
Freescale Semiconductor
Application Note

Document Number: AN3289
Rev. 0, 07/2006

Contents

Introduction . 1
Power Consumption in Different Operating Modes 1
Power Saving Modes of the S12X. 3
Operating Options in Wait Mode 4
Power saving by varying operating frequency. 4
Entering and Restarting from Stop Mode 5
A Note About Input Pins . 6
Power Saving In Permanently Active Systems 6

8.1 Digital Input Events . 7
8.2 Analog Input Events . 7
8.3 Communications Events . 8
8.4 Periodic events . 8
8.5 Random and Complex Events. 9
Using the Dual-Core Features of S12X to Save Power. 10

0 Summary . 12

Low-Power Techniques for the
S12X Family
by: Steve McAslan

MCD Applications, EKB
1 Introduction
Many applications depend on the ability of a
microcontroller to provide high performance while using
a minimum of power. The S12X family of
microcontrollers provides a range of features to allow
users to reach this goal. This application note examines
those features, discusses how to combine them for
maximum effect and identifies best practices when
creating hardware.

2 Power Consumption in
Different Operating
Modes

In most embedded applications there are two distinct
operating modes where power consumption is a key
consideration. The first of these is stop mode, where the
system is in a resting state but may require to examine
activity in the system and respond quickly. The second of

1
2
3
4
5
6
7
8

9
1

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Power Consumption in Different Operating Modes
these is run mode, where the system is fully operational and drawing its operational current from the power
supply.

Two different characteristics of the microcontroller design affect the two different operating modes. For
stop mode, the dominant characteristic may be the current drawn when the on-chip transistors are not
switching. This is particularly the case when the MCU is not required to provide any functionality. In this
case the current drawn is as a result of leakage through the CMOS gates on the device. Figure 1 illustrates
the situation.

Figure 1. Leakage in a CMOS Gate

The CMOS transistors T1 and T2 are in a steady state where the input is not changing. In this configuration
the input determines that T1 is in the on state and T2 is in the off state. Theoretically, no current can pass
through T2; however, in practice a tiny current leaks through the gate. This is called the subthreshold or
channel leakage current, and its value depends on the design of the transistor and in particular the operating
voltage of the transistor. There are secondary effects that exist in this gate caused by parasitic diodes which
are formed between the transistors and the substrate on which the transistors are formed. These diodes
form additional leakage paths for current.

The leakage caused by these effects is minimized by design and production processes. Due to the nature
of the leakage, however, the current taken is highly non-linear over temperature. At ambient or low
temperature the stop current can be very small (in the order of 20–30 µA). However, at temperatures of
125 °C this can rise to much higher values - for example, typically 600 µA for the MC9S12XDP512 MCU.

In many applications the MCU has to offer some basic functionality while in stop mode, and this adds extra
current due to the run mode effect. The extent to which it affects the functional stop mode depends on the
amount of functionality in use.

VDD

VSS

Input = 0 Output = 1

T1

T2
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor2

Power Saving Modes of the S12X
The run mode current requirement also arises as a result of the design of the CMOS gate. Figure 2
illustrates the situation during run mode.

Figure 2. Run Mode Current in a CMOS Gate

In this mode, the power requirement is due to the switching effect of the gate. As the gate switches in
response to a change on the input, the transistors T3 and T4 change from on to off (T3) or off to on (T4).
This change in state takes a finite period of time (typically a few hundred picoseconds). During the
transition, however, both transistors are conducting and so current can flow directly from the VDD power
line to the VSS line. The more often the gate switches, the more current the gate consumes, and so a device
like an MCU that operates from a common clock signal will see its current demand rise and fall depending
on the clock frequency. This effect is largely linear, so a doubling of the clock frequency will typically
result in a doubling of the power required.

In summary, the MCU power requirement depends on its operating mode and environmental conditions.
In run mode, more current is drawn as the bus speed is increased; in stop mode, the dominant effect is likely
to be temperature. This leads to the first suggested technique for reducing the power requirements on the
S12X family (see item 1 in Table 1 at the end of this document).

