
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.

This document describes how to tune existing C code for
best performance on Freescale StarCore®-based DSPs
(including SC140, SC140e, SC1400, and SC3400
core-based processors). The document presents tips to help
the programmer quickly optimize code for the StarCore
target platforms. The goal is to assist programmers moving
C code from another platform to StarCore or tuning existing
StarCore code to obtain the best performance.

Document Number: AN3357
Rev 2, 7/2008

Contents
1 StarCore Architecture Overview 2
2 Using the Tools .5
3 Data Types and Their Use . 7
4 Functions .13
5 Loops .14
6 SC3400-Specific Recommendations 16
7 References .16

Tuning C Code for StarCore®-Based
Digital Signal Processors

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

2 Freescale Semiconductor

StarCore Architecture Overview

1 StarCore Architecture Overview
This overview of the StarCore architecture outlines key architectural features and then considers functional
resources, supported data types, and registers. Table 1 maps the StarCore cores to the Freescale DSPs.

1.1 Architectural Features
The key features of all StarCore cores are as follows:

• Fixed-point DSP.

• Highly parallel 6-issue VLIW machine.

• Data ALU consisting of:

— Four independent orthogonal ALUs, each with a MAC unit and a bit field unit.

— Sixteen 40-bit registers (d[0–15]).

• Address generation unit consisting of:

— Two identical address arithmetic units (AAUs).

— One bit mask unit (BMU).

— 27 registers including eight 32-bit address registers (r[0–7]) and eight registers that are either
additional address registers (r[8–15]) or used as base registers for modulo addressing (referred
to as b[0–7]).

• Program sequencer (PSEQ): resource stall unit (RSU) (SC3400 only). Implements the interlocked
pipeline.

• Branch target buffer (BTB) (SC3400 only). Implements the branch prediction mechanism.

• High data bandwidth. Two 64-bit data buses and a 128-bit program bus. Each bus operates
independently.

• 32-bit unified program and data byte-addressable address space.

• Variable length execution set (VLES) software model, which allows the trade-off between efficient
code size for control code and high-performance DSP code

• Five-stage pipeline (SC140/SC140e/SC1400) or a 12-stage fully interlocked pipeline with branch
prediction and speculative execution (SC3400)

• Four zero cycle-overhead hardware loops (supporting up to four nested hardware loops). 1

Table 1. Freescale DSPs and StarCore Cores

DSP Core Products

SC140 MSC8101/MSC8103/MSC8122/MSC8126

SC140e MXC

SC1400 MSC71xx

SC3400 MSC8144/MSC8144E/MSC8144EC

Note: The SC140 and SC1400 cores are architecturally identical. Some SC140 cores are of an older architectural revision
(V1), which differs slightly from newer SC140 and SC1400 cores (V2). The SC140e core has some architectural improvements
over the SC140 core.

1. On the SC3400 core, there is some training overhead associated with the hardware loops

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 3

StarCore Architecture Overview

Figure 1. StarCore Cores

1.2 Instruction Support
Several data types are natively supported:

• Signed integer (byte, word, and long)

• Unsigned integer (byte, word, and long)

• Signed fractional

The table below shows the arithmetic operations by instruction type which can be performed by the
StarCore cores. The DALU supports both fractional and integer operations. The AGU can also be used for
32-bit integer operations.

Instruction Bus

BMU

DALUAGUPSEQ
In

te
rn

al

bu
s

2 AAUs

XP
A

XP
D

XA
A

XB
A

XA
D

XB
D

32 128 32 32 64 64

BTB*

* Present on SC3400 only

Program

Sequencer

AGU

Register File

DALU

Register File

4 ALUs

Resource Stall Unit (RSU)*

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

4 Freescale Semiconductor

StarCore Architecture Overview

1.3 Fractional Versus Integer Arithmetic
The programmer must understand the basic differences between fractional and integer operations and the
instructions used in both cases. The StarCore cores support fractional and integer operations
simultaneously in parallel. The type of arithmetic is specified by the instruction; there are instructions for
fractional operations and integer operations. There are also move instructions to load and store the data for
both data types. The fractional arithmetic instructions perform a left shift by 1 bit after a multiply operation
and also saturate at the relevant point (either 32- or 40-bits depending on the configuration of the core).
The code in Figure 2 compares instruction sequences for fractional operations (at the left) and integer
operations (at the right).

