
© Freescale Semiconductor, Inc., 2006-2008. All rights reserved.

Freescale Semiconductor
Application Note

Document Number: AN3389

1 Introduction
This document explains how to use a Flash Tool Kit to
support additional flash devices on the ColdFire®
CodeWarrior™ Flash Programmer by creating new
programming algorithms. This document:

• Helps you confirm whether a new flash algorithm
is necessary

• Provides instructions

• Provides an example project

2 Preliminary Background
Before you program or erase any flash device, you must
ensure the CPU can access it. For example, you might
need a different debug setup that requires modifications
to the debugger configuration file. Consider the
following before you begin:

• Read the flash device ID to verify correct
connection and programmability. Application
Note 2980 Troubleshooting the Flash
Programmer provides instructions.

Creating an External Flash Algorithm
by Ildar Saifutdinov and Sebastien Duchamp

Contents
1 Introduction . 1
2 Preliminary Background 1
3 Flash Tool Kit Overview 2
4 Flash Programmer API 4
5 Creating a New Flash Programming

Algorithm . 8
6 Flash Programming Examples 21
7 Chip Makers’ Flash Programming

Recommendations . 36

Flash Tool Kit Overview

Creating an External Flash Algorithm Application Note

2 Freescale Semiconductor

• Note that many manufacturers use the same flash-device algorithms, so it is likely that flashes can
be programmed using algorithms included with CodeWarrior software. In addition, many
manufacturers produce devices compatible with Intel or AMD.

• Check whether a new flash device can be programmed with the same algorithms that Intel or AMD
use, as described in Section 7.

• Refer to the Application Note 3390 Adding Device(s) to the Flash Programmer to determine if a
flash device is programmable with an algorithm already included with the CodeWarrior software.

• Follow the steps in Section 5 if the flash device cannot be programmed with an existing algorithm.

3 Flash Tool Kit Overview
The Flash Took Kit described in this document helps you develop flash programming algorithms for the
CodeWarrior Flash Programmer, as shown in Figure 1. This section and Section 4 provide important
information needed before you begin creating a flash programming algorithm.

Figure 1. Flash Tool Kit

Flash Tool Kit Overview

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 3

3.1 Flash Tool Kit General Structure
The flash programmer Flash Tool Kit (FTK) application is divided into four different sets of files:

1. FTK Common Files (No Modification Needed) contain initialization and other files. This
component is common for any flash device and you should not change it while developing the new
flash programming algorithm. It consists of the following files:

– flash_algorithm.lcf file – linker command file. This linker command file is set up
according to the rules for flash programming applet allocation in physical memory.

– flash_commands.h – header file with API to CodeWarrior Flash Programmer
commands definition

– generic.h – header file with the generic data structures and definitions used by the flash
programming algorithms

– exit.c – exit point for the flash programming applet

– __flash_start.c – flash programmer start-up initialization file

– flash_main.c – main function and API to the CodeWarrior Flash Programmer

2. User Files (Implement Algo) contain flash device specific files. This component is modified for
any flash devices depending on the flash programming algorithm to be used. It consists of the
following files:

– algo_impl.c – functions to implement for the flash device flash algorithm, such as ID,
erase_sector, erase_chip, write

3. User Files (Implement Algo Tests) contain flash device specific files. This component is
considered to be modified for any flash devices depending on the flash programming algorithm to
be used. It comprises the following files:

– flash_test.c – sample code with the flash unit test functionality implementation

– flash_device.h – custom flash device definition file

4. flash_info.txt file. This file contains CodeWarrior Flash Programmer commands
description.

To create the new algorithm for flash programming, make all changes to algo_impl.c (flash device
algorithm implementation) and flash_device.h/flash_test.c files (flash device tests).

3.2 Flash Tool Kit Build Targets
Several build targets are predefined in the Flash Tool Kit (FTK):

• Flash Algo Development – flash algorithm development and test application. The ELF executable
file, created in Flash Algo Development, should be used to develop, debug, and test the new
CodeWarrior Flash Programmer algorithm.

• Flash Algo Release – create flash algorithm applet. CodeWarrior Flash Programmer uses the ELF
executable file, created in Flash Algo Release. This build target shares the flash device algorithm
with the Flash Algo Development build target; it differs, however, because it cannot be debugged
or tested (Figure 2.)

Flash Programmer API

Creating an External Flash Algorithm Application Note

4 Freescale Semiconductor

Figure 2. Flash Tool Kit Targets

4 Flash Programmer API
The CodeWarrior Flash Programmer communicates with the flash programming algorithm applet through
four different commands:

• get ID

• erase sector

• erase chip

• program

The CodeWarrior Flash Programmer uses an exchange zone in target memory to communicate with the
flash applet. The Flash Programmer Target Configuration specifies the Target Memory Buffer; the
exchange zone is at the start of this buffer, as shown in Figure 3.

Flash Programmer API

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 5

Figure 3. Target Configuration Buffer Memory Area Start Address

In this application note, scratchMemStart is the starting address of this zone.

Depending on the actions the Flash Programmer requires of the applet, these exchange zone settings may
differ.

Parameter_block_t Structure

On the flash applet side, the commands from the CodeWarrior Flash Programmer go through
the Parameter_block_t structure, mapped in memory, starting from the scratchMemStart
address.

All commands from CodeWarrior Flash Programmer are already encoded in flash_main.c file.
This file can be used for the new flash programming algorithm without changes. After loading
the flash applet to the target board, CodeWarrior Flash Programmer writes the
startMemScratch address in the D7 register (Listing 1).

