.c

SignalPktDemux()
ifec.c

rcvdq

Managed in q.c

Declared in
m_ipnet.c

packet_check()
allports.c

pktdemux()
m_ipnet.c

d_deq(rcvdq)
q.c

Packet
type

arprcv()
m_arp.c

ARPTP

ip_rcv()
m_ip.c

IPTP

SUPERLOOP
or netmain task
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor30

ColdFire TCP/IP Stack and RTOS
Figure 12. ColdFire TCP/UDP/IP Stack

ip_rcv()
in m_ip.c

ip_ver

Packet dropped
ENP_BAD_HEADER

IP_VER

! IP_VER

checksum invalid

dest ip =
my ip

Packet dropped
ENP_NOT_MINE

dest ip in packet not
addressed to me

ip_prot

ip_prot

ip_prot

udpdemux()

icmprcv()

tcp_rcv()

valid

UDP_PROT

ICMP_PROT

TCP_PROT
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 31

ColdFire TCP/IP Stack and RTOS
3.20.6 TCP/UDP/IP Stack Performance

The stack performance was measured using custom PC applications included in the project zip file. The
targets mentioned are part of the CodeWarrior project associated with this application note.

3.20.7 UDP TX Performance (ColdFire sending to UDP packets to host)
1. Start the PC UDP server on port 5678 (emg_udp_server.exe 5678)
2. Build and load the freescale_UDP_client target image.
3. Reset the board

Figure 13. UDP TX Performance

UDP TX Performance

0

500

1000

1500

14
59

12
60

10
60 86

0
66

0
46

0
26

0 60
Payload Size

K
 B

yt
es

 p
er

 s
ec

on
d

ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor32

ColdFire TCP/IP Stack and RTOS
3.20.8 UDP Client Firmware Used for Performance Testing
//***
//
// emg_udpsend based on tftp_udpsend
// Written by Eric Gregori
//
// Send outbuf to dest_port at ip address dest_ip
//
//**
int emg_udpsend (ip_addr dest_ip,

unsigned short dest_port,
char *outbuf,
int outlen

)
{

PACKET pkt2; // packet to send & free
int e;

pkt2 = udp_alloc(outlen, 0);
if(!pkt2)

return -1;

for(e=0; e<outlen; e++)
pkt2->nb_prot[e] = outbuf[e];

 pkt2->nb_plen = outlen;
 pkt2->fhost = dest_ip;
 pkt2->net = NULL;

 // local port
 e = udp_send(dest_port, 0x1234, pkt2);

 if(e < 0)
 {
#ifdef NPDEBUG
 dprintf("tftp_udpsend(): udp_send() error %d\n", e);
#endif
 return e;
 }
 else
 return 0;
}

//***
//
// Sample function for a UDP client
//
//***
void emg_send_data_via_udp(void)
{

ip_addr dest_ip = SERVER_IP;
int len;

// THIS VALUE SETS THE PAYLOAD SIZE
len = 1460;

data_to_send[0] = data_to_send[0] + 1;
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 33

ColdFire TCP/IP Stack and RTOS
// Send data_to_send to ip address det_ip, port PORT_NUMBER
if(emg_udpsend(dest_ip, PORT_NUMBER, (void *)data_to_send, len))

printf("\nError sending via UDP ");
printf("\nsent %d", len);

}

3.20.9 UDP Server PC Application Used for Performance Testing
//***
// UDP Server
//
// Written by: Eric Gregori
//***
void emg_udp_server(SOCKET s, struct sockaddr_in *peerp)
{

int rc, i, average;
int peerlen;
double bytes_received, seconds;
float rate;

bytes_received = (double)0;
reset_basetime();
average = 0;
while(1)
{

peerlen = sizeof(*peerp);
rc = recvfrom(s, (char *)data, sizeof(data), 0,

(struct sockaddr *)peerp, &peerlen);
if(rc >= 0)
{

average += rc;
average /= 2;
bytes_received += (double)rc;
if(bytes_received >= (double)1000000)
{

seconds = get_seconds();
rate = bytes_received/seconds;
printf("\ndata rate = %f KBps, average packet

size %d", (rate/1024), average);
bytes_received = (double)0;
reset_basetime();