Figure 2. Instruction Sequences for Fractional and Integer Operations

1.4 Arithmetic Operations on the AGU
Arithmetic operations can be performed on the AGU. The address arithmetic units (AAU) are used to add,
subtract, and shift pointers but the compiler also uses them for general-purpose integer operations when
necessary.

Table 2. Operations Supported on Each Functional Unit

Instruction
Type

Operations (SC140/SC140e/SC1400) Operations (SC3400)

DALU 40-bit add/subtract with saturation
32-bit add/subtract without saturation
16-bit fractional multiply with saturation

16-bit multiply without saturation
40-bit logical operations (inc. sine/zero extension)
40-bit shift operations

40-bit comparisons

40-bit add/subtract with saturation
32-bit add/subtract without saturation
16-bit fractional multiply with saturation

16-bit multiply without saturation
40-bit logical operations (inc. sine/zero extension)
40-bit shift operations

40-bit comparisons
8-bit application specific arithmetic
16-bit SIMD operations

AGU 32-bit add/subtract without saturation

32-bit shifting (limited functionality)
32-bit comparisons

32-bit add/subtract without saturation

32-bit shifting (limited functionality)
32-bit comparisons

move.f (r0)+,d0

move.f (r1)+,d1

mac d0,d1,d2

moves.f d2,(r3)

move.w (r0)+,d0

move.w (r1)+,d1

imac d0,d1,d2

move.w d2,(r3)

Fractional Operations Integer Operations

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 5

Using the Tools

2 Using the Tools
Use of the latest Freescale CodeWarrior™ tools for StarCore is assumed. These tools enable the
programmer to build code for StarCore-based products, connect to development boards, and use software
simulators.

2.1 Specifying the Target Architecture
To build the best code, specify the correct target architecture in the integrated development environment
(IDE). Code built for the SC140 and SC1400 cores runs unmodified on the SC140e core. Code built for
the SC140, SC140e, or SC1400 core runs unmodified on the SC3400 core. However, building for the
correct target produces faster and smaller code, in comparison to simply running legacy code because the
compiler is familiar with the architectural features.

2.2 Enabling Optimizations
Optimizations are disabled by default when no optimization level is specified and either new project
stationary is created or code is built on the command line. This code is designed for reference only. It is
inefficient and should not be used in production code. The levels of optimization available to the
programmer are from zero to three, with three producing the most optimized code. In addition, there is an
option to build for size, which can be combined with any optimization level. In practice, two optimization
levels are most often used: O3 (optimize fully for speed) and O3Os (optimize for size). In a typical
application, critical code is optimized for speed and the bulk of the code may be optimized for size. Global
or cross-file optimizations result in full visibility into all the functions, enabling much better optimizations
for speed and size. The disadvantage is that since the optimizer can remove function boundaries and
eliminate variables, the code becomes difficult to debug. Note that optimizations can be applied at the
project, module, and function level and require the use of pragmas or an application configuration file.

Table 3. Available Optimization Levels

Setting Description

O0 Optimizations disabled. Outputs unoptimized assembly code.

O1 Only target-independent optimizations. Outputs unoptimized assembly code.

O2 Target independent and target-specific optimizations. Outputs non-linear assembly code.

O3 Target independent and target-specific optimizations, with global register allocation. Outputs non-linear
assembly code. Recommended for speed-critical parts of application.

Os Performs space optimizations for the indicated optimization level. Outputs assembly code which is small.
Recommended to use in combination with O3 for size-critical parts of application.