Listing 1. Parameter_block_t Pointer Initialization

void main(void)
{
 unsigned long num_errors;
 parameter_block_t *_params;
 long res=0;

#ifdef FLASH_ALGO_TEST

Flash Programmer API

Creating an External Flash Algorithm Application Note

6 Freescale Semiconductor

 int testnumber = 0;
 _params = (parameter_block_t *)(unsigned int)&data_1;
#else
 asm
 {
 move.l D7,res
 }
_params = (parameter_block_t *)res;

For the detailed description of the Parameter_block_t structure refer to Listing 2.

Listing 2. Parameter_block_t Structure Details

typedef struct pb {
unsigned long function; /* What function to perform ? */
pointer_t base_addr; /* where are we going to operate */
unsigned long num_items; /* number of items */
unsigned long result_status;
pointer_t items;
} parameter_block_t;

Listing 2 definitions:

• function – command from CodeWarrior Flash Programmer to be executed

• base_addr – start address of the flash memory

• num_items – number of the data to be transferred from CodeWarrior Flash Programmer to the flash
programming applet

• result_status – status of the command; through this field, the flash programming applet notifies
CodeWarrior Flash Programmer about the status of the command being executed

• items – start address of the data to be transferred from CodeWarrior Flash Programmer to the flash
programming applet

ID

The CodeWarrior Flash Programmer uses the getting chip ID command right after the flash
algorithm is loaded to the memory buffer to check if the applet runs. For the ID command,
CodeWarrior Flash Programmer:

• loads the flash programming applet to the target board.

• sets the command ID, as shown in the function field of Listing 2.

• runs flash programming applet.

• waits while flash applet stops execution.

• checks the status of the command being executed, as shown in the result_status field of
Listing 2.

Flash Programmer API

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 7

fEraseChip

The full chip erase command is called by CodeWarrior Flash Programmer when a full chip
erase is performed. For the fEraseChip command, CodeWarrior Flash Programmer:

• loads the flash programming applet to the target board.

• sets the command fEraseChip, as shown in the function field of Listing 2.

• runs the flash programming applet.

• waits while the flash applet stops execution.

• checks the status of the command being executed, as shown in the result_status field of
Listing 2.

NOTE Some flash devices do not support the full chip erase command. Check the
flash device’s specifications, available from the manufacturer.

fEraseSector

The sector erase command is called by the CodeWarrior Flash Programmer when a set of
sectors in flash memory must be erased. For the fEraseSector command, CodeWarrior Flash
Programmer:

• loads the flash programming applet to the target board.

• sets the command fEraseSector. as shown in the function field of Listing 2.

• specifies number of blocks to be erased, as shown in the num_items field of Listing 2.

• specifies start-up address of each block to be erased, as shown in the items field of
Listing 2.

• runs the flash programming applet.

• waits while the flash applet stops execution.

• checks the status of the command being executed, as shown in the result_status field of
Listing 2.

fWrite

The fWrite program buffer command is called by the flash programmer to program a set of
values at a specific address. For the fEraseSector command, CodeWarrior Flash Programmer:

• loads the flash programming applet to the target board.

• sets the command fWrite, as shown in the function field of Listing 2.

• specifies number of bytes to be programmed, as shown in the num_items field of
Listing 2.

• specifies start-up address of data to be programmed, as shown in the items field of
Listing 2.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

8 Freescale Semiconductor

• runs flash programming applet.

• waits while flash applet stops execution.

• checks the status of the command being executed, as shown in the result_status field of
Listing 2.

5 Creating a New Flash Programming Algorithm
In this section, step-by-step instructions show you how to use the Flash Tool Kit to create a new
CodeWarrior Flash Programmer flash programming algorithm for a flash device not integrally supported
by the CodeWarrior software.

1. Store an original version of the Flash Tool Kit files from the CodeWarrior delivery.

2. Copy FlashToolKitTemplate and Common_Files folders to a different working location.

3. Check the folder:
Freescale\CodeWarrior for ColdFire V7.x\ColdFire_Tools\FlashToolKit

4. Open Flash Tool Kit project

a) Locate the Flash Tool Kit project named Flash_ToolKit.mcp in the
FlashToolKitTemplate folder.

b) Open Flash_ToolKit.mcp project with the CodeWarrior for ColdFire Development
Studio as shown in Figure 4.

c) Upon being opened, Flash Tool Kit will appear as shown in Figure 1.

d) Ensure the Flash Algo Development build target is selected.

5. Correct derivative family – ensure correct Target Processor is used in the Debugger Settings
Target Settings Panel.

6. Configuration and memory files – ensure the correct mem and cfg file are used for the connected
hardware in the Debugger Settings Target Settings Panel.
a) For supported Freescale Evaluation Boards, you can use the debugger config files (*.cfg), and

the debugger mem files (*.mem) available with the CodeWarrior Development Studio. Check
the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files

b) For example, the configuration settings for the MCF5282EVB board are shown in Figure 5.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 9

Figure 4. Flash Tool Kit Project Opening

Figure 5. Hardware Configuration Settings

NOTE Where custom hardware design exists, the debugger configuration file and
the memory mapping file must be written. In this case, the memory
initialization for the flash device should be checked before trying to create
the new flash programming algorithm. Refer to the information under
Section 2.