}
}
else

error(1, errno, "recvfrom failed");
}

}

//***
// UDP Server
//
// Written by: Eric Gregori
//***
int main (int argc, char **argv)
{
 unsigned __int64 pf;

struct sockaddr_inlocal;
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor34

ColdFire TCP/IP Stack and RTOS
struct sockaddr_inpeer;
char *hname;
int peerlen;
int mode;
SOCKET s1;
SOCKET s;
const char on = 1;
char port[256];

INIT();

hname = NULL;

if(argc != 2)
{

exit(0);
}
else
{

strcpy(port, argv[1]);
mode = 2;

}

set_address(hname, port, &local, "udp");
s = socket(AF_INET, SOCK_DGRAM, 0);
if(!isvalidsock(s))

error(1, errno, "socket call failed");

if(bind(s, (struct sockaddr *) &local, sizeof(local)))
error(1, errno, "bind failed");

reset_basetime();

printf("\n\nAwaiting UDP data on port: %s", port);

emg_udp_server(s, &local);

CLOSE(s);

EXIT(0);
}

3.20.9.1 TCP TX Performance (ColdFire sending to TCP packets to host)

• Start the PC TCP server on port 5678 (emg_tcp_server.exe 5678)
• Build and load the freescale_TCP_client target image.
• Reset the board
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 35

ColdFire TCP/IP Stack and RTOS
Figure 14. TCP TX Performance

3.20.10 TCP Client Firmware Used for Performance Testing
//***
// emg_tcp_tx()
//
// Take data from the UART RX buffer and send it out over
// ethernet using the m_send() function.
//***
void emg_tcp_tx(void)
{

int len;

len = 1440; // ADJUST THIS FOR PAYLOAD LENGTH

TCP TX Performance

0
100
200
300
400

14
40

12
40

10
40 84

0
64

0
44

0
24

0 40
Payload Size

K
 B

yt
es

 p
er

 s
ec

on
d

ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor36

ColdFire TCP/IP Stack and RTOS
(void)m_send(emg_tcp_communication_socket, (char *)data_to_send, len);
printf("\nsent %d", len);

}

//***
// emg_tcp_loop() - Written By Eric Gregori
// eric.gregori@freescale.com
//
// Run application
//
//**
int freescale_tcp_loop()
{

int i;

emg_tcp_tx();
tk_sleep(INTER_PACKET_DELAY);

 return SUCCESS;
}

//**
// emg_http_cmdcb() - Written by Eric Gregori
// eric.gregori@freescale.com
//
// This is the mini-sockets callback function.
// We only uses to detect a connection to the socket.
// When a connection is made, this function is called by the stack.
// The connection message is sent to the application through a
// msring queue.
//**
int freescale_tcp_cmdcb(int code, M_SOCK so, void * data)
{

int e = 0;

switch(code)
{

// socket open complete
case M_OPENOK:

msring_add(&emg_tcp_msring, so);
break;

// socket has closed

 case M_CLOSED:
 while(semaphore){};
 semaphore = 1;

emg_tcp_communication_socket = INVALID_SOCKET;
semaphore = 0;

 break;

// passing received data
// blocked transmit now ready
case M_RXDATA: // received data packet, let recv() handle it
case M_TXDATA: // ready to send more, loop will do it
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 37

ColdFire TCP/IP Stack and RTOS
e = -1; // return nonzero code to indicate we don't want it
break;

 default:
 dtrap(); // not a legal case
 return 0;
 }

 TK_WAKE(&to_emgtcpsrv); // wake server task
 USE_VOID(data);
 return e;
}

//**
// emg_tcp_init() - written by Eric Gregori
// eric.gregori@freescale.com
//
// Create and bind a socket to our listening port (PORT_NUMBER).
// Set the socket to listen and non-blocking.
//**
int freescale_tcp_init()
{

int e;

semaphore = 0;
flash_ffs_lockout = 0;
emg_tcp_communication_socket = INVALID_SOCKET;

// Init message queue for MINI_TCP socket interface
 msring_init(&emg_tcp_msring, emg_tcp_msring_buf, sizeof(emg_tcp_msring_buf) /
sizeof(emg_tcp_msring_buf[0]));

// Init a socket structure with our Port Number
emg_tcp_sin.sin_addr.s_addr = (SERVER_IP);
emg_tcp_sin.sin_port = (PORT_NUMBER);

emg_tcp_communication_socket= m_socket();

printf("\nConnecting to target");

