
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2007. All rights reserved.

This application note describes the implementation of the
Linux® power management on the PowerQUICC™
MPC8313E processor. The MPC8313E has features to
minimize power consumption at several levels. Dynamic
power management locally minimizes power consumption
when a block is idle. Many blocks in the MPC8313E can
dynamically turn off clocks when sections of the block are
idle. This feature is always enabled and occurs
automatically. Clocks to the individual blocks can be shut
down when they are not needed through a register system
clock control register (SCCR). Additionally, the PowerPC™
core can be put into doze, nap, or sleep power-down states.
Through the power management controller (PMC), on-chip
devices can be programmed to enter low-power state when
the PowerPC™ core enters nap or sleep states. The
MPC8313E supports a low-power mode in which power is
removed from a portion of the die for significant additional
power saving. The PMC features work in concert with the
PCI power management (PM) block (PME context) to
provide support for PCI power management capabilities
such as asserting or responding to power management events
(PMEs).

Contents
1 Power Management Basics . 1
2 Changes in Kernel Source for Power Management. . . 2

2.1 PMC Driver . 2
2.2 MPC8313E IPIC Device Driver 3
2.3 MPC8313E On-Chip Device Driver Modifications 4
2.4 MPC8313E Software Flow 4
2.5 Power-Down Sequence on MPC8313 as a PCI Host 5
2.6 Power-Up Sequence on MPC8313 as PCI Host . . 6
2.7 Power-Down Sequence on MPC8313 as PCI Agent 6
2.8 Power-Up Sequence on MPC8313 as PCI Agent . 7

3 Build Procedure . 8
4 Test Procedure . 9
5 References . 9
6 Revision History . 9

Power Management in Linux® for the
PowerQUICC™ MPC8313E
by P V Suresh

Network Computing Systems Group
Freescale Semiconductor, Inc.

Document Number: AN3371
Rev. 0, 05/2007

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

2 Freescale Semiconductor

Power Management Basics

1 Power Management Basics
The basic features of the MPC8313E processor hardware unit for power management, called the power
management controller (PMC), are as follows:

• Power management in both host and agent modes

• Supports PCI Power Management 1.2 specification.

• PME generation in PCI agent mode and PME detection in PCI host mode

• Wake-up from Ethernet (magic packet), USB, GPIO, and PCI (PME input as host)

The PCI power management specification defines five PCI device power (Dx) states (D0, D1, D2, D3hot,
and D3cold). Also, it defines four bus power (Bx) states (B0, B1, B2, and B3). The Dx states are mapped
into the ACPI specification, and the ACPI specification allows PCI device control at the system level. In
PCI naming conventions, hot and cold refer to the availability of VCC. D3 hot and D3 cold are sub-states
for D3. The OS can put a PCI device into the D3 hot state, which should require less power than D0
although there is no specific requirement for this. However, VCC and an always-on auxiliary PCI power
pin (3.3 Vaux) are available as power sources. For D3 cold, VCC is removed. According to the PCI
specification, the D0 and D3 hot states are mandatory states.

The MPC8313E processor can be used as a PCI host or agent. The MPC8313E supports the PCI power
states D0, D1, D2, D3 hot as defined in Rev.1.2 of the PCI power management interface specification. As
host, the MPC8313E responds to PME signaling as a wake-up event. As an agent, the MPC8313E can
generate PME signaling by asserting an external PCI_PME signal. When the MPC8313E functions as a
PCI device, the Gx, Cx, and Sx states do not apply to the MPC8313E itself but to the OS, which is running
on another board controlling the MPC8313E as a device. Only the Dx and Bx states apply in this
case.When the MPC8313E is used as a PCI host, the OS should comply with these global state definitions

A new state defined for the MPC8313E is called D3 warm state. The difference between D3 hot and D3
warm is that in D3 hot the entire MPC8313E core region is supplied with the nominal 1 V Vdd supply. In
D3warm, a portion of the core region can be powered off. This partial power-down mode allows the
MPC8313E to achieve significant reduction in power dissipation while still maintaining the capability to
respond to wake-up events.

2 Changes in Kernel Source for Power Management
MPC8313E power management occurs in three different operating modes:

• PCI host mode. The MPC8313E acts as PCI Host and PCI is enabled in the Linux.

• PCI agent mode. The MPC8313E acts as an I/O processor and is a PCI device. The host processor
can be another MPC8313E or any x86 machine.

• Standalone mode. The MPC8313E works without any PCI in standalone mode.