7. Specify an alternate loading address.

a) The flash algorithm, a PIC\PID application, can run from anywhere in memory. An alternate
loading address is where the flash applet code will be loaded and executed on the target board.
This address can be either in internal or external RAM memory, as shown in Figure 6.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

10 Freescale Semiconductor

Figure 6. Alternate Loading Address Settings

b) The Alternate Load Address should match the address where the code is linked. By default, the
flash programming algorithm will be compiled to start at address 0x500; refer to the TEXT start
address value in the flash_algorithm.lcg linker command file as shown in Figure 7.

c) If the custom board’s address space where you want to debug the applet is other than 0x0, the
alternate address must be changed. For example: if RAM is allocated starting from address
0x2000000, the alternate loading address will be 0x20000000+0x500 = 0x20000500.

Figure 7. Code Start Address Definition in flash_algorithm.lcf File

NOTE The value of scratchMemstart address is set from the user interface.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 11

Figure 8. Code in the Flash_Device.h File

8. Modify algo_impl.c file

a) The flash algorithm functionality file algo_impl.c shall be modified and filled with the
correct programming commands, as recommended by the flash device manufacturer.

9. Modify ID function in algo_impl.c file

a) By default, the ID function in algo_impl.c file looks as shown in Listing 3.

Listing 3. ID Function Template in algo_impl.c File

retval_t ID(parameter_block_t *p_pb)
{
 retval_t result = 0;
 volatile unsigned long* item_addr = (p_pb->items).l;
 /* Add code: the correct access size depending on the bus must be used for the base_addr */
 volatile unsigned short *base_addr = (p_pb->base_addr).w;

 /* Add code: first of all reset the device.
 The fID is not called in the new flash programmer plugin therefore
 the flash chip must always be bring into the read state.
 */

 /* Add code: read the device ID */

 /* we currently assume that we have the right value */
 /* anyway, the IDE have to care about the flash ID and compare with the xml file */
 return result;
}

b) The following definitions pertain to Listing 3:

– parameter_block_t *p_pb – pointer to the parameter_block_t structure to be passed to the
ID function

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

12 Freescale Semiconductor

– retval_t – result of the function execution

c) The correct command sequence should be created for the ID function based on the
recommendations of the flash device manufacturer, as described in Section 6.1.1.

10. Modify erase_sector Function

a) By default, the erase_sector function in algo_impl.c file appears as shown in
Listing 4.

Listing 4. Function Template erase_sector in algo_impl.c

retval_t erase_sector(parameter_block_t *p_pb, unsigned long sect_index)
{
 int timed_out, got_it;
 retval_t result = 0;
 /* Add code: the correct access size depending on the bus must be used for the base_addr */

 volatile unsigned short *base_addr = ((unsigned short **)(p_pb->items).w)[sect_index];

 /* Add code: first of all reset the device.
 The fID is not called in the new flash programmer plugin therefore
 the flash chip must always be bring into the read state.
 */

 /* Add code: erase one sector */
 /* Add code: wait for status */
 /* Add code: handle error (and timeout if needed) */
 /* Add code: put back the flash in read state */

 return result;
}

b) Listing 4 definitions:

– parameter_block_t *p_pb – pointer to the parameter_block_t structure to be passed to the
erase_sector function

– unsigned long sect_index – index of the sector to be erased

– retval_t – result of the function execution

c) Based on recommendations from the flash device manufacturer, the correct command sequence
must be created for flash-sector erasing, as described in Section 6.1.2.

11. Modify erase_chip Function

a) By default, the erase_chip function in algo_impl.c file looks as presented in Listing 5.

Listing 5. Function Template erase_chip in algo_impl.c File

retval_t erase_chip(parameter_block_t *p_pb)
{
 int errors = 0;
 retval_t result = 0;
 unsigned short stat;
 int got_it;

 /* Add code: the correct access size depending on the bus must be used for the base_addr */
 volatile unsigned short *base_addr = (p_pb->base_addr).w;

 /* Add code: first of all reset the device.
 The fID is not called in the new flash programmer plugin therefore

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 13

 the flash chip must always be bring into the read state.
 */

 /* Add code: erase one sector */

 /* Add code: wait for status */

 /* Add code: handle error (and timeout if needed) */

 /* Add code: put back the flash in read state */

 return result;
}

b) Listing 5 definitions:

i) parameter_block_t *p_pb – pointer to the parameter_block_t structure to be passed to the
erase_chip function

ii) retval_t – result of the function execution

iii) Create the correct command sequence for full-flash chip erasing based upon
recommendations from the flash device manufacturer, as shown in Section 6.1.3.

12. Modify write function

a) By default, the write function in algo_impl.c file looks as it appears in Listing 6.

Listing 6. Function Template write in algo_impl.c File

retval_t write(parameter_block_t *p_pb)
{
 int timed_out, got_it;
 unsigned long i;
 unsigned short stat;
 retval_t errors = 0;
 /* Add code: the correct access size depending on the bus must be used for the base_addr */
 volatile unsigned short *base_addr = (p_pb->base_addr).w;

 /* Add code: first of all reset the device.
 The fID is not called in the new flash programmer plugin therefore
 the flash chip must always be bring into the read state.
 */

 /* Add code: program the bytes pointed in the buffer : p_pb->items,
 they are p_pb->num_items bytes
 handle error (and timeout if needed) for each of the program sequence
 */

 /* Add code: put back the flash in read state */

 return errors;

b) Listing 6 definitions:

i) parameter_block_t *p_pb – pointer to the parameter_block_t structure to be passed to the
write function

ii) retval_t – result of the function execution

c) Create the correct command sequence for flash device programming according to
recommendations of the flash device manufacturer, as described in Section 6.1.4.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

14 Freescale Semiconductor

13. Flash programming applet unit testing

a) For flash programming algorithm testing, define custom flash device parameters in the
flash_device.h file. The following parameters should have correct definitions.