// Socket is blocking. The m_connect call will block
// until it connects.

 e = m_connect(emg_tcp_communication_socket, &emg_tcp_sin, freescale_tcp_cmdcb);
 if(e > 0)
 {
 if(e == ECONNREFUSED)
 printf(" - Cold Not Find Target, reset");
 else
 printf(" - error %d starting listen on emg TCP server\n", e);

 while(1)
 tk_sleep(100);
 }

emg_tcp_server_socket = emg_tcp_communication_socket;
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor38

ColdFire TCP/IP Stack and RTOS
printf(" - Connected");

for(e=0; e<TEST_BUFFER/4; e++)
data_to_send[e] = e;

 return SUCCESS ;
}

//**
// emg_tcp_check() - Written by Eric Gregori
// eric.gregori@freescale.com
//
// Check msring for message from socket callback function.
// If we received a connect request, call the connection function.
// While we are waiting for a connection to complete, we need to
// continue running our loop.
// Make the socket non-blocking.
//
// Call the loop function to execute any pending sessions.
//**
void freescale_tcp_check(void)
{

M_SOCK so;

if (emg_tcp_server_socket == INVALID_SOCKET)
 return ;

if(emg_tcp_communication_socket != INVALID_SOCKET)
freescale_tcp_loop();

}

//**
// The application thread works on a "controlled polling" basis:
// it wakes up periodically and polls for work.
//
// The task could alternatively be set up to use blocking sockets,
// in which case the loops below would only call the "xxx_check()"
// routines - suspending would be handled by the TCP code.
//
//
// FUNCTION: tk_emg_tcp_srv
//
// PARAM1: n/a
//
// RETURNS: n/a
//
//**
TK_ENTRY(tk_emgtcpsrv)
{
 int err;

 while (!iniche_net_ready)
 TK_SLEEP(1);
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 39

ColdFire TCP/IP Stack and RTOS
 err = freescale_tcp_init();
 if(err == SUCCESS)
 {
 exit_hook(freescale_tcp_cleanup);
 }
 else
 {
 dtrap(); // emghttp_init() shouldn't ever fail
 }

 for (;;)
 {
 freescale_tcp_check(); // will block on select
 tk_yield(); // give up CPU in case it didn't block

 if (net_system_exit)
 break;
 }
 TK_RETURN_OK();
}

//**
// create_freescale_task() - Written by Eric Gregori
// eric.gregori@freescale.com
//
// Insert the FreeScale task into the RTOS.
//**
void create_freescale_task(void)
{

int e = 0;

 e = TK_NEWTASK(&emg_tcp_task);
 if (e != 0)
 {
 dprintf("freescale task create error\n");
 panic("create_apptasks");
 }
}

3.20.11 TCP Server PC Application Used for Performance Testing
//***
// init
//
// Initialize the Winsock DLL (Windows specific)
//
// Written by: Eric Gregori
//***
void init(char **argv)
{

WSADATA wsadata;

(program_name = strrchr(argv[0], '\\')) ? program_name++ :
 (program_name = argv[0]);

WSAStartup(MAKEWORD(2,2), &wsadata);
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor40

ColdFire TCP/IP Stack and RTOS
}

void emg_tcp_server(SOCKET s, struct sockaddr_in *peerp)
{

int rc, i, average;
int peerlen;
double bytes_received, seconds;
float rate;

bytes_received = (double)0;
reset_basetime();
average = 0;
while(1)
{

peerlen = sizeof(*peerp);
rc = recv(s, (char *)data, sizeof(data), 0);
if(rc > 0)
{

average += rc;
average /= 2;
bytes_received += (double)rc;
if(bytes_received >= (double)100000)
{

seconds = get_seconds();
rate = bytes_received/seconds;
printf("\ndata rate = %f KBps, average packet size %d

bytes", (rate/1024), average);
bytes_received = (double)0;
reset_basetime();
average = 0;

}
}
else

error(1, errno, "recv failed");
}

}

//***
// TCP Server
//
// Written by: Eric Gregori
//***
int main (int argc, char **argv)
{
 unsigned__int64 pf;

struct sockaddr_inlocal;
struct sockaddr_inpeer;
char *hname;
int peerlen;
int mode;
SOCKET s1;
SOCKET s;
const char on = 1;
char port[256];