Og Global (cross file) optimization.

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

6 Freescale Semiconductor

Using the Tools

2.3 Using the Profiler
The CodeWarrior tools have a function profiler that shows how many cycles each function takes to
execute. This is a valuable tool and should be used to find the critical areas. The function profiler works
in the IDE and also with the command line simulator. Table 4 shows a sample function profile output,
which has been formatted for clarity.

2.4 Analyzing Compiled Code
The programmer should routinely examine compiler-generated assembly code to get information useful in
modifying the C source and making further improvements. You can examine the code in the IDE or use
the --keep command line option. The compiler-generated assembly files are labeled with the.sl file
extension to avoid confusion with hand-generated assembly files, which have the .asm extension.

2.4.1 Correlating Generated Assembly with C Source

In order to correlate generated assembly with C source, use the line number of the C source code as shown
in the comments which follow each assembly instruction. The line number is the first of the two numbers
in bracket. In this example, three lines of C source generated two VLES with three instructions in each.

Figure 3. Source Code Versus Compiled Output

Table 4. Sample Profiler Output

Module Function PC
No. of
Calls

Stack
Size

Percentage
Total

Cycles
Min

Cycles
Max

Cycles
Mean

Cycles

fr_long_term_
asm

_FrGsmCalculation
OfTheLTPParameter

smaxCC

0x00005030 2080 16 13.98 2303712 1104 1113 1107

fr_structures _FrGsmShortTerm
SynthesisFiltering

0x000059a0 2080 0 11.69 1927034 303 2764 926

fr_structures _FrGsmShortTerm
AnalysisFiltering

0x00005a40 2080 0 10.12 1667640 260 2400 801

if (s1align == s2align) /* line 81 */

{

start=8-s1align; /* line 83*/

opt_memcpy1(s1,s2,start); /* line 85 */

}

 [

 cmpeq.l d1,d7 ;[81,1]

 move.w #<8,d4 ;[83,1]

 tfra r6,r1 ;[85,1]

]

 [

 sub d1,d4,d5 ;[83,1]

 tfra r7,r0 ;[85,1]

 bf L8 ;[81,1]

]

]

Source Code Compiled Output

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 7

Data Types and Their Use

2.4.2 Parallelism and VLES
Parallelism is statically encoded by the compiler or the assembly programmer. A grouping of instructions
in parallel is called a variable-length execution set (VLES). There is no scheduling in hardware. Note that
the square brackets [] denote instructions that operate in parallel.

Figure 4. Example of Parallel Code

3 Data Types and Their Use
Table 5 shows how the StarCore compiler implements C data types and how the data types are stored in
registers. Floating-point types are not natively supported, and fractional types are enabled by using
intrinsics, as discussed in Section 3.6, “Fractional Intrinsics.” Data must be aligned to its access width in
memory; misaligned accesses are not supported.

Table 5. Data Types in Registers and Memory

C Data Type Size (Bits) Dn Register Size Rn Register Size
Minimum Alignment in

Memory

char 8 40 32 8

unsigned char 8 40 32 8

short 16 40 32 16

unsigned short 16 40 32 16

int 32 40 32 32

unsigned int 32 40 32 32

long int 32 40 32 32

unsigned long int 32 40 32 32

float, double, long double 32 40 32 32

pointer 32 - 32 32

fractional short 16 40 - 16

fractional long 32 40 - 32

move.4f d4:d5:d6:d7,(r1)+

[mac d4,d8,d12 ; these four MAC instructions

mac d5,d9,d13 ; execute in parallel

mac d6,d10,d14

mac d7,d11,d15

]

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

8 Freescale Semiconductor

Data Types and Their Use

3.1 Short Versus Int

Avoid using short (16-bit) data types when possible. Instead, use int (32-bit), except for data to be
multiplied. Also, use integers for array indices. This may seem counter-intuitive, but the shorter datatype
is often less efficient. In C, a 16-bit integer (short) has wrap-around behavior (for example, 32766, 32767,
-32768, -32767, …) To support this, a short must be sign-extended over the upper 24 bits of a data register
before it can be mixed with higher-precision types. In addition, function arguments and return values must
be sign extended due to limited visibility across function boundaries. There is a slight overhead for sign
extension in such operations. Figure 5 illustrates the sign-extension process. Here, a sxt.w instruction is
needed so that the results of the operation performed on type short can be mixed with other types across
the function boundary.

