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1 Introduction
This document explains how to use the temperature 
sensor available in the analog-to-digital converter 
(S08ADCV1) peripheral of the HCS08 family of 
devices. Devices in this family use the high performance 
HCS08 core and are ideal for a range of applications such 
as:

• Small appliances
• Security systems
• Handheld devices
• Control systems

This document provides information on how to perform 
a basic temperature reading, shows example code that 
demonstrates a temperature reading, and examines 
methods for optimizing the accuracy of this temperature 
sensor.
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Basic Temperature Sensor Reading
The outstanding HCS08 ADC peripheral contains numerous features:
• Linear successive approximation algorithm with 10-bit resolution
• Up to 28 analog inputs
• Output formatted in 10- or 8-bit right-justified format
• Single or continuous conversion (automatic return to idle after single conversion)
• Configurable sample time and conversion speed/power
• Conversion complete flag and interrupt
• Input clock selectable from up to four sources
• Operation in wait or stop modes for lower noise operation
• Asynchronous clock source for lower noise operation
• Selectable asynchronous hardware conversion trigger
• Automatic compare with interrupt for less-than, greater-than, or equal-to programmable value

The automatic compare with interrupt and operation in low-power modes features add unique functionality 
to this ADC peripheral. ADC also contains an on-chip temperature sensor connected to one of the ADC 
channel inputs. This allows the MCU to monitor the board temperature and take action such as:

• Enter a low power mode to reduce excess battery drain at high temperatures
• Adjust calibration tables for temperature dependant sensors
• Shut down system loading to prevent damage to mechanical components

2 Basic Temperature Sensor Reading
The SO8ADC module has a P-N transistor junction with temperature dependent properties acting as an 
embedded temperature sensor. The voltage across this junction rises or lowers with temperature allowing 
silicon to act as a temperature sensor. Figure 1 shows the typical ADC readings of the temperature sensor 
output across a range of temperatures.
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Basic Temperature Sensor Reading
Figure 1. Typical ADC Temperature Readings

The graph shows that the temperature sensor output is linear and dependant on VDD. The temperature 
sensor output voltage is highest at cold temperatures and lowest at hot temperatures. For VDD = 3 V, the 
readings range from 277d at –40°C down to 176d at 130°C. An approximate transfer function 
demonstrated in the following sections represents this behavior.

The temperature sensor reading most accurately represents the temperature of the die and, due to 
proximity, the leads and the PCB board connected to it. For many applications, the desired temperature 
may differ from the die’s temperature. For example, the die temperature can differ from the temperature 
of a room’s air flow. Using calibration methods can make approximations of this delta.

Some conditions will require special considerations, such as if the PCB board and the parameter that the 
application measures have different temperatures. These scenarios have many different solutions. Resolve 
this scenario by thermally connecting the IC to the target with epoxy or placing the IC as near as possible 
to the monitored element.

Calibration aids in modifying the issue of temperature offset. Correct calibration will ensure that the target 
element’s temperature, as opposed to the die, will correlate to the resulting temperature sensor voltage 
readings. In this way, you can understand and account for the offset due to location. The following sections 
further discuss calibration benefits.

2.1 Using Typical Parameters Provided by the Data Sheet
Use the typical parameters provided by the HCS08 data sheet to perform a temperature reading. An 
approximate transfer function describes the temperature sensor.
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Basic Temperature Sensor Reading
Eqn. 1

Where:
VTEMP is the voltage of the temperature sensor channel at the ambient temperature
VTEMP25 is the voltage of the temperature sensor channel at 25°C and VDD = 3 V
m is the hot or cold voltage versus temperature slope in V/°C

The parameter m is different for the hot or the cold slope of the equation. 
• Hot slope parameter m applies to readings greater than 25°C 
• Cold slope parameter m applies to readings less than 25°C

In the electrical characteristics section of some data sheets, typical parameters are provided for VTEMP25 
and m (both hot and cold slope). These parameters perform a temperature reading according to the 
flowchart shown in Figure 2. For this example, parameters from the MC9S08QG8 data sheet were used.

Figure 2. Temperature Reading Flowchart

As shown in this implementation, software initializes the ADC; next, an ADC reading of the temperature 
sensor is completed. Based on this reading, a decision is made to use the cold or the hot slope parameter. 
Finally, the calculation is performed. 

Floating-point math facilitates the temperature calculations. The software files accompanying this 
application note show both a floating point and a non-floating point implementation of this flowchart using 
C code. Both implementations have benefits and drawbacks.

Temp 25
VTEMP VTEMP25–
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Optimizing the Temperature Sensor
3 Optimizing the Temperature Sensor
You can receive the most accuracy from the temperature sensor in many ways.

1. Analog-to-digital Configuration
Configure the analog-to-digital for long sample time and a maximum of 1MHz ADC CLK. Use 
a MCU low power mode to do an analog-to-digital reading. Wait or preferably stop mode 
reduces the effect of internal MCU noise on the temperature sensor reading.

2. Averaging ADC readings as demonstrated in the Processor Expert example.
Averaging is the most basic of digital filtering techniques and can reduce the effect system 
noise on ADC readings. This smooths the temperature sensor input and increases the effective 
resolution of the analog-to-digital converter.

3. Determine a current reading of VDD by using the bandgap voltage to calculate VDD.
Using a current value of VDD more accurately represents VTEMP25 and VTEMP. This leads to a 
better result for the approximate transfer function.

4. A floating-point implementation results in more accurate math when using the approximate 
transfer function if you can spare the code space.