INIT();
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 41

ColdFire TCP/IP Stack and RTOS
hname = NULL;

if(argc != 2)
{

exit(0);
}
else
{

if((strcmp(argv[1], "HTTP") == 0) ||
(strcmp(argv[1], "http") == 0))

{
strcpy(port, "80");
mode = 1;

}
else
{

strcpy(port, argv[1]);
mode = 2;

}
}

set_address(hname, port, &local, "tcp");
s = socket(AF_INET, SOCK_STREAM, 0);
if(!isvalidsock(s))

error(1, errno, "socket call failed");

if(setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)))
error(1, errno, "setsockopt failed");

if(bind(s, (struct sockaddr *) &local, sizeof(local)))
error(1, errno, "bind failed");

if(listen(s, 5))
error(1, errno, "listen failed");

printf("\n\nAwaiting TCP data on port: %s", port);

do
{

peerlen = sizeof(peer);
s1 = accept(s, (struct sockaddr *)&peer, &peerlen);
if(!isvalidsock(s1))

error(1, errno, "accept failed");

reset_basetime();
emg_tcp_server(s1, &local);

CLOSE(s1);
} while(1);

CLOSE(s);

EXIT(0);
}

ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor42

ColdFire TCP/IP Stack and RTOS
3.20.12 Porting the Stack and RTOS to Other ColdFire Processors

The stack is a black box that requires inputs and support for outputs. When porting the stack to other
ColdFire processors, the goal is to provide the inputs and outputs. The stack itself is a group of files that
need to be compiled and linked.

Figure 15. ColdFire TCP/UDP/IP Stack

3.20.13 Periodic Timer

The stack requires a periodic timer to keep track of events and timeouts. Since the RTOS is not a
pre-emptive RTOS, there is no system tick. Task switching occurs asynchronously. The periodic timer
must increment a variable (cticks) defined in main.c. The stack references all timing of events off of cticks.
Cticks is an unsigned long that is not reset, only a rollover. If the RTOS is used, sleep() is in cticks. This
version of the port uses a ColdFire PIT as the interval timer. The PIT creates a interrupt every 1 ms, calling
the timer_isr() in main.c to increment cticks every 5 ms.

ColdFire TCP/UDP/IP Stack

memio.c

ifec.c

allports: Files specific to the ColdFire port

h: header files including ipport.h

mip: IP, ARP, UDP, ICMP layer

misclib: RTOS and menu system

mtcp: TCP layer and API

net: DHCP, DNS, ping

tftp: TFTP cli

vfs: RAM based file system

Ethernet Driver

main.c
timer_isr()
PIT timer

iuart.c
Serial Driver

mheap_init((char*)&_heap_addr, (long)&_heap_size)

prep_fec()
fec_init()
fec_pkt_send()

input_ippkt()

cticks

uart_putc()

uart_getc()

heap_sizeheap_addr
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 43

ColdFire TCP/IP Stack and RTOS
3.20.14 MCF5223X Clock Configuration

The MCF5223X has an internal PHY, so it requires that the external clock be 25 Mhz. Since 25 Mhz is
too high of a frequency to input directly into the PLL, it must first be divided by a prescaler. With the
MCF5223X, this is accomplished using the CCHR register. Older revisions of the MCF5223X reference
manual incorrectly state that the CCHR resets to 0. This would result in a divide by 1, and would be outside
the spec for the MCF5223X PLL. In fact, the CCHR resets to a value of 4, resulting in a divide by 5. This
results in the external 25 Mhz clock being divided by 5 before entering the PLL.

The stack is configured to run at 60 Mhz on the MCF5223X. This is done in the function
mcf5223_pll_init(void) in mcf5223_sysinit.c. The PLL is configured to multiply the 5 Mhz by 12 via the
SYNCR register, resulting in the PLL outputting 60 MHz.
// EMG - The CCHR resets to a divide by 5, resulting in PLL input = 5 MHz
MCF_CLOCK_SYNCR = MCF_CLOCK_SYNCR_MFD(4) |
 MCF_CLOCK_SYNCR_CLKSRC |
 MCF_CLOCK_SYNCR_PLLMODE |
 MCF_CLOCK_SYNCR_PLLEN ;