3 Power Saving Modes of the S12X
The S12X MCU families provide chip-level controls for the performance of the device. These are Wait
mode, Pseudo-stop mode and Stop mode. The characteristics of each of these are:

• Wait mode: stops the CPU completely, thus saving the power required to operate it. Other modules
have variable levels of control, but typically have the option of continuing to operate or to stop.
Since all of the clock chain continues to operate, the power savings are limited in this mode.

 VDD

VSS

0 1

T3
“on”

T4
“off”

VDD

VSS

T3
partially

on

T4
Partially

on

VDD

VSS

1 0

T3
“on”

T4
“off”
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 3

Operating Options in Wait Mode
• Stop mode: this causes the crystal oscillator to stop and thus removes the primary clock from the
device, effectively causing the MCU to stop all operations. This is the lowest power configuration
of the device. Several modules on the MCU provide a way to restart the oscillator and restart code
execution since in most cases applications still have a need to respond to system events. In addition,
the S12X family MCUs include the option to wake the device after a time period has expired. This
is a useful feature for systems that must periodically check the status of sensors within an
application. The period is determined by a timer embedded in the on-chip voltage regulator called
the Autonomous Periodical Interrupt (API). The API operates from an internal RC oscillator that
can continue to operate when the crystal oscillator is stopped. Since this timer consists of logic
switching due to a clock, it increases the total current drawn by the device. The total current is,
however, still lower than in modes where the oscillator continues to run.

• Pseudo-stop mode: as the name suggests, this has many of the features of Stop mode. The
difference is that the oscillator continues to operate with reduced amplitude and this allows some
of the on-chip systems to continue to operate. In particular, the real time interrupt (RTI) and
watchdog (COP) are available to provide precise timing references and protection for the system.
Pseudo-stop mode also allows a much reduced time when restarting when compared to Stop mode
due to the time taken by the crystal to start.

4 Operating Options in Wait Mode
The CPU enters this mode by executing the WAI opcode. This opcode prepares the CPU for a fast response
to the event that will wake it by stacking its registers. The exact behavior of an MCU in wait mode depends
on the configuration of the on-chip peripherals. In most cases the modules have the option of stopping
immediately (or as soon as they complete the current operation) or continuing to operate. Examples of
peripherals that stop immediately are the SCI, which will halt during the transmission or reception of a
byte, and the timer, which will cease all timing operations. An example of a peripheral that will complete
the current operation is the SPI, which will continue operating if configured as a slave.

Any general purpose I/O will retain its last setting (input or output) and thus, for example, any LEDs
connected to the MCU will remain in their latest state and so consume current.

The behavior of each peripheral in Wait mode is controlled by a configuration bit. The minimum power
configuration will be the one in which the most peripherals are powered down in Wait mode. See item 2
in Table 1 at the end of this document.

5 Power Saving by Varying Operating Frequency
As discussed, the current consumed by the MCU when operating is linearly related to the operating
frequency. The MCU will therefore draw less current if it operates more slowly. Users can take advantage
of this when operating from the internal PLL (IPLL) on S12XE family members.

Since the IPLL provides the bus clock for the MCU, and since this clock frequency can be changed at any
time, it is possible for users to configure the operation speed of the MCU according to the processing
demands of the application. If external communications are required during the lower speed mode then the
baud rate selection for the communications modules may have to change.
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor4

Entering and Restarting from Stop Mode
The IPLL has additional flexibility in that it has a divider option on the clock output that allows the bus
clock frequency to be lower than the external crystal’s. The PLL frequency can be divided by up to 62,
which gives a minimum MCU bus clock of approximately 260 kHz. See item number 3 in Table 1.

The IPLL is configured using the SYNR and REFDV registers to give a minimum operating frequency of
32 MHz. The POSTDIV register provides the clock output divider option.

6 Entering and Restarting from Stop Mode
The CPU enters this mode by executing the STOP opcode. This opcode prepares the CPU for a fast
response to the event that will wake it by stacking its registers. The opcode will also cause most on-chip
modules to cease their current operation. This can produce undesired effects and so it may be good practice
to allow current operations to terminate before executing STOP. This is particularly the case with ongoing
NVM operations. As in Wait mode, any general purpose I/O will retain its latest state and will continue to
consume the current required by the external circuitry.