Figure 5. C Source for an Addition of Type Short, Generated Assembly Code

3.2 32-bit Multiplication
Avoid using 32-bit multiplication where possible because it is not natively supported. The multiplier on
each ALU is 16-bit. Use of a 32-bit multiplication generates the following (or similar) 4-VLES sequence,
which takes four cycles to execute.

Figure 6. C Source for 32-Bit Multiplication; Generated Assembly Code

3.3 Floating-Point Operations
StarCore cores are fixed-point devices. Any floating-point operation is not natively supported and
consequently is slow. However, the compiler supports the float and double data types, and functional
support is provided for floating-point operations through library routines.

 short func (short x) {

return (x+1);

}

[inc d0 ; increment

rtsd ; function return

]

sxt.w d0,d0 ; sign extension

Short Addition Generated Assembly Code

 int a,b,c; // 32-bit types

 long long d; // 64-bit type

d=a*b;

[impysu d1,d3,d2

impyuu d1,d3,d4]

imacus d1,d3,d2

 aslw d2,d2

 iadd d4,d2

32-Bit Multiplication Generated Assembly Code

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 9

Data Types and Their Use

3.4 Division Operations
Avoid division when possible. Division is implemented through a run-time library call and consequently
consumes a significant number of cycles. If possible, use a right shift, which is supported by instructions.

3.5 64-Bit Data
The cores do not natively support 64-bit data types (long long and double double), so they should be
avoided where possible. The compiler supports them through library routines, if support is enabled with a
switch. When used, the 64-bit data types typically reside in memory or split across a pair of registers.

3.6 Fractional Intrinsics
Fractional data types are not natively supported in C. The StarCore instruction sets include both integer
and fractional instructions. When fractional data is used, it is important that the compiler knows so that
fractional instructions are used. If the compiler uses integer instructions, unintended errors can occur and
saturation does not occur (integer instructions do not support saturation). For fractional data, fractional
intrinsics must be used to communicate to the compiler that the data is fractional. The compiler also
supports two special types, fractional short and fractional long/int, which can only be used with intrinsics.

Figure 7. Example Without Intrinsics and Corresponding Assembly Code

Note in Figure 8 that when intrinsics are used, the compiler uses different instructions. The data is loaded
using fractional loads (move.f) and uses fractional arithmetic instructions (mac). The mac instruction
performs a left shift after the multiply and saturates after the addition, if necessary.

short SimpleFir0(short *x,

short *y) {

int i;

short ret;

ret = 0;

for(i=0;i<16;i++)

ret += x[i]*y[i];

return(ret);

}

 [clr d0

 doensh3 #<16

] nop
LOOPSTART3

 [sxt.w d0,d0

move.w (r0)+,d4

move.w (r1)+,d3]

imac d3,d4,d0

LOOPEND3

 [sxt.w d0,d0

rts]

No Intrinsics Corresponding Assembly Code

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

10 Freescale Semiconductor

Data Types and Their Use

Figure 8. Example Using intrinsics and Corresponding Assembly Code

3.7 Memory Contention
When data is placed in memory, be aware of how the data is accessed. The StarCore cores have two data
buses, each 64 bits wide. Each bus can issue an access each clock cycle. Therefore, a lot of data can be
brought into the core and saved from the core, resulting in a high amount of parallelism. However, there
is a penalty if the two data buses issue transactions that conflict in memory. Data should be separated
appropriately to avoid this contention. The scenarios that cause contention are device-dependent because
memory bank configuration and interleaving differs from device to device. For details, see Section 7,
“References.”