2.1 PMC Driver
The PMC driver handles all power management events. It registers platform-specific callback routines
with the kernel PM subsystem. When the system enters deep sleep state, the PM driver routine

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

Freescale Semiconductor 3

Changes in Kernel Source for Power Management

mpc83xx_pm_enter is called. This routine puts the RAM into self refresh mode, configures the wake-up
event sources, and calls mpc83xx_enter_deep_sleep to put MPC8313E into D3 warm state.

static struct pm_ops mpc83xx_pm_ops = {

 ...

 .prepare = mpc83xx_pm_prepare,

 .enter = mpc83xx_pm_enter,

};

pm_set_ops(&mpc83xx_pm_ops);

2.2 MPC8313E IPIC Device Driver
The IPIC code has been changed to handle the suspend and resume functions. The ipic_suspend routine
saves the contents of the ipcs registers to a data structure ipic_saved_state and in the resume routine
restores the IPIC contents.

static struct {

 u32 sicfr;

 u32 siprr[2];

 u32 simsr[2];

 u32 sicnr;

 u32 smprr[2];

 u32 semsr;

 u32 secnr;

 u32 sermr;

 u32 sercr;

} ipic_saved_state;

static int ipic_suspend(struct sys_device *sdev, pm_message_t state)

{

 struct ipic *ipic = primary_ipic;

 ipic_saved_state.sicfr = ipic_read(ipic->regs, IPIC_SICFR);

 ipic_saved_state.siprr[0] = ipic_read(ipic->regs, IPIC_SIPRR_A);

...........

}

static int ipic_resume(struct sys_device *sdev)

{

 struct ipic *ipic = primary_ipic;

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

4 Freescale Semiconductor

Changes in Kernel Source for Power Management

 ipic_write(ipic->regs, IPIC_SICFR, ipic_saved_state.sicfr);

 ipic_write(ipic->regs, IPIC_SIPRR_A, ipic_saved_state.siprr[0]);

.......

}

static struct sysdev_class ipic_sysclass = {

.....

.suspend = ipic_suspend,

 .resume = ipic_resume,

};

2.3 MPC8313E On-Chip Device Driver Modifications
Modification of the MPC8313E on-chip device drivers is as follows:

• The MPC8313E on-chip device drivers, such as the USB and Ethernet controller are modified to
configure all the necessary registers to wake up the MPC8313E from a power-down state.

• The required MPC8313E on-chip device driver suspend/resume functions are added or modified if
already available. These functions save/restore the device context during the power-down and
power-up states. The following code shows the code changes in the eTSEC driver:

/* Structure for a device driver for TSEC*/

static struct platform_driver gfar_driver = {

 ...

#ifdef CONFIG_PM

 .suspend = gfar_suspend,

 .resume = gfar_resume,

#endif

};

2.4 MPC8313E Software Flow
The MPC8313E on-chip device drivers such as the USB driver, Ethernet driver, and MPC8313E PCI
device drivers have suspend and resume capabilities. These device drivers call corresponding
suspend/resume callback functions based on the event.

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

Freescale Semiconductor 5

Changes in Kernel Source for Power Management

Figure 1. MPC8313E Software

2.5 Power-Down Sequence on MPC8313E as a PCI Host
Initialization of the power-down sequence proceeds as follows:

1. The host determines the power management capabilities of all agents and initializes their PME
context. When triggered to power down mode, the host first brings the agent to a low-power state.

2. The PCI device driver saves the PCI function context.

3. The PCI device driver enables external PCI agents to generate PCI_PME. The driver clears
PME_Status in the agent and programs the D3hot state into the PCI agent PowerState field.

4. In response to this PowerState field change, the external PCI agent transitions itself to the new
power state and then updates its own PowerState field in its PCI configuration registers.

5. By looking into the configuration registers the host detects the external agents PowerState. After
all the agents are in low-power state, the host can enter low-power state.

Other MPC8313E
On-Chip Devices
Suspend/Resume

Functions

PMC
Suspend/Resume

Functions

USB
Suspend/Resume

Functions

LAN
Suspend/Resume

Functions

PMC Device Driver

PCI Configuration Space
MPC8313E

Agent

MPC8313E
Host

PCI

PCI Device Driver eTSEC
Device Driver

Other On-chip devices
 drivers

PMC
Device Driver

Prepare/
Enter

PMC Suspend

Suspend/
Resume

Suspend/
Resume

Suspend/
Resume

Suspend/Resume
Callback Function

Suspend/Resume
Callback Function

Suspend/Resume
Callback Function

User Interface
/sys/power/state
ethtool and so on

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

6 Freescale Semiconductor

Changes in Kernel Source for Power Management

6. PCIPMR1[Power_state] is set to D3Warm.

7. The IPIC driver should set the SIMSR_L [PMC] bit to enable PMC interrupts.

8. DDR is set to self refresh state.

9. The PMC driver enables any desired wake-up sources by setting the appropriate bit in the
PMCMR.

10. The PMC driver puts the e300 into deep sleep. This action causes the qseq signal to be asserted,
which causes PMC to sequence in to D3warm. If the PMCCR1[POWER_OFF] bit is set, the
EXT_PWR_CTRL signal transitions low, causing power to be removed to a portion of the die.