Execution of the STOP opcode is disabled at reset by the S-bit in the Condition Code Register (CCR).
While this bit is set the CPU will ignore the STOP instruction and instead perform the equivalent of a
two-cycle NOP opcode. The S-bit can be cleared using the various CCR-related opcodes. The STOP
opcode is also ignored on the S12XE when the CPU is operating in User state.

Care should always be taken before entering Stop mode to ensure that the restart interrupt conditions are
correctly configured.

Various events can cause the CPU to restart from Stop mode. These fall into three categories:
• Reset - the system asserts the RESET pin on the MCU, and the MCU restarts.
• XIRQ - this non-maskable interrupt will cause the MCU to restart in one of two ways. If the X-bit

in the CCR is set, an XIRQ assertion will cause the CPU to restart from the opcode after the STOP
opcode. In other words, the CPU does not jump to an interrupt service routine. If the X-bit is
cleared, the CPU will restart at the XIRQ interrupt service routine.

• IRQ interrupt - this includes the external IRQ pin and the internal I-bit interrupt sources,
(peripherals) and will cause the CPU to restart at the appropriate interrupt service routine. The I-bit
must be cleared and the interrupt module configured appropriately before executing the STOP
opcode to allow these interrupts to restart the MCU.

NOTE
The XIRQ input is level-sensitive and, if asserted, will cause the CPU to
restart from STOP even if the XIRQ interrupt is disabled. Ensure that the
hardware design takes this operating feature into account.

The exact configuration of the MCU in Stop mode depends on the state of system control bits when the
STOP opcode is configured. For example, the difference between the Pseudo-stop mode and Stop mode is
the setting of the PSTP bit.

When restarting from Stop mode S12X MCUs have two options:
• Start the crystal oscillator and run code once it has started. This can take several milliseconds due

to the physical nature of the crystal oscillations.
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 5

A Note about Input Pins
• Start from the PLL VCO, which is an unregulated clock operating between approximately 1 MHz
and 5 MHz. This can start in typically 50 µs.

The latter case is selected by setting the Fast Wake up (FSTWKP) bit which provides a low speed clock
from which the MCU can operate for an unlimited time. The primary advantage of this selection is that the
MCU can begin operating very rapidly after an external event occurs. The disadvantage is that the bus
speed is unregulated and so cannot be used as a reference for communications peripherals. It is possible to
enable the crystal oscillations at any time from the Fast Wake up condition. While the crystal is starting
the MCU continues to execute code and when its start-up is complete the normal bus clock options are
available.

7 A Note about Input Pins
As described previously, the status of the general purpose output pins is not affected by entry into Stop
mode or Wait mode, and so they will continue to draw I/O current in these modes. (See item 4 in Table 1.)
Most of these pins can also be set to input rather than output, and this introduces an additional
responsibility for the hardware and software designer.

As shown in Figure 2, there is an input voltage on the transistors that causes both to be on simultaneously
and this may occur for a short period while the gate is switching. The standard input port (or I/O port) on
the S12X family has a similar design to this gate and consumes power in a similar way. The key difference
is that the input voltage is not provided by an on-chip source but by an external voltage and so is not under
the control of the MCU. Therefore it is possible to apply a mid-range voltage on the input and cause the
gate to conduct current directly from the VDD power line to the VSS line. For this reason it is essential that
only digital voltage levels are applied to any digital input pin.

An additional feature of the input pin is that the input impedance is very high. This can allow small charges
on the input to accumulate and affect the behavior of the gate. In practice, there is a possibility for these
charges to reach a steady state where the gate voltage is in the mid-range and the gate is again consuming
current. For this reason all inputs must be externally or internally pulled into a known state when no
external driving voltage is present. This also applies to the pins of the ATD converter when they are
enabled as digital inputs.

The advice also applies to MCUs that are in packages that do not allow all I/O pins to be bonded out. In
this case, the input pins are still present but they are not physically connected to any other hardware. These
pins must be placed in a known state using either the internal pull devices or by changing them to an output.
Failure to account for these floating input pins can result in hundreds of microamps of unwanted current
consumption. See item 5 in Table 1.