3.8 Cache Accesses
In the caches, place data that is used together next to each other in memory so that the prefetching the
caches is more likely to obtain the data before it is accessed. For more information, see Section 7,
“References.”

3.9 Data Alignment to Enable Multiple Register Moves
By default, the compiler aligns variables in memory to their access width. For example, an array of short
(16-bit) data is aligned to 16 bits. The StarCore cores support loading of multiple data values across the
64-bit data buses, which can be necessary to keep the ALUs busy. However, to leverage multiple data
moves, the data must be aligned to a higher alignment. For example, to load two 16-bit values at once, the
data must be aligned to 32 bits.

#include <prototype.h>

short SimpleFir1(short *x,

short *y) {

int i;

int ret;

ret = 0;

for(i=0;i<16;i++)

ret=L_mac(ret,x[i],y[i]);

return(extract_h(ret));

}

 [clr d0

 doensh3 #15

 move.f (r0)+,d4]

move.f (r1)+,d5

 LOOPSTART3

 [mac d4,d5,d0

 move.f (r1)+,d5

 move.f (r0)+,d4

]

LOOPEND3

 [mac d4,d5,d0

 rtsd]

 asrw d0,d0

Intrinsics Used Corresponding Assembly Code

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 11

Data Types and Their Use

Many compiler optimizations require multiple register moves because there is so much data to move to
keep all the functional units busy. For the compiler to be able to use multiple register moves, the following
must be true:

• The data must be aligned to the combined access width.

• The compiler must be informed of this alignment (for example, across a function boundary).

These requirements are met using the alignment pragma.

• Step 1: Align the data

Word16 gInAry [NO_INPUTS];

#pragma align gInAry 4

• Step 2: Indicate to the compiler that any pointers pointing to that data are aligned. This is especially
important when pointers are passed into functions. In this case, place the pragma inside the
function itself. In Figure 9, the pragma indicates to the compiler that inputPtr points to an array that
is aligned to 4 bytes.

void DcOffsetRemovalOpt (Word16 * inputPtr) {

#pragma align * inputPtr 4

... }

Figure 9. Function Using Aligned Data and Resulting Code

In addition, the compiler can be instructed that all that all pointer function parameters are 8 bytes aligned,
removing the need to place pragmas inside every function. This is accomplished by passing the following
to the compiler shell (scc) -Xcfe "-fl auto_align8". When using this option, the programmer must ensure
that the pointers do point to memory locations which are aligned to 8 bytes and must still communicate
alignment for other pointers which are not function parameters.

Word16 gOutAry [NO_INPUTS];

#pragma align gOutAry 4

Word16 gInAryRef [] = {

 WORD16(0.7948),

 WORD16(0.9568),

 WORD16(0.5226),

... }

void DcOffsetRemovalOpt (Word16 * inputPtr) {

#pragma align * inputPtr 8

for (i=0;i<NO_INPUTS;i++) {

inputPtr[i]=(L_sub(inputPtr[i],temp));

 }

...

}

 LOOPSTART3

 [

 sub d2,d4,d8

sub d2,d5,d9

 sub d2,d6,d10

sub d2,d7,d11

move.4w d8:d9:d10:d11,(r0)+

move.4w (r1)+,d4:d5:d6:d7

]

 LOOPEND3

Function Using Aligned Data Resulting Code

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

12 Freescale Semiconductor

Data Types and Their Use

3.10 Indexed Arrays Instead of Pointers
In general, pointer notation is more complex for the compiler to resolve than array notation. When
possible, use array notation, especially in cases that use complex offsets. In Figure 10, the arrays are
referenced by an index ‘j’:

Figure 10. Example of Pointer Use and Array Use

An additional benefit is that for manual unrolling or partial summation, the compiler can more easily figure
out adjacent array values as candidates for multiple register moves:

accA = L_mac(accA, iRefPtr[j], iInPtr[j]);
accB = L_mac(accB, iRefPtr[j+1], iInPtr[j+1]);

3.11 Pointer Aliasing
When pointers are used at the same piece of code, ensure that they cannot point to the same memory
location (alias). When the compiler knows the pointers do not alias, it can put accesses to memory pointed
to by those pointers in parallel, greatly improving performance. Communicate this to the compiler by one
of two methods: using the restrict keyword or by informing the compiler that no pointers alias anywhere
in the program.