– BASE_FLASH_ADDRESS – ColdFire CPU view of the flash device’s address

– SECTOR_ADDRESS_OFFSET – memory sector size

– NUMBER_ITEMS – test parameter, which defines how much data is programmed during the
flash program testing.

b) Refer to Listing 7.

NOTE Refer to the flash device manufacturer for the flash device memory
organization. Refer to hardware description for the flash device
addressing.

Listing 7. Function Template write in algo_impl.c File

/* Base Address of the flash */
#define BASE_FLASH_ADDRESS 0xFFE00000UL

/* Offset of the sector to erase for the test */
#define SECTOR_ADDRESS_OFFSET 0x4000UL

/* Number of bytes to program for the test
 This parameter could not be more then Flash size
 */
#define NUMBER_ITEMS 1024

/* Set this to one if chip erase is supported */
#define HAS_CHIP_ERASE 1

14. Compile flash algo development target

a) During new algorithm creation and testing, use the Flash Algo Development build target of the
Flash Development Kit. Compile the Flash Algo Development target with needed
modifications to flash_algo.c for flash programming procedures. Compilation will result
in creation of a new flashalgodev.elf file.

15. Flash algorithm unit test

a) To simplify flash programming algorithm creation and testing, flash test functionality is
included with the Flash Tool Kit in the Flash Algo Development build target. Check the file
flash_test.c for it. Unit test functions contain basic functionality required for the flash
programming; the following tests are performed:

i) check flash device’s ID

ii) erase flash memory sector

iii) program flash memory sector with the predefined data (in sample code the incrementing
counter is used)

b) Load the file flashalgodev.elf and run it on the target board. Check the tests results. As
an example of the test working refer to Section 6.2.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 15

16. Compile flash algo release target

a) When the flash programming algorithm for the new flash device works correctly (as confirmed
in unit testing), compile the Flash Algo Release target. The output of the Flash Algo Release
file — flashalgorelease.elf — must be copied to the following folder:

 Freescale\CodeWarrior for ColdFire V7.x
 \bin\Plugins\Support\Flash_Programmer\ColdFire

17. New flash device addition to the flash programmer

a) The application note AN 3390 Adding Device(s) to the Flash Programmer provides a detailed
description about adding a new flash device. Refer to this application note and do the steps it
describes. As an example refer to Section 6.3.

18. Set flash device configuration in flash programmer.

a) Do the following to set the flash device configuration correctly in CodeWarrior Flash
Programmer:

i) The CodeWarrior IDE must be closed (if opened) and opened again for you to use new data
from the updated FPDeviceConfig.xml file.

ii) Open the CodeWarrior Flash Programmer window. From CodeWarrior menu:
Tools−>Flash Programmer, as shown in Figure 9.

Figure 9. Opening the CodeWarrior Flash Programmer

iii) Load Target Configuration settings. As an example, the modified file
NewFlashDevice.xml is loaded, as shown in Figure 11.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

16 Freescale Semiconductor

Figure 10. Target Hardware Connection Settings

iv) Set the correct connection to the target, as shown in Figure 10.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 17

Figure 11. Loading Target Configuration Settings

v) The flash device configuration checks the loaded configuration data for correspondence. As
an example for the AMD16x1 device, refer to Figure 12.

Figure 12. CodeWarrior Flash Programmer Flash Device Configuration

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

18 Freescale Semiconductor

19. Erase and blank check the flash device

a) Check that the flash device can be erased by clicking the Erase button in the Erase/Blank
Check window. Check that the Blank Check test passed: click the Blank Check button in the
Erase/Blank Check window, as shown in Figure 13.

Figure 13. CodeWarrior Flash Programmer Erase/Blank Check Flash Device

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 19

b) In the log file, check that the correct flash programming algorithm is used for NewFlashDevice
programming. Click the ShowLog button in Erase/Blank Check window. Refer to the
example log in Figure 14.

Figure 14. Flash Programming Log Window

20. Programming test:

a) Different-sized binary S-record files are available in the Flash Toolkit delivery to check
whether the flash device can be programmed. The path to the S-record files is:

 Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Tools\FlashToolKit\SrecTestFiles

i) They are: 64k_at_0.S, 128k_at_0.S, 256k_at_0.S, 1M_at_0.S,
2M_at_0.S and 4M_at_0.S. Depending on the file name, test files are differently
sized. For example file 256k_at_0.S is 256 Kilobyte-sized and is linked to the 0 start-
up address.

b) Choose the Program/Verify sub-menu in CodeWarrior Flash Programmer. For programming
the AMD 16x1, the 1M_at_0.S file is used, as shown in Figure 15.

Creating a New Flash Programming Algorithm

Creating an External Flash Algorithm Application Note

20 Freescale Semiconductor

Figure 15. Dummy file for Flash Program Testing Selection

c) Specify Restrict Address Range and Apply Address Offset for the flash device being used
(Figure 16.)

Figure 16. Restrict Address Range and Apply Address Offset Settings

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 21

d) Figure 16. definitions:

i) Restrict Address Range – address range of the flash device

ii) Apply Address Offset – start address, where the test data is programmed in the flash; it
should be the flash device start address.

e) Check that the flash is programmed and the Program Command Succeeded message is shown
after clicking the Program button, as shown in Figure 16.

NOTE In case of the flash device cannot be programmed, check: 1) successful
erasure of flash device; 2) hardware connection correctly setup.