// MCF_CLOCK_SYNCR_MFD(4) = PLL in (5 MHz) * 12
// MCF_CLOCK_SYNCR_CLKSRC = PLL output drives the system clock
// MCF_CLOCK_SYNCR_PLLMODE = PLL is in Normal mode
// MCF_CLOCK_SYNCR_PLLEN = PLL enabled

3.20.15 MCF5223X PIT Configuration

The stack requires that the timer_isr() in main.c be called every PIT1_INTS_PER_SEC (defined in main.c
). With the MCF5223X, we chose a PIT to tickle the timer isr. The timer isr then increments cticks every
INTS_PER_TICK (defined in main.c).
PIT1_INTS_PER_SEC = 1000 (1ms)
CTICKS_PER_SEC = 200 (5ms)

INTS_PER_CTICK = PIT1_INTS_PER_SEC / CTICKS_PER_SEC = 5

The PIT timer is configured in the function PIT_Timer_Init (uint8 PCSR, uint16 PMR) in mcf5223.c. This
function is called from pre_task_setup() in iutil.c, and pre_task_setup() is called from netmain_init() in
allports.c.
char *pre_task_setup()
{
 PIT_Timer_Init(0,30000);
 return NULL;
}

• Where 0 is the PCSR and 30000 is the PMR.
• For a PIT, the interrupt interval formula is PMR / ((Fsys/2)/(2^PCSR))
• The peripherals in the MCF5223 are driven by Fsys/2. This may not be clear in the reference

manual.
• Fsys = 60 Mhz -> interval = 30000/((60000000/2)/(2^0)) = .001 = 1ms
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor44

ColdFire TCP/IP Stack and RTOS
3.20.16 Ethernet Controller

If the stack is used for ethernet communications, an ethernet controller and driver must be supplied. A
SLIP driver is available for non-ethernet applications. Contact the field applications engineer. The port of
the stack that accompanies this application note includes a driver for the ColdFire Fast Ethernet Controller
(FEC)in ifec.c. The FEC is a DMA-based ethernet controller that supports 10 Mbps and 100 Mbps. Data
is passed back and forth between RAM and the FEC via DMA transactions controlled by buffer
descriptors. Each buffer descriptor consists of four 16 bit words. The first word is a configuration/status
word, the second word is the buffer length, and the third and fourth words combine to form a pointer to a
buffer. Buffer descriptors are configured in a ring, with the wrap bit set in the configuration word to
indicate the last descriptor.

Figure 16. Buffer Descriptor

16 bit Buffer Length

16 bit Configuration Word

Buffer Pointer A [31:16]

Buffer Pointer A [15:0]
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 45

The Ethernet PHY
Figure 17. Buffer Descriptor Ring

4 The Ethernet PHY
An ethernet (IEEE802.3) system has two parts, the Media Access Layer (MAC) and the Physical Layer
(PHY). The MAC performs the protocol layer while the PHY performs the electrical layer. There are two
types of PHY (there are actually many more but the ColdFire currently supports only two) 100 Mbps
(IEEE802.3u) and 10 Mbps (IEEE802.3a-t). Each PHY is essentially an electrical modulator. Although the
PHYs are different, in most cases they are implemented in a single part.

The PHY communicates with the MAC via a Media Independent Interface (MII) (IEEE802.3u). Part of
the MII is a serial Management Interface (in FEC documentation this is referred to as the Media
Management Interface). This management interface grants access to configuration registers in the PHY.
The MSCR and MMFR registers in the FEC are used to init and write to/read from the Media Management
Interface. The MSCR register is used to configure the clock rate of the serial data transfer. The 802.3u
specification limits this rate to 2.5 MHz.

4.1 Initializing MII Interface in MCF5223X (in mii.c)
/**/
 * Initialize the MII interface controller
 * Parameters:
 * sys_clk System Clock Frequency (in MHz)
/**/
void fec_mii_init(int sys_clk)

WRAP = 0

16 bit buffer length

Buffer pointer A[31:16]

Buffer pointer A[15:0]

WRAP = 1

16 bit buffer length

Buffer pointer A[31:16]

Buffer pointer A[15:0]

ERDSR / ETDSR
Points to the start of ring

Packet buffer allocated from
stack with pk_alloc()

Packet buffer allocated from
stack with pk_alloc()
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor46