The restrict keyword is a type qualifier that can be applied to pointers, references, and arrays. Its use
represents a guarantee by the programmer that within the scope of the pointer declaration, the object
pointed to can be accessed only by that pointer. A violation of this guarantee can produce undefined results.

Figure 11. Example Using Two arrays and Corresponding Assembly Code

accA = L_mac(accA, iRefPtr+j, iInPtr+j); accA = L_mac(accA, iRefPtr[j], iInPtr[j]);

Pointer Array

void foo (short * a,short * b,int N) {

int i;

 for (i=0;i<N;i++) {

 b[i]=shr(a[i],2);

 }

return;

}

doen3 d4

 FALIGN

 LOOPSTART3

move.w (r0)+,d4

 asrr #<2,d4

 move.w d4,(r1)+

 LOOPEND3

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 13

Data Types and Their Use

Figure 12. Two Arrays with restrict Keyword and Corresponding Assembly Code

Alternatively, if no pointers alias anywhere in the program, then the global option auto restrict can be used.
it is applied by passing the following to the compiler shell (scc): -Xcfe "-fl auto_restrict". The programmer
must ensure that no pointers alias when using this option.

void foo (short * restrict a,short * restrict
b,int N)

 int i;

 for (i=0;i<N;i++) {

 b[i]=shr(a[i],2);

 }

 return;

}

 move.w (r0)+,d4

 asrr #<2,d4

doensh3 d2

FALIGN

 LOOPSTART3

 [move.w d4,(r1)+ ; parallel

move.w (r0)+,d4 ; accesses

]

 asrr #<2,d4

 LOOPEND3

 move.w d4,(r1)

Arrays with restrict Keyword Corresponding Assembly Code

.

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

14 Freescale Semiconductor

Functions

4 Functions
This section presents tips for dealing with functions, as follows:

• Inline small functions. The compiler normally inlines small functions, but the programmer can
force inlining of functions. For small functions, the save, restore, and parameter passing overhead
can be significant relative to the number of cycles of the function itself. Therefore, inlining is
beneficial. Also, inlining functions decreases the chance of an instruction cache miss because the
function is sequential to the former caller function and is likely to be prefetched. Note that inlining
functions increases the size of the code. Pragma inline forces every call of the function to be
inlined.

int foo () {

#pragma inline

... }

Similarly, there is a pragma noinline to disable inlining of a particular function. In addition, the
compiler allows the programmer to specify inlining of a function on a case-by-case basis. This
allows trade-off between speed benefit of inlining and code size increase. The following lines force
inlining of the next call of the function foo. They are placed just before the call.

#pragma inline_call foo

foo ();

• Calling conventions. Change the calling convention for functions with many arguments. The
calling conventions typically pass the first two arguments (scalar or pointer) in registers and the
remaining arguments on the stack. For functions with many arguments that are called frequently,
the calling conventions may be inefficient. Custom calling conventions that override the defaults
can be specified for any function through an application configuration file and pragmas.

• Optimization level. Change the optimization level on a function basis when appropriate. Typically,
some functions are optimized for speed (-O3) while others are optimized for size (-O3-Os). This
can be applied at the function level by pragmas or an application configuration file. The opt_level
pragma is used, for example:

foo () {

#pragma opt_level "o3"

... }

The pragma can also be applied at the file (module) level by placing it at the top of a file, outside
any functions.