21. Verify programmed data:

a) If the flash device is successfully programmed, perform the Verify command (Figure 16.)
Check that the status is: Verify Command Succeeded.

b) If all tests pass correctly, you have completed creation of a the new flash programming
algorithm. The new flash device can be programmed with CodeWarrior Flash Programmer
without limitation.

6 Flash Programming Examples

6.1 Flash Programming Algorithm for AMD 16x1 Flash Devices
The AMD_16x1_Example.mcp project (Figure 17.) illustrates how the Flash Development Kit is used
to program AMD 16x1 flash algorithms.

Figure 17. ColdFire CodeWarrior Main View of AMD_16x1_Example.mcp Project

Flash Programming Examples

Creating an External Flash Algorithm Application Note

22 Freescale Semiconductor

6.1.1 Implementation: ID Function Implementation for AMD 16x1 Flash
Devices

The sequence for getting the Manufacturer ID and Device ID, based on the AMD flash specification, is
shown in Figure 18.

Figure 18. ID Command Sequence for the AMD Flash

Listing 8. ID Function Sample Code for AMD Flashes

retval_t ID(parameter_block_t *p_pb)
{
 volatile unsigned short *baseaddress = (p_pb->base_addr).w;
 retval_t result = 0;

 /* reset */
 *(baseaddress) = (unsigned short)0xF0F0;

 /* setup for get id */
 *(baseaddress + 0x555) = (unsigned short)0xAA;
 *(baseaddress + 0x2AA) = (unsigned short)0x55;
 *(baseaddress + 0x555) = (unsigned short)0x90;

#ifdef FLASH_ALGO_TEST
 /* get id */
 mf_id = *(baseaddress);
 part_id = *(baseaddress + 1);
#endif

 /* read mode again */
 *(baseaddress) = (unsigned char)0xF0;

 return result;
}

When using the Algo Development build target, the device ID and manufacturer’s ID are read from the
flash device and stored in the part_id and mf_id variables (Listing 8). Check these during the flash
algorithm testing.

6.1.2 Implementation: Function erase_sector for AMD 16x1 Flash Devices

The sequence for the Sector Erase command implementation, based on the AMD flash specification, is
shown in Figure 19.

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 23

Figure 19. Sector Erase Command Sequence for AMD Flash

Refer to the actual encoding of the erase_sector function for AMD flashes in Listing 9.

Listing 9. Function erase_sector Sample Code for AMD Flashes

retval_t erase_sector(parameter_block_t *p_pb, unsigned long sect_index)
{
 volatile unsigned short *sectoraddress = ((unsigned short **)(p_pb->items).w)[sect_index];
 volatile unsigned short read;
 retval_t result = 0;

 /* first of all reset the device. The fID is no longer called in the new
 flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
 the flash chip must always be bring into the read state.
 */

 /* reset sector */
 *(sectoraddress) = (unsigned short)0xF0F0;

 /* erase sector */
 *(sectoraddress + 0x555) = (unsigned short)0xAA;
 *(sectoraddress + 0x2AA) = (unsigned short)0x55;
 *(sectoraddress + 0x555) = (unsigned short)0x80;
 *(sectoraddress + 0x555) = (unsigned short)0xAA;
 *(sectoraddress + 0x2AA) = (unsigned short)0x55;
 *(sectoraddress) = (unsigned short)0x30;

 read = *(sectoraddress);

 /*
 Wait for the status value to be read from *addr or
 how_long ticks to pass. If how_long ticks pass,
 a non-0 value will be returned.
 On the AMD chips, DQ7 is inverted until the embedded
 algorithm is completed when it flips to the correct
 value. The parameter 'hi' will indicate whether that
 value is set or cleared.
 */
 while ((read & 0x0080) != 0x0080)
 {
 read = *(sectoraddress);
 }

 /* read mode again */
 *(sectoraddress) = (unsigned char)0xF0;

 return result;
}

Flash Programming Examples

Creating an External Flash Algorithm Application Note

24 Freescale Semiconductor

6.1.3 Implementation: Function erase_chip for AMD 16x1 Flash Devices

The sequence for the Chip Erase command, based on the AMD flash specification, is shown in Figure 20.
and Listing 10.

Figure 20. Chip Erase Command Sequence for AMD Flash

Listing 10. Function erase_chip Encoding for AMD Flashes

retval_t erase_chip(parameter_block_t *p_pb)
{
 int errors = 0;
 retval_t result = 0;
 unsigned short stat;
 unsigned short mask = (unsigned short)DQ7;
unsigned short masked_src = (unsigned short)DQ7;
 int got_it;
 volatile unsigned short *base_addr = (p_pb->base_addr).w;

 /* first of all reset the device. The fID is no longer called in the new
 flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
 the flash chip must always be bring into the read state.
 */
 *base_addr = (unsigned short)0xF0F0;

/* erase chip */
 *(base_addr + 0x555) = (unsigned short)0xAA;
 *(base_addr + 0x2AA) = (unsigned short)0x55;
 *(base_addr + 0x555) = (unsigned short)0x80;

 *(base_addr + 0x555) = (unsigned short)0xAA;
 *(base_addr + 0x2AA) = (unsigned short)0x55;
 *(base_addr + 0x555) = (unsigned short)0x10;

/* Wait for status operation */
 mask &= 0x0080; /* Only dq7 flips */
 masked_src &= 0x0080;
 while (1)
 {
 if ((*base_addr & mask) == masked_src)
 {
 break;
 }
 }

 /* return to read arry mode */
 *base_addr = (unsigned char)READ;

 return result;
}

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 25

6.1.4 Implementation: Function write for AMD 16x1 Flash Devices

In terms of AMD flash devices specification, the write function realizes the Program command. The
sequence for the Program command, according to the AMD specification, is shown in Figure 21.