The Ethernet PHY
{
 /*
 * Initialize the MII clock (EMDC) frequency
 *
 * Desired MII clock is 2.5 MHz
 * MII Speed Setting = System_Clock / (2.5 MHz * 2)
 * (plus 1 to make sure we round up)
 */
 MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED((uint32)((sys_clk/3)+1));
 /*
 * Make sure the external MII interface signals are enabled
 */
// not needed on 5223
// MCF_GPIO_PASPAR = (MCF_GPIO_PASPAR & 0xF0FF) | 0x0F00;
}

4.2 MII Management Frame Write Function (in mii.c)
After the speed is initialized, data is read and written to the PHY registers using the MMFR register. The
MII specification actually supports multiple PHYs on an MII, so each PHY is given an address. The FEC
does all the work. Specify a PHY address, register address, and data, and the FEC handles everything else.
/**/
* Write a value to a PHY's MII register.
 *
 * Parameters:
 * phy_addr Address of the PHY.
 * reg_addr Address of the register in the PHY.
 * data Data to be written to the PHY register.
 *
 * Return Values:
 * 0 on failure
 * 1 on success.
 *
/**/
int fec_mii_write(int phy_addr, int reg_addr, int data)
{
 int timeout;
 uint32 eimr;

 /* Write to the MII Management Frame Register to kick-off the MII write */
 MCF_FEC_MMFR = (vuint32)(0
 | MCF_FEC_MMFR_ST_01
 | MCF_FEC_MMFR_OP_WRITE
 | MCF_FEC_MMFR_PA(phy_addr)
 | MCF_FEC_MMFR_RA(reg_addr)
 | MCF_FEC_MMFR_TA_10
 | MCF_FEC_MMFR_DATA(data));

 /* Poll for the MII interrupt (interrupt should be masked) */
 for (timeout = 0; timeout < FEC_MII_TIMEOUT; timeout++)
 {
 if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
 break;
 }
 if(timeout == FEC_MII_TIMEOUT)
 return 0;
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 47

The Ethernet PHY
 return 1;
}

4.3 MII Management Frame Read Function (in mii.c)
/**/
* Read a value from a PHY's MII register.
 *
 * Parameters:
 * phy_addr Address of the PHY.
 * reg_addr Address of the register in the PHY.
 * data Pointer to storage for the Data to be read
 * from the PHY register (passed by reference)
 *
 * Return Values:
 * 0 on failure
 * 1 on success.
 *
/**/
int fec_mii_read(int phy_addr, int reg_addr, uint16* data)
{
 int timeout;
 uint32 eimr;

 /* Write to the MII Management Frame Register to kick-off the MII read */
 MCF_FEC_MMFR = (vuint32)(0
 | MCF_FEC_MMFR_ST_01
 | MCF_FEC_MMFR_OP_READ
 | MCF_FEC_MMFR_PA(phy_addr)
 | MCF_FEC_MMFR_RA(reg_addr)
 | MCF_FEC_MMFR_TA_10);

 /* Poll for the MII interrupt (interrupt should be masked) */
 for (timeout = 0; timeout < FEC_MII_TIMEOUT; timeout++)
 {
 if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
 break;
 }

 if(timeout == FEC_MII_TIMEOUT)
 return 0;

 *data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);

 return 1;
}

ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor48

The Ethernet PHY
The PHY registers themselves depend on the PHY part being used.

4.4 Media Management Interface (in menulib.c)
//**
// int SoftEthernetNegotiation(int seconds) Written By Eric Gregori
//
// Attempt to connect at 100 Mbps - Half Duplexe
// Wait for seconds
// Attempt to connect at 10 Mbps - Half Duplexe
// Returns 10, or 100 on success, 0 on failure
//**
int SoftEthernetNegotiation(int seconds)
{

uint16 reg0, reg1, tick;

// Force ePHY to manual, 100mbps, Half Duplexe
(void)fec_mii_read(0, 0, ®0);
reg0 |= 0x2000; // 100Mbps
reg0 &= ~0x0100; // Half Duplexe
reg0 &= ~0x1000; // Manual Mode