8 Power Saving in Permanently Active Systems
In many applications the system is permanently powered up so that it can respond to external events. For
most of the time the system must use as little power as possible, yet be able to become active if required.
In this case the typical best practice is to place the MCU in one of the stop modes and configure it such
that it can service a required event. The types of events that can cause the system to become active vary
from application to application, but can be characterized as follows:
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor6

Power Saving in Permanently Active Systems
• Digital input events - where a logic level changes to indicate that the system must become active
• Analog events - where an analog level above or below a certain value means that the system must

take action
• Communications events - where a message from another electronic module causes the application

to wake up
• Periodic events - where the system must perform some activity at a known interval
• Random and complex events - where an event can occur randomly or where the application must

perform some processing to determine if activity is required

The S12X family provides a variety of different features to address the above requirements; potential
configurations for each are described below. Many systems will have to respond to a combination of the
above events and will require a combination of configurations to allow this to occur.

8.1 Digital Input Events
Examples of this type of system event are a switch thrown by a user or a simple logic level change from
an external module or sensor.

The sensor or switch could be connected to the dedicated IRQ or XIRQ pins if appropriate. Alternately,
the S12XE and other S12X and S12 devices include extensive keyboard wake-up features designed
specifically to detect this kind of event. Many general-purpose I/O pins on these devices have the option
of creating an interrupt when the logical level on a pin changes. The ports typically include the option to
trigger on active high or active low events and include pull-down or pull-up devices, respectively. For Port
P on the S12XE family, the configuration registers are PERP to enable the individual pull-ups, PPSP to
select the polarity of the edge detected, and PIEP to enable the interrupt when the edge occurs. Other ports
have similar registers.

In this configuration, the MCU may be placed in Stop mode with no other functionality required and be
restarted when the external logic change occurs.

8.2 Analog Input Events
This type of event occurs when a particular analog value is detected on an attached sensor. Examples here
include temperature sensors and battery levels.

It is straightforward to design external circuitry to trigger on a particular analog event. This would most
likely involve using an analog comparator to convert the analog event into a digital event and using the
digital input event techniques to process the event.

On the S12XE family, a more sophisticated solution is possible using the on-chip ATD converter. This
converter has two features that combine to allow detection of analog events. First, there is a digital
comparator on each conversion channel that allows greater-than or less-than-or-equal-to comparisons. A
positive comparison can cause the ATD to raise an interrupt. Second, the ATD module contains its own
clock source in the form of an RC oscillator. This internal clock allows the ATD to make conversions even
when the MCU is in Stop mode. By combining this self-clock mode with the comparator function, the user
can configure the ATD to detect certain analog events and raise an interrupt that will restart the MCU from
Stop.
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 7

Power Saving in Permanently Active Systems
The combination allows the MCU to restart when an analog voltage drops below a certain value or when
it exceeds a value.

The internal clock mode of the ATD is enabled by the ICLKSTP bit, and each channel using the
comparator is configured in the ATDCMPE register. The comparator function on each channel is
determined by the status of bits in the ATDCMPHT register. Positive comparator results can raise an
interrupt and restart the MCU if the ACMPIE bit is set.

8.3 Communications Events
In this scenario, the system is awoken by a message coming from another module. An example from the
automotive industry would be messages on CAN or LIN networks that occur when the car has been parked
and the driver is returning. The car locking mechanism would detect the unlocking of the doors and signal
to the other in-car modules to wake over the network.

The S12X families allow both CAN and SCI (for LIN) ports to detect message events and raise an interrupt
when one arrives. This feature allows the communications ports to restart the MCU from Stop mode. The
user software must pre-configure the ports to allow this restart to occur.

The user software must place the MSCAN module in sleep mode with the wake-up enabled before the
STOP opcode is executed. The CAN specification requires specific behaviors from compliant modules and
unless the correct steps are followed the module will not be in the correct state for recovery. The process
is described in detail in application note AN2255, MSCAN Low Power Applications.

The process is much more straightforward for the SCI module when used for LIN communications. After
the LIN sleep command is issued the user software can set the Receive Input Active Edge Enable
(RXEDGIE) bit to allow an active edge on the receive pin to restart the MCU.

8.4 Periodic Events
Often a system may have to restart on a regular basis. This may involve the maintenance of a real time
clock or an external system that needs a regular check.