• Take advantage of instruction caches. Functions should be aligned so that they fall on cache
boundaries. This can be accomplished using the align pragma. Note that the align pragma is placed
after the function.

int foo () { ... }

#pragma align foo 256

You can set a minimum alignment for all functions with the following option to the compiler:
“-Xicode --min_func_align=256” For details, see Section 7, “References.”

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 15

Loops

• Sequentially-called functions. Functions called sequentially should be placed in sequential areas of
memory so that cache prefetching is likely to bring the code into the cache before it is needed. This
is accomplished through the use of linker command files.

5 Loops
This section presents tips for dealing with loops, as follows:

• Hardware loop mapping. The StarCore architecture supports four hardware loops. Hardware loops
are faster than normal software loops (decrement counter and branch) because they have less
overhead. Hardware loops use loop registers that start with a count equal to the number of iterations
of the loop, decrease by 1 each iteration (step size of –1), and finish when the loop counter is zero.
The programmer should be familiar with hardware loop structures in the output assembly. Note the
LOOPSTART and LOOPEND markings, which are assembler directives marking the start and end
of the loop body, respectively.

Figure 13. Example Hardware Loop

In C, the programmer can write a loop with either an increasing or decreasing loop counter, any
step size, and any final bound. The compiler transforms C loops into hardware loops. However,
certain structures may prevent the compiler from generating a hardware loop.

• Function calls in loops. A function call in the loop body prevents the compiler from generating a
hardware loop, significantly degrading performance.1 Therefore, function calls in loops should be
avoided.

Figure 14. Loop Containing a Function Call Resulting in Generation of a Software Loop

1. However, in the SC3400, branch prediction is used for change-of-flow instructions and hardware loops. This is an
aspect of performance that can be traded off.

 doensh3 #<5

 move.w #<1,d0

LOOPSTART3

 [iadd d2,d1

 iadd d0,d4

 add #<2,d0

 add #<2,d2]

 LOOPEND3

for (i=0;i<10;i++)

foo();

FALIGN

L3

jsr _foo

 deceq d3 ; loop counter

bf <L3

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

16 Freescale Semiconductor

Loops

• Loop conditions. Keep loop conditions simple. A dynamic loop end count or a complicated loop
end count that cannot be resolved prevents the compiler from generating a hardware loop.

• Loop step. Ensure that the loop step is a power of 2 or is equal to 3, 5, or 7. Otherwise, the optimizer
cannot map the loop into a hardware loop.

• Loop index and bounds. Ensure that the loop index and bounds are of type short. In certain
circumstances, if the loop index or bounds is not of type short or unsigned short, the compiler may
not be able to map the loop into a hardware loop.

• Loop count information. The loop count pragma should be used to specify more information about
the iterations of a loop when that information is available. The compiler can use this information
to better optimize the code. This is an important pragma and can enable the compiler to do other
optimizations. The following can be specified:

— Minimum number of iterations. When specified as non-zero, the compiler can remove the code
that checks for zero loop count. This improves performance.

— Maximum number of iterations.

— Modulo and remainder. Used for unrolling information. It is possible to set a modulo and an
optional remainder. If the loop always executes a multiple of 2 or 4 times, the compiler can use
this information to unroll correctly. In the following example, the loop is specified to execute
a minimum of four times, a maximum of 40 times, and always with multiple of 2. No remainder
is specified. Note that the pragma is placed immediately inside the loop body.
for(j=0; j<refSize; j+=2) {

#pragma loop_count (4,40,2)

... }

• Loop-carried dependencies. Avoid loop-carried dependencies, which occur when values from the
current iteration of the loop cannot be completed without knowing values from a previous iteration.
The following example illustrates a loop-carried dependency.

for (i=0; i<10; i++)
c[i]=c[i-1]+a[i];

• Combine loops. If two loops with similar characteristics execute sequentially, they are good
candidates to be combined into one loop to provide more available parallelism to the compiler.

• Inner loop. Do as much work as possible in the inner loop, which increases the available
parallelism for the compiler.