2.6 Power-Up Sequence on MPC8313E as PCI Host
The power-up sequence on the MPC8313E as a PCI host proceeds as follows:

1. A wake-up event sets the corresponding wake-up event bit in the PMCER[x] register. This event
triggers an interrupt from the PMC to the IPIC controller if it is not masked. The e300 core does
not service this interrupt until it wakes up from D3warm.

2. The wake-up event triggers the PMC to begin the wake-up process. It asserts EXT_PWR_CTRL
to the external power supply switch, thus applying power to the VDD power rail.

3. The PMC asserts a reset to the logic blocks in the powered-off region and starts a timer. When a
wake-up event occurs the reset signal continues to be asserted for the duration of the reset timer
count, allowing the e300 PLL to lock. During wake-up, the reset configuration word (RCW) is not
reloaded. The e300 PLL locks with previous RCW settings.

4. When the PMC reset timer expires, the pmc_reset signal is negated and the conditioning logic is
removed, allowing the powered-on and powered-off regions of the die to operate normally.

5. The e300 core begins fetching instructions as it did when initially reset (POR), starting at the
memory address specified by MSRP[IP]. This address is decoded by the local address window
logic (eLBC) and directed to a particular boot device.

6. The e300 core initialization code checks the PMCCR1[POWER_OFF] bit to see that this is a reset
from the D3warm state, not a full POR. The e300 core initializes the DDR controller so that it
does not initialize the DDR when coming out of self-refresh (DDR_SDRAM_CFG[BI] = 1).

7. The initialization code restores the IPIC controller and the MSR[EE] so that the e300 core can
detect pending interrupts, including those from the PMC.

8. The PMCCR1[CURR_STATE] register field is updated to reflect the new active state.

2.7 Power-Down Sequence on MPC8313E as PCI Agent
A power-down sequence on the MPC8313E as a PCI agent proceeds as follows:

1. The PMC driver programs the PMC to allow wake-up on one of the PMC wake-up events by
writing a 1 in the appropriate PMCMR[] mask register bit.

2. The host PCI driver executes code to save any MPC8313E context and enables the PCI function
to generate PCI_PME. It then programs the D3hot state into the PCI function
PCIPMR1[Power_State] field.

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

Freescale Semiconductor 7

Changes in Kernel Source for Power Management

3. This PCI Configuration PowerState register setting is detected and also reflected into the
PMCCR1[NEXT_STATE] register. This change generates an interrupt to the e300 core through
the IPIC.

4. An e300 interrupt routine detects the PMCCR1[NEXT_STATE] notification and begins the
process of power down. It stops all the masters on the CSB bus,

5. The PMC driver enables any desired wake-up sources by setting the appropriate bit in the
PMCMR.

6. The PMC driver sets existing PMC registers that allow power-down when the e300 core enters
nap or sleep mode (PMCCR[DLPEN] and PMCCR[SLPEN]). Settings are based on the
PMCCR1[NEXT_STATE] field.

7. The context of the content in the DDR is stored, and the DDR is put into self refresh mode.

8. The e300 core writes the PMCCR1[NEXT_STATE] value into PMCCR1[CURR_STATE], which
is reported in the PCIPMR1[Power_State].

9. The e300 core sets the PMCCR1[POWER_OFF] bit, indicating that the external
EXT_PWR_CTRL signal is to be toggled at the appropriate time to switch off external power.

10. The e300 core asserts core_qreq_b, which is detected by the PMC.

11. The PMC asserts STOP to the CSB arbiter and the DDR memory controller.

12. The PMC asserts the core_qack_b signal to the e300 core, indicating that it should enter sleep
mode. The external QUIESCE signal asserts. If PMCCR1[POWER_OFF] is set, the
EXT_PWR_CTRL signal is negated to disable an external power switch from shutting off VDD
to a portion of the die.

2.8 Power-Up Sequence on MPC8313E as PCI Agent
The PCI host or any external wake-up event on the PCI agent can wake up the PCI agent. For the agent to
assert PCI_PME, both the PCIPMR1[PME_EN] bit and the PMCCR1[PME_EN] bit must be set. The
power-up sequence on the MPC8313E as a PCI agent proceeds as follows:

1. .A wake-up event sets one of the PMCER[x] bits.

The wake-up event remains set in the PMCER[x] register until the e300 core clears it.
Alternatively, the PCI host can request a change of state in the device through the
PCIPMR1[Power_State] field. For example, it can configure it to a value of 0b00 (D0 mode). This
state change is reflected in the PMCCR1[NEXT_STATE] field.