Table 1. MCF5223x PHY MII Registers

Address Use Access

0 $0X0000 Control Register Read/Write

1 $0X0001 Status Register Read/Write

2 $0X0002 PHY identification Register 1 Read/Write

3 $0X0003 PHY Identification Register 2 Read/Write

4 $0X0004 Auto-Negotiation Advertisement Register Read/Write

5 $0X0005 Auto-Negotiation Link Parter Ability Register Read/Write

6 $0X0006 Auto-Negotiation Expansion Register Read/Write

7 $0X0007 Auto-Negotiation Next Page Register Read/Write

8 $0X0008 RESERVED Read/Write

9 $0X0009 RESERVED Read/Write

10 $0X000A RESERVED Read/Write

11 $0X000B RESERVED Read/Write

12 $0X000C RESERVED Read/Write

13 $0X000D RESERVED Read/Write

14 $0X000E RESERVED Read/Write

15 $0X000F RESERVED Read/Write

16 $0X0010 Interrupt Control Register Read/Write

17 $0X0011 Proprietary Status Register Read/Write

18 $0X0012 Proprietary Control Register Read/Write
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 49

(void)fec_mii_write(0, 0, reg0);
(void)fec_mii_write(0, 0, (reg0|0x0200)); // Force re-negotiate
for(tick=0, ephy_isr=0; tick<100; tick++)
{

tk_sleep(seconds*10);
(void)fec_mii_read(0, 1, ®1);
if(reg1 & 0x0004)

return(100);
}
// Force ePHY to manual, 10mbps, Half Duplexe
(void)fec_mii_read(0, 0, ®0);
reg0 &= ~0x2000; // 10Mbps
reg0 &= ~0x0100; // Half Duplexe
reg0 &= ~0x1000; // Manual Mode
(void)fec_mii_write(0, 0, reg0);
(void)fec_mii_write(0, 0, (reg0|0x0200)); // Force re-negotiate
for(tick=0, ephy_isr=0; tick<100; tick++)
{

tk_sleep(seconds*10);
(void)fec_mii_read(0, 1, ®1);
if(reg1 & 0x0004)

return(10);
}
return(0);

}

In most cases the PHY does not need to be configured. The PHY on the M5329EVB is bootstrapped to
advertise support for 10/100 Half and Full duplex with autonegotiations enabled. Advertising refers to the
capabilities a PHY announces it has during autonegotiations with another PHY. Autonegotiations is a
PHY-to-PHY protocol defined in 802.3u. In the protocol, each PHY advertises it abilities, and the two
PHYs negotiate a set of parameters they can both support. Since the PHY on the M5329EVB defaults to
normal operating parameters, we do not need to configure it. The M5208EVB uses the same PHY and
bootstrap configurations, so the same is true with a port to the M5208EVB. If the PHY registers do need
to be modified, include the mii.c and mii.h files in the port.

See the the ifstats() function for further information.

5 Porting the ColdFire TCP/UDP/IP Stack Project Using
CodeWarrior™

The stack has been written to be easily ported between ColdFire platforms. The source code for the stack
can be easily incorporated into any stationary created by CodeWarrior for a ColdFire project. The stack
was originally written for the MCF5208, then ported to the MCF5223X, then ported to the MCF5282, and
with this application note ported to the MCF523X.

1. Using CodeWarrior stationary create a C project
2. Add the files from the following stack directories to the new project:

Ethernet – The mii driver may not be needed if using default PHY.
Common
Projects

3. Modify common.h per instructions below.
4. Remove stack version of startup.c (it’s for a MCF5223X)
5. If the ColdFire does not have internal flash (CFM). Remove freescale_flash_loader.c and replace

with stubs.

Porting the ColdFire TCP/UDP/IP Stack Project Using CodeWarrior™
6. If the ColdFire does not have an SPI. Remove Freescale_serial_flash.c
7. Add entries in the vector table for:

a. ethernet_handler
b. timer_isr
c. uart0_isr
d. fec_isr

8. Modify interrupt init functions for above handlers via macro
9. Enable port pin functionality for FEC.
10. Enable/Disable any stack features via ipport.h

5.1 Modifying common.h from New Project For Stack Usage
Common.h must be modified to disable standard library usage. Also the common.h included with the stack
should not be included with your new project (use the common.h that was automatically created when you
started a new project). The CodeWarrior stationary will put the common.h file in the project include
directory.