The appropriate configuration of the MCU in this case depends on the accuracy required for the periodic
restart. If an accurate wake-up period is required (e.g., for real-time clock maintenance), the most
appropriate low-power mode is Pseudo-stop mode. Since this mode keeps the crystal oscillator running, it
provides an accurate timebase. The Real Time Interrupt uses the crystal clock as a source and can provide
timeout periods from 250 µs to 800 ms from a 4 MHz crystal. The RTI has a choice of binary or decimal
dividers, so there is a wide range intermediate values possible. A further benefit to Pseudo-stop mode is
that the COP can also continue to run and so a failure in the operation of the periodic code can cause a
watchdog recovery for the MCU. The primary disadvantage of Pseudo-stop mode is that the crystal
oscillator consumes additional current so that the power requirements are higher than in Stop mode.

The PSTP and PRE bits enable Pseudo-stop and the RTI operation. The RTIE bit allows the RTI to
interrupt and restart the MCU.

If a less accurate timeout is required, the API is a more energy-efficient solution. This operates with an
accuracy of 10% over all operating conditions and uses approximately 10 times less current than
Pseudo-stop mode with the RTI active.
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor8

Power Saving in Permanently Active Systems
Another operating requirement may involve a periodic review of the value of analog signals in the system.
In this case it is possible to configure the ATD module to run from its internal clock, convert a series of
channels, then raise an interrupt. At this point the MCU can restart and examine the conversion results.
The ATD internal clock has a wide operating range so once again this is not an appropriate solution if
accurate timing is required.

8.5 Random and Complex Events
In many cases it is not possible for the MCU to be directly stimulated by external activities and a more
complex or proactive system examination is required. Examples of this kind include scanning a keyboard
and checking the status of an external peripheral.

A key feature of this type of event is that most of the time the MCU will perform the status check and then
go straight back to Stop mode. Only in a few cases will a restart cause the MCU to spend a significant time
in run mode. Bearing this in mind, the most power-efficient configuration will be found by using the API
to perform a periodic wake up and by selecting Fast Wake up mode. The combination allows the MCU to
consume as little power as possible while in Stop mode, minimize its consumption when checking the
status of the system and only activate full run mode if required. Figure 3 shows the flow of this type of
application.

Figure 3. Example of Complex Event Handling

S12X in Stop
mode with
API active
and Fast
Wake-Up

iDD ≈ 60 µA

API
timeout S12X in self

clock mode
checks
systems
status

iDD ≈ 5 mA

No change in
system

S12X in Stop
mode with
API active
and Fast
Wake-Up

iDD ≈ 60 µA

Service system
request

iDD ≈ 40 mA
S12X in run
mode with
high bus

speed

Fast wake-up allows fast
response to system events
and saves the current
needed to start crystal and
run at full speed
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 9

Using the Dual-Core Features of S12X to Save Power
9 Using the Dual-Core Features of S12X to Save Power
The architecture of the S12X features the XGATE co-processor which, like the CPU, is an
independently-programmable core. Unlike the CPU, the XGATE is a RISC processor that operates at twice
the bus clock and consumes energy only when executing a thread to service an event. Unlike the CPU it
has no need to specially select Stop mode when inactive.

The difference in the architecture between the CPU and XGATE opens the possibility of power savings
since both take approximately the same amount of current when running. The faster core at a particular
task is often the most power efficient solution.

For more information on the architecture of the S12X and the XGATE, please see application notes
AN2685 and AN3144.

To see how the core architecture can influence the speed of execution (and therefore the power
consumption) consider the C program shown in Figure 4. This is a very simple example of a periodic wake
up that only enters run mode when some external event occurs but must also provide a changing indication
to the system. The code is executed by an interrupt from the API which wakes the MCU from Stop mode
with Fast Wake-up. It scans four I/O ports and compares the values against RAM, toggles an LED every
eight API interrupts, and starts the crystal oscillator if the I/O value is different to the value in RAM.

By compiling the C code for both the XGATE and for the CPU, one can compare the relative execution
times and hence power consumption. This comparison is shown in Figure 5, which shows that in this case
the XGATE will complete the routine in less than half the time taken by the CPU. For this example it is
therefore more efficient to use the XGATE to perform the low power processing.