Figure 21. Program Command Sequence for AMD Flash

Refer to the actual encoding of the write function for AMD flashes as shown in the file
amd_16x1_sample.c in Listing 11.

Listing 11. Sample write Function Code for AMD Flashes

retval_t write(parameter_block_t *p_pb)
{
 int timed_out, got_it;
 unsigned long i;
 unsigned short stat;
 retval_t errors = 0;
 unsigned short mask = (unsigned short)DQ7;
unsigned short masked_src = (unsigned short)DQ7;
 volatile unsigned short *base_addr = (p_pb->base_addr).w;
 unsigned short *buffer = (p_pb->items).w;
 unsigned long buffer_len = p_pb->num_items;
 unsigned long how_many = buffer_len / sizeof(unsigned short);

 if (buffer_len % sizeof(unsigned short)) {
 /* we need to fill the remaining bytes with 'ff' -- this assumes
 byte accesses to DRAM will work */
 char *p = (char *)((unsigned long)buffer + buffer_len);
 *p++ = '\xff';
 how_many++ ;
 }

 /* first of all reset the device. The fID is no longer called in the new
 flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
 the flash chip must always be bring into the read state.
 */
 *base_addr = (unsigned short)RESET;

 for (i = 0; (i < how_many) && !errors; i++){

 unsigned short *c = (unsigned short*)((unsigned long)base_addr & ~0x1fff);
 *((c) + 0x555) = 0xaa;
 *((c) + 0x2aa) = 0x55;
 *((c) + 0x555) = 0xa0;

 *base_addr = *buffer;
/* Wait for status operation */
 mask &= 0x0080; /* Only dq7 flips */
 masked_src = (unsigned short)((unsigned char)DQ7 & *buffer);
 masked_src &= 0x0080;

Flash Programming Examples

Creating an External Flash Algorithm Application Note

26 Freescale Semiconductor

 while (1)
 {
 if ((*base_addr & mask) == masked_src)
 {
 break;
 }
 }

 base_addr++;
 buffer++;
 }

 /* go back to the last access */
 --base_addr;

 /* read mode again */
 *base_addr = (unsigned char)0xF0;

 return errors;
}

6.2 AMD 16x1 Flash Programming Algorithm Unit Testing
This section illustrates an example flash test application working with AMD 16x1. The flash programming
applet is tested on a Freescale M5282EVB with an Am29PL160CB flash device.

6.2.1 Flash Testing Setup

Use the Algo Development target — shown in Figure 22. — to run the flash programming test application.

Figure 22. Targets in AMD_16x1_Example.mcp Project

Upon loading, the application stops at the _flash_start() function as shown in Figure 23.

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 27

Figure 23. Unit Test Application Start-up Point

6.2.2 Test One: Read Manufacturer and Device ID

After the Run command is executed the application stops at the first test check point, as shown in Figure
24.

Figure 24. Read Manufacturer and Device ID

Flash Programming Examples

Creating an External Flash Algorithm Application Note

28 Freescale Semiconductor

The results of Test One display the manufacturer ID code 0x01 (for AMD) and the device ID code
0x2245 (for the Am29PL160CB flash device). This confirms basic read/write functionality of the flash
devices.

6.2.3 Test Two: Erase a Sector

With another Run command execution the application stops at the Test Two check point, as shown in
Figure 25. In Test Two the sector number one of the flash memory is erased. From the sample flash device
definition for AMD 16x1 we have: BASE_FLASH_ADDRESS equal to 0xFFE00000 and the
SECTOR_ADDRESS_OFFSET equal to 0x4000. Thus for sector 1, flash memory is erased starting at
address 0xFFE04000 in memory. To check that the Erase a Sector command works correctly the
memory window was opened with the memory region starting at address 0xFFE04000. Upon erasure,
flash memory sector contains 0xFFFFFFFF data in its memory.

Figure 25. Erase Sector Functionality Check Point

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 29

The results of Test Two show that flash memory, starting at address 0xFFE04000, is erased. This
confirms that the sector erase function works correctly.

6.2.4 Test Three: Program Flash Memory

Another execution of the Run command stops the test application at the Test Three check point, as shown
in Figure 26. Test Three fills sector one in flash memory with an incremental counter. The number of the
bytes written to flash memory is determined by the NUMBER_ITEMS parameter in flash_device.h
file. To verify that the flash programming algorithm works correctly and the write function of the flash
performs correctly, check the memory region of flash sector one. In this case, check the memory starting
at address 0xFFE04000.

Figure 26. Program Functionality Check Point

The results of Test Three show that flash memory, starting at address 0xFFE04000, is changed and
contains an increment by one datum. This confirms that the write function works correctly.

6.2.5 Test Four: Erase a Sector

Erase Sector One of flash memory again to check that the above results are not produced in error (Figure
27.)

Flash Programming Examples

Creating an External Flash Algorithm Application Note

30 Freescale Semiconductor

Figure 27. Erasing Sector One of Flash Memory After Programming

Check the memory starting at address 0xFFE04000 to verify that the flash memory region erased
correctly. In this example, since the modified memory region contains 0xFFFFFFFF, sector data was
erased successfully.

6.2.6 Flash Testing End Point

After finishing, the flash test application goes to the flash_exit() end point, as shown in Figure 28.