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 17

SC3400-Specific Recommendations

6 SC3400-Specific Recommendations
Because the SC3400 architecture significantly differs from previous StarCore architectures, additional
techniques exist to assist in the optimization process, as follows:

• Small hardware loops. Force unrolling of small hardware loops. Hardware loops use branch
prediction. There is some training associated with shorter loops. In general, the shorter the loop,
the higher the penalty. Therefore, there is an incentive to unroll loops by whatever means possible.
The programmer should ensure that the code is written so that unrolling is possible. The compiler
provides the option to make shorter loops longer to reduce the training overhead. This option is
disabled by default but can be enabled with the following option:

-Xllt “-unroll 0|1|2|3)” (0 for disabled, 1 for speed versus size compromise, 2 for speed, 3 for
blind application of the optimization)

• Loop index optimization. Reuse of indices can cause thrashing of the branch target buffer (BTB)
entries. This includes the scenario when two non-nested loops are contained within one outer loop.
The compiler has an option to enable optimization of hardware loop indices so minimize branch
target buffer (BTB) stalls:

-Xllt “-loop_renumbering<0|1>” (0 for disabled, 1 for enabled). Enabled by default.

• Change-of-flow destination. Ensure that the change-of-flow destination is inside the same 15-bit
(32 Kbyte) aligned block as its source. If this is not the case, that instruction cannot use the branch
prediction mechanism. This can be avoided by the linking and placement of the code.

• Reads and writes to overlapping addresses. Due to the pipeline in the SC3400, a read that occurs
after a write in code can actually execute before that write. If the address of the read and the write
overlap, there is a stall in the write queue. The compiler adds an option to reduce reads and writes
to overlapping addresses and the write queue stalls associated with them:

-xllt -3x00_raw1

• SC3000 intrinsics. Use SC3000 intrinsics for application-specific and SIMD instructions. Various
intrinsics exist to support the application-specific and SIMD instructions. The compiler cannot take
advantage of these instructions, so using intrinsics is necessary.

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

18 Freescale Semiconductor

References

7 References
The following documents are available either on the Freescale web site listed on the back cover of this
manual or through your local sales distributor.

1. StarCore C Compiler Reference Manual.

2. SC3400 Core Platform Cache Optimization in the MSC8144 (AN3356)

3. Reference Manuals for specific devices (MSC8144, MSC8126, MSC8122, and so on)

4. SC140 and SC1400 DSP core reference manuals.

5. SC3400 DSP Core Reference Manual.

6. SC3400 Programmer’s Guide.

7. StarCore Linker Reference Manual

Tuning C Code for StarCore®-Based Digital Signal Processors, Rev 2

Freescale Semiconductor 19

References

Document Number: AN3357
Rev 2
7/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™, the Freescale logo, and StarCore are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.

	Tuning C Code for StarCore®-Based Digital Signal Processors
	1 StarCore Architecture Overview
	1.1 Architectural Features
	1.2 Instruction Support
	1.3 Fractional Versus Integer Arithmetic
	1.4 Arithmetic Operations on the AGU

	2 Using the Tools
	2.1 Specifying the Target Architecture
	2.2 Enabling Optimizations
	2.3 Using the Profiler
	2.4 Analyzing Compiled Code
	2.4.1 Correlating Generated Assembly with C Source
	2.4.2 Parallelism and VLES

	3 Data Types and Their Use
	3.1 Short Versus Int
	3.2 32-bit Multiplication
	3.3 Floating-Point Operations
	3.4 Division Operations
	3.5 64-Bit Data
	3.6 Fractional Intrinsics
	3.7 Memory Contention
	3.8 Cache Accesses
	3.9 Data Alignment to Enable Multiple Register Moves
	3.10 Indexed Arrays Instead of Pointers
	3.11 Pointer Aliasing

	4 Functions
	5 Loops
	6 SC3400-Specific Recommendations
	7 References