Byte LoopCount,RAM_PortA,RAM_PortB,RAM_PortC;
Byte RAM_PortD,RAM_PortE;

// interrupt handler
interrupt void APIHandler(int dummy)
{
 Byte RAM_Changes = 0;
 if (PORTA != RAM_PortA) RAM_Changes |= 0x01;
 if (PORTB != RAM_PortB) RAM_Changes |= 0x02;
 if (PORTC != RAM_PortC) RAM_Changes |= 0x04;
 if (PORTD != RAM_PortD) RAM_Changes |= 0x08;

 LoopCount++;
 if (LoopCount%8) PORTE=PORTE^0x01;

 // Clear API interrupt
 VREGAPICL_APIF = 1;

 //Start up MCU if required
 if (RAM_Changes) PLLCTL_FSTWKP = 0;
}

Figure 4. C Example 1
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor10

Using the Dual-Core Features of S12X to Save Power
Figure 5. Example 1 Performance

Consider the second example, shown in Figure 6. In this case there are two LEDs, with one being toggled
every 25 interrupts and one every 80 interrupts. The results for this example are shown in Figure 7. In this
case the CPU is a better choice for the low-power processor.

Byte LoopCount;

// interrupt handler
interrupt void APIHandler(int dummy)
{
 LoopCount++;
 if (LoopCount%25) PORTE=PORTE^0x01;
 if (LoopCount%80)
 {
 PORTE=PORTE^0x02;
 //Start up MCU
 PLLCTL_FSTWKP = 0;
 }
 // Clear API interrupt
 VREGAPICL_APIF = 1;
}

Figure 6. C Example 2

71

103102
92

0

20

40

60

80

100

120

Code size Cycle count

XGATE
CPU

XGATE
completes in
45% of CPU
time
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 11

Summary
Figure 7. Example 2 Performance

In practice, the choice of the processor to use depends on the type of processing power required. XGATE
is extremely efficient for operations involving bit manipulation, shifts, comparisons and RAM-based
operations. The CPU is best when there is mathematical calculation required or extensive access to flash.
Since both cores are easily programmed in C it is straightforward to write the algorithm and test its
performance on each core in turn. (See item 6 in Table 1.)

10 Summary
The S12X and S12XE families provide a wide range of features to help reduce the operating power
required. Table 1 summarizes six of the best techniques, all of which are described in this application note.
A combination of these techniques may be required to take full advantage of the power-saving benefits of
the MCUs.

55

119110

352

0

50

100

150

200

250

300

350

400

Code size Cycle count

XGATE
CPU

CPU completes
in 68% of
XGATE time

Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor12

Summary
Table 1. Power Saving Techniques

No. Description Comments

1 Reduce operating speed to maximum required for
correct operation

Running faster than required consumes unnecessary
power

2 Use the appropriate mode for application conditions Select from wait, stop or pseudo-stop mode as
required

3 Use the IPLL to vary the operating frequency Reduce operating speed if less processing power is
required

4 Set any I/O pins to a non current consuming state if
possible

Current consumed by externally connected circuitry
(LEDs etc.) will continue to be taken even in Stop
mode

5 Terminate or avoid the use of floating inputs Floating inputs can cause the input pin to consume
unnecessary current

6 Choose the fastest core for a task when restarting
from Stop mode

The availability of the XGATE and the CPU allows a
choice of processor when an MCU restart is required
Low-Power Techniques for the S12X Family, Rev. 0

Freescale Semiconductor 13

Document Number: AN3289
Rev. 0
07/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Power Consumption in Different Operating Modes
	3 Power Saving Modes of the S12X
	4 Operating Options in Wait Mode
	5 Power Saving by Varying Operating Frequency
	6 Entering and Restarting from Stop Mode
	7 A Note about Input Pins
	8 Power Saving in Permanently Active Systems
	8.1 Digital Input Events
	8.2 Analog Input Events
	8.3 Communications Events
	8.4 Periodic Events
	8.5 Random and Complex Events

	9 Using the Dual-Core Features of S12X to Save Power
	10 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