Figure 28. Flash Testing End Point

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 31

When this test is complete, you can use the flash programming algorithm with the CodeWarrior Flash
Programmer.

6.3 Adding Flash Device Configuration to FPDeviceConfig.xml
To add a new device to the CodeWarrior Flash programmer add the new structured table of the flash device
information to the master configuration file (FPDeviceConfig.xml). This master file is found in the
following folder:

Freescale\CodeWarrior for ColdFire V7.x
\bin\Plugins\Support\Flash_Programmer\ColdFire\ (Windows)

NewFlashDevice is the new flash device that works with the flashalgorelease.elf executable, as
shown in Listing 12.

Listing 12. Configuration Settings for NewFlashDevice in FPDeviceConfig.xml File

</device>
<comment>
##
This configuration is for the NewFlashDevice
##
</comment>
<device>
 <name>NewFlashDevice</name>
 <manufacturerid>01</manufacturerid>
 <chiperase>TRUE</chiperase>
 <sectorcount>11</sectorcount>
 <sectorname>0</sectorname>
 <sectorname>1</sectorname>
 <sectorname>2</sectorname>
 <sectorname>3</sectorname>
 <sectorname>4</sectorname>
 <sectorname>5</sectorname>
 <sectorname>6</sectorname>
 <sectorname>7</sectorname>
 <sectorname>8</sectorname>
 <sectorname>9</sectorname>
 <sectorname>10</sectorname>
 <sectorstart>000000</sectorstart>
 <sectorend>003fff</sectorend>
 <sectorstart>004000</sectorstart>
 <sectorend>005fff</sectorend>
 <sectorstart>006000</sectorstart>
 <sectorend>007fff</sectorend>
 <sectorstart>008000</sectorstart>
 <sectorend>03ffff</sectorend>
 <sectorstart>040000</sectorstart>
 <sectorend>07ffff</sectorend>
 <sectorstart>080000</sectorstart>
 <sectorend>0bffff</sectorend>
 <sectorstart>0c0000</sectorstart>
 <sectorend>0fffff</sectorend>
 <sectorstart>100000 </sectorstart>
 <sectorend>13ffff</sectorend>
 <sectorstart>140000</sectorstart>
 <sectorend>17ffff</sectorend>
 <sectorstart>180000</sectorstart>
 <sectorend>1bffff</sectorend>

Flash Programming Examples

Creating an External Flash Algorithm Application Note

32 Freescale Semiconductor

 <sectorstart>1c0000</sectorstart>
 <sectorend>1fffff</sectorend>
 <organizationcount>1</organizationcount>
 <organization>1Mx16x1</organization>
 <id>2245</id>
 <algorithm>flashalgorelease.elf</algorithm>
</device>
<comment>

Listing 12 definitions:

• NewFlashDevice - the name of the new flash device for which the new flash programming
algorithm is created

• flashalgorelease.elf - name of the flash programming algorithm that will be used to
program flash device

The NewFlashDevice configuration appears in the Flash Programmer window, as shown in Figure 12.

6.4 Updating the Flash Settings xml File for Flash Programmer
Update the custom board configuration file to have correct configuration settings that work with the new
flash device.

For example, the sample flash programming applet for AMD 16x1 is compiled to work with the
MCF5282EVB EVB board. A new file named NewFlashDevices.xml is generated based on
M5282EVB.xml and is modified to work with the NewFlashDevice, as described in the
FPDeviceConfig.xml file. Refer to Section 6.3. If another board is used, find the [BOARD].xml file
for that board; this file can be used as a template to create one to work with the new flash device. Check
the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\bin\Plugins\Support\Flash_Programmer\ColdFire

To create NewFlashDevices.xml file for MCF5282EVB EVB board:

1. Open the M5282EVB.xml file with the CodeWarrior’s Flash Programmer as shown in Figure 29.
If other hardware is used open the [BOARD].xml configuration file, where BOARD is the name
of the core used.

a) For target configuration [BOARD].xml files check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\bin\Plugins\Support\Flash_Programmer\ColdFire

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 33

Figure 29. Opening the M5282EVB.xml File

2. Check the target configuration settings as shown in Figure 30. The following parameters should be
set correctly for the hardware used:

a) Target Processor – set the target processor name correctly for the hardware used.

b) Use Target Initialization – set the correct path to the target processor configuration file. In the
provided example for the 5282EVB board, the M5282EVB.cfg file is used. For the processor
configuration files please check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files

c) Target Memory Buffer Address – target RAM memory start-up address.

d) Target Memory Buffer Size – target RAM memory size.

Flash Programming Examples

Creating an External Flash Algorithm Application Note

34 Freescale Semiconductor

Figure 30. Checking Target Configuration Settings in [BOARD].xml File

3. If configuration is correct for the targeted hardware save the target board configuration as
NewFlashDevices.xml, as shown in Figure 31.

Flash Programming Examples

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 35

Figure 31. Saving Target Hardware Configuration Settings for NewFlashDevices.xml File

4. Modify the NewFlashDevices.xml file as shown in Figure 32.

Flash Programming Examples

Creating an External Flash Algorithm Application Note

36 Freescale Semiconductor

Figure 32. NewFlashDevices.xml File Changes

5. Check that the following parameters are set correctly for the NewFlashDevice in the
NewFlashDevices.xml file:

a) <targetprocessor> – set target processor name correctly for the hardware used.

b) <targetinitfile> - set the correct path to the target processor configuration file. In
provided example for 5282EVB board, M5282EVB.cfg file being used. For the processor
configuration files please check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files

c) <organization> – check the hardware organization for the new flash devices. In the
provided example for AMD 16x1, one 1 Mbyte 16x1 AMD flash device is present on the tested
5282EVB board.