Bold lines have been modified from the original stationary generated common.h.
#ifndef _COMMON_H_
#define _COMMON_H_

/**/
//* Debug prints ON (#define) or OFF (#undef)
//#define DEBUG_PRINT

 //* Include the generic CPU header file
#include "mcf5xxx.h"

 //* Include the specific CPU header file
#include "mcf532x.h"

 //* Include the board specific header file
#include "m5329evb.h"

 //* Include any toolchain specific header files
//#include "mwerks.h"

#if (defined(__MWERKS__))
#include "mwerks.h"
#define __CFM68K__ 0
#define __MC68K__ 0
#elif (defined(__DCC__))
#include "build/wrs/diab.h"
#elif (defined(__ghs__))
#include "build/ghs/ghs.h"
#endif

/*
 * Include common utilities
 */
// EMG #include <assert.h>
// EMG #include <stdlib.h>

/**/
#endif /* _COMMON_H_ */
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor 51

THIS PAGE IS INTENTIONALLY BLANK
ColdFire TCP/UDP/IP Stack and RTOS, Rev. 0

Freescale Semiconductor52

THIS PAGE IS INTENTIONALLY BLANK

Document Number: AN3470
Rev. 0
06/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 ColdFire TCP/UDP/IP Stack Features
	3 ColdFire TCP/IP Stack and RTOS
	3.1 RTOS Overview
	3.1.1 Sample Superloop Code
	3.1.2 Configuring the RTOS
	3.1.3 RTOS Configuration for Superloop Operation
	3.1.4 RTOS Configuration for Multi-Stack Operation

	3.2 RTOS API
	3.2.1 Example: cticks = 100
	3.2.2 RTOS Functions

	3.3 Creating a Task
	3.4 Menu System and Serial Driver
	3.5 Sample Serial Console Menu Output
	3.6 Sample User Defined Menu Options
	3.7 TCP/IP Stack Overview
	3.8 Configuring the TCP/IP Stack
	3.9 Setting the MAC and IP Addresses
	3.10 DHCP Client
	3.11 DNS Client
	3.12 Stack RAM Usage
	3.13 Tested TCP/IP Stack Parameters
	3.14 Reduced RAM TCP/IP Stack Parameters
	3.15 TCP/UDP/IP Stack API
	3.16 TCP/IP Stack Zero-Copy API
	3.17 UDP/IP Stack API
	3.18 TCP/UDP/IP Stack API Return Codes
	3.19 DHCP Client API
	3.20 DNS Client API
	3.20.1 Example UDP Server Pseudo Code
	3.20.2 Example UDP Client Pseudo Code
	3.20.3 Example TCP Server Pseudo Code
	3.20.3.1 Creating a Listening Socket
	3.20.3.2 Accepting a Connection
	3.20.3.3 Receiving TCP Data
	3.20.3.4 Sending TCP Data
	3.20.3.5 Closing the Socket

	3.20.4 Example TCP Client Server Code
	3.20.4.1 Creating a Socket
	3.20.4.2 Connecting to a Server
	3.20.4.3 Receiving TCP Data
	3.20.4.4 Sending TCP Data
	3.20.4.5 Closing the Socket

	3.20.5 TCP/IP Stack Packet Flow
	3.20.6 TCP/UDP/IP Stack Performance
	3.20.7 UDP TX Performance (ColdFire sending to UDP packets to host)
	3.20.8 UDP Client Firmware Used for Performance Testing
	3.20.9 UDP Server PC Application Used for Performance Testing
	3.20.9.1 TCP TX Performance (ColdFire sending to TCP packets to host)

	3.20.10 TCP Client Firmware Used for Performance Testing
	3.20.11 TCP Server PC Application Used for Performance Testing
	3.20.12 Porting the Stack and RTOS to Other ColdFire Processors
	3.20.13 Periodic Timer
	3.20.14 MCF5223X Clock Configuration
	3.20.15 MCF5223X PIT Configuration
	3.20.16 Ethernet Controller

	4 The Ethernet PHY
	4.1 Initializing MII Interface in MCF5223X (in mii.c)
	4.2 MII Management Frame Write Function (in mii.c)
	4.3 MII Management Frame Read Function (in mii.c)
	4.4 Media Management Interface (in menulib.c)

	5 Porting the ColdFire TCP/UDP/IP Stack Project Using CodeWarrior™
	5.1 Modifying common.h from New Project For Stack Usage