2. In response to the wake-up event, PME signaling is generated by asserting the PCI_PME signal to
the host.

3. The PCI host recognizes the PCI_PME signal.

If the host decides to wake up the device, it configures PCIPMR1[Power_State] in the device PCI
PME context block to 0b00 (D0 mode). This change is reflected in the PMCCR1[NEXT_STATE]
register bits. The PCIPMR1[Power_State] register field maintains its D3hot coding until the device
transitions to D0. After the device is awake, the e300 core writes the D0 state to the
PMCCR1[CURR_STATE]) field, which is then reflected into the PCIPMR1[PowerState] field to
indicate to the host that the device has completed the transition to D0.

4. The PMCCR1[NEXT_STATE] transition triggers the PMC to power up the device.

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

8 Freescale Semiconductor

Build Procedure

5. The PMC toggles the external EXT_PWR_CTRL signal to apply voltage to the VDD supply rail.
The PMC also asserts an interrupt to the IPIC. This interrupt and the source of the wake-up event
are stored in PMC registers until the e300 core clears them.

6. The PMC asserts a reset to the logic blocks in the powered-off region and starts a timer. When a
wake-up event occurs, the reset signal continues to be asserted for the duration of the reset timer
count, thus allowing the e300 PLL to lock.

During wake-up the reset configuration word (RCW) is not reloaded. The e300 PLL locks with
previous RCW settings.

7. When the PMC reset timer expires, the pmc_reset signal is negated and the conditioning logic is
removed, allowing the powered-on and powered-off regions of the die to operate normally.

8. The e300 core begins fetching instructions as it did when initially reset (POR), starting at the
memory address specified by MSRP[IP]. This address is decoded by the local address window
logic (eLBC) and directed to a particular boot device.

9. The e300 core initialization code checks the PMCCR1[POWER_OFF] bit to verify that this is a
reset from the D3warm state, not a full POR. The e300 core initializes the DDR controller so that
it does not initialize the DDR when coming out of self-refresh (DDR_SDRAM_CFG[BI] = 1).

10. The initialization code restores the IPIC controller and the MSR[EE] so that the e300 can detect
pending interrupts, including those from the PMC.

11. The PMCCR1[CURR_STATE] register field is updated to reflect the new active state.

3 Build Procedure
To enable power management, Linux must be configured with ACPI support, as follows:

1. Set the environment variables CROSS_COMPILE and ARCH:

export CROSS_COMPILE=powerpc-e300c3-linux-
export ARCH=powerpc make menuconfig

2. Configure the kernel:

make mpc8313emds_defconfig
make menuconfig

3. From the kernel configuration menu:

Select Kernel Options.
Select Power Management Support.

To enable PCI

Select Bus Options

Select PCI Support

4. Save this menu configuration and recompile the kernel:

make uImage

The new image of the Linux kernel is built with ACPI support enabled.

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

Freescale Semiconductor 9

Test Procedure

4 Test Procedure
To test the sleep state, put the MPC8313E into to D3warm state by writing into the /sys/power/state file:

echo mem > /sys/power/state

To change the state to non deep-sleep state

echo standby > /sys/power/state

To verify that the MPC8313E has entered deep sleep state, ping the MPC8313E. It should not respond to
the ping requests. To test the wake-up events, first put the MPC8313E into D3warm state by writing to the
/sys/power/state file:

echo mem > /sys/power/state

echo standby > /sys/power/state

ethtool -s eth0 wol g

To wake up the MPC8313E from the sleep state, send an Ethernet magic packet to it.

5 References
• MPC8313E PowerQUICC II Pro Integrated Host Processor Family Reference Manual.

• PCI Bus Power Management Interface Specification.

6 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev. Number Date Substantive Change(s)

0 05/2007 Initial draft.

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

10 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Power Management in Linux® for the PowerQUICC™ MPC8313E, Rev. 0

Freescale Semiconductor 11

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3371
Rev. 0
05/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org. All
other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

	1 Power Management Basics
	2 Changes in Kernel Source for Power Management
	2.1 PMC Driver
	2.2 MPC8313E IPIC Device Driver
	2.3 MPC8313E On-Chip Device Driver Modifications
	2.4 MPC8313E Software Flow
	2.5 Power-Down Sequence on MPC8313E as a PCI Host
	2.6 Power-Up Sequence on MPC8313E as PCI Host
	2.7 Power-Down Sequence on MPC8313E as PCI Agent
	2.8 Power-Up Sequence on MPC8313E as PCI Agent

	3 Build Procedure
	4 Test Procedure
	5 References
	6 Revision History