Chip Makers’ Flash Programming Recommendations

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 37

d) <flashstart> – check the hardware organization for the start-up address of the flash
device being used. Check the same data for the <restrictaddrrangestart> and
<addrstart> parameters.

e) <addrsize> – set correct size of the new flash device.

f) <flashend> – set the end address of the flash device. This parameter can be calculated as a
<flashstart> + <addrsize>. Check the same data for the
<restrictaddrrangeend> and <addrstart> parameters.

g) After you change FPDeviceConfig.xml and the custom configuration file
(NewFlashDevices.xml in this example), the CodeWarrior Flash Programmer is ready
to work with the new flash device.

7 Chip Makers’ Flash Programming Recommendations
In general, flash programming algorithms from different flash manufacturers are similar. Most
manufacturers use the same algorithms for programming flash devices. For example, the same algorithms
may be used for programming AMIC 16x1 flash devices and AMD 16x1 flashes. Most of the flash
manufacturers have sample flash programming algorithms on the web.

7.1 Alliance Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Manufacturer’s site: http://www.alsc.com.

7.2 AMIC Flash Devices
Depending on the particular flash device, the same flash programming algorithms available for AMD
(Spansion) or Atmel should be usable. Check flash device specifications available from the manufacturer.
Manufacturer’s site: http://www.amictechnology.com.

7.3 AMD (Spansion) Flash Devices
Flash programming algorithms are already supported in CodeWarrior Flash Programmer. AMD does not
produce its own flash devices any more (Fujitsu and AMD founded Spansion for flash manufacturing).
Manufacturer’s site: http://www.spansion.com.

7.4 Atmel Flash Devices
Due to the lack of testing hardware, flash programming algorithms for Atmel are not supported in the
CodeWarrior ColdFire Flash Programmer. The flash programming algorithm for Atmel flash devices,
however, is similar to the algorithm used for AMD flash programming.

Refer to the Atmel flash device specification for the correct programming commands and device ID
variables. An application note, Programming Atmel’s AT29 Flash Family, is available from the
manufacturer’s web site. The application note contains code examples for Atmel flash device
programming. Manufacturer’s site: http://www.atmel.com.

Chip Makers’ Flash Programming Recommendations

Creating an External Flash Algorithm Application Note

38 Freescale Semiconductor

7.5 Catalyst Flash Devices
Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Most of the flash devices from Catalist are fully identical to the flash devices from Intel. For
example: the CAT28F001 from Catalist is the equivalent of Intel’s IN28F001. Manufacturer’s site: http:/
/www.catsemi.com/index.html.

7.6 EON Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Most of the flash devices from EON have direct references to AMD flash
devices. Manufacturer’s site: http://www.eonsdi.com.

7.7 Fujitsu Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Fujitsu no longer produces its own flash devices. Manufacturer’s site:
http://www.spansion.com.

7.8 Hyundai Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Hyundai founded a new semiconductor company named Hynix. Most of
the flash devices from Hynix make direct reference to AMD flash devices. Manufacturer’s site: http://
www.hynix.com.

7.9 Intel Flash Devices
Flash programming algorithms for Intel flash devices are already supported in CodeWarrior Flash
Programmer. Manufacturer’s site: http://www.intel.com.

7.10 Micron Flash Devices
Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Most of the flash devices from Micron make direct reference to Intel flashes. Manufacturer’s
site: http://www.micron.com.

7.11 MXIC Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Most of the flash devices from MXIC make direct reference to AMD
flash devices. The document MX_FlashSampleCode.pdf is available from the MXIC web site. The
document contains sample flash programming code suitable for both MXIC and AMD flash devices.
Manufacturer’s site: http://www.mxic.com.tw.

Chip Makers’ Flash Programming Recommendations

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 39

7.12 Samsung Flash Devices
The CodeWarrior flash programmer does not support flash programming algorithms for Samsung.
Samsung uses its own algorithm — incompatible with other vendors — for flash programming. A sample
programming algorithm for Samsung flash devices, presented as a CodeWarrior for ARM project, is
available from the manufacturer’s web site. Manufacturer’s site: www.samsung.com/products/
semiconductor/OneNAND.

7.13 Sharp Flash Devices
Intel’s flash programming algorithms should be usable. Check flash device specifications available from
the manufacturer. Manufacturer’s site: http://www.sharpsma.com.

7.14 Spansion Flash Devices
Flash programming algorithms for Spansion flash devices are already supported in CodeWarrior Flash
Programmer. Manufacturer’s site: http://www.spansion.com.

7.15 SST Flash Devices
Depending on the particular flash device, the same flash programming algorithms available for AMD
(Spansion), Atmel, or Intel should be usable. Check flash device specifications available from the
manufacturer. Manufacturer’s site: http://www.sst.com/about.

7.16 ST Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Sample flash programming application code is available for downloading
from the ST web site. Manufacturer’s site: http://www.st.com.

7.17 Toshiba Flash Devices
Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Manufacturer’s site: http://www.semicon.toshiba.co.jp/eng.

7.18 White Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Manufacturer’s site: http://www.wedc.com.

7.19 Winbond Flash Devices
AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer.Manufacturer’s site: http://www.winbondusa.com/mambo/content/view/
289/553.

Document Number: AN3389

08 February 2008

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior™
is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore® is a registered
trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006-2008. All rights reserved.