3.1 Calibration
Along with the methods listed, there are other ways to improve accuracy. Ideally, the final application 
would use the data shown in Figure 1. You could store this data in the MCU as a look-up table. With this 
method, each ADC reading of the temperature sensor would correlate to a temperature. For example, the 
data in the graph shows that at 3 V and 0°C the ADC will read 254d. At a constant voltage, you can use 
the data shown in the graph to get the best temperature accuracy. Unfortunately, this method requires a 
great deal of effort. You will have to correlate the final application at many temperatures, and this takes 
time. Also, each of the test points must reside in code space. Although this calibration results in the best 
results, it is very costly.

A very suitable alternative is to calibrate at a smaller sample of test points. Calibrating at 25°C results in 
a typical temp sensor Accuracy of ±4.5°C. This method involves determining the VTEMP25 parameter from 
the approximate transfer function (Equation 1) and using this parameter in the temperature calculation. 
The unit that created the data from Figure 1 VTEMP25 (3 V) is 0.703125V. Using this parameter as VTEMP25 
results in more accurate temperature readings.

Calibrating at three points, –40, 25, and 105°C results in a typical temp sensor accuracy of ±2.5°C. This 
method requires that you calculate the cold and hot slope (m) for the approximate transfer function. Use 
the data from Graph 1 to solve for m(hot) and m(cold) as shown here:

m cold( )
VTEMP40 VTEMP25–( )–

40–( ) 25–
--------------------------------------------------------------= m cold( ) 0.001668=

m hot( )
VTEMP105 VTEMP25–( )

105 25–
-------------------------------------------------------------= m hot( ) 0.001758=
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Processor Expert Floating-Point Implementation
These calculated parameters differ slightly from the typical parameters provided by the data sheet and 
result in a more accurate temperature sensor reading.

3.2 Digital Filtering
The handling of the ADC readings generated by the temperature sensor is a very important part of 
generating an accurate temperature reading. In the calibration methods discussed, the calculated VTEMP 
readings are dependant on the ADC readings. Along with averaging, you can apply other digital filtering 
methods to the ADC readings to make improvements to the data sample. Implement a simple software 
filter to reduce the affect of jumpy ADC readings. Use a digital filter to apply weighting to each of the 
temp sensor readings. For example, divide each reading by two and add the previous output divided by 2 
to make the current output. The result would be a weighted average that places equal weight on the present 
reading and the contributions of all the previous readings. In pseudo C code, this is implemented using 
shifts to do the divides: 

Sharp change in temperature sensor readings smooths with this method. Using digital filtering reduces the 
impact of erroneous temperature readings. This is one implementation of a digital filter. In other 
implementations, you can change the parameters to set the weight of the current reading to a different 
value.

Additional software could look for erroneous temperature sensor ADC readings. If previous readings 
differ greatly from the current reading, you could ignore the current reading as bad data.

4 Processor Expert Floating-Point Implementation
This implementation demonstrates a quick and straightforward process to determine a temperature 
reading. For this example, the DEMOQG8 board and Processor Expert complete a temperature reading. 
The CodeWarrior project, QG8_Floating-Point_Temp, demonstrates this implementation. When using the 
method from QG8_Floating-Point_Temp code example, the expected accuracy of the temperature sensor 
is typically ±8°C. In this example, use Processor Expert to initialize and complete the ADC reading for 
this project. Figure 3 shows the ADC bean parameters.

Output Current_Reading 1» Output 1»+=
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Processor Expert Floating-Point Implementation
Figure 3. ADC Bean Parameters

The Bean Inspector view displays the ADC configuration necessary to perform a temperature reading. The 
bean allows the Temp Sensor to be selected as one of the channels. Processor Expert initializes the ADC 
for long sample time and 10 bits of resolution. The selected conversion time configures an ADC input 
clock of 1 MHz or lower. As shown in Figure 3, select the asynchronous clock as the source clock input 
to the ADC and the longest conversion time, 46 μs. This configuration sets an ADCCLK prescaler of 8, 
creating an ADCCLK below 1 MHz. Later, we will discuss the importance for generating an accurate 
reading from the temperature sensor with these parameters.

4.1 Averaging ADC Readings
The Processor Expert ADC Bean easily allows for the averaging of analog conversions. As shown in 
Figure 3, selecting the number of conversions enables averaging. For this example, we set 64 conversions. 
Averaging is an excellent way to filter some of the errors involved in using the ADC. The averaging of 
ADC readings can filter noise caused by external system activity. Averaging results in a steady reading that 
more accurately represents the temperature. The most basic digital filtering done on the temperature sensor 
readings involves averaging results.
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 7



Fixed-Point Approximation
4.2 Using the Approximate Transfer Function 
In the Processor Expert Basic_Temp example code, floating-point math is enabled. This allows you to 
perform the mathematical equations shown in the C code below. This code represents the previous 
flowchart (see Figure 2).

Vtemp = Vtemp * 0.0029296875 ; //Convert the ADC reading into voltage
if (Vtemp => .7012){ ; //Check for Hot or Cold Slope

Temp1 = 25 – ((Vtemp – .7012)/.001646) ; //Cold Slope)
}else {

Temp1 = 25 – ((Vtemp–.7012)/.001749) ; //Hot Slope)

In this floating-point implementation, the compiler uses 32-bit IEEE floating-point support selected during 
the creation of this project. The generated assembly code manages the floating-point math necessary to 
perform the computations. Files created with the project provide all of the subroutines for floating-point 
computations. Using the floating-point support provided by CodeWarrior simplifies the use of the 
approximate transfer function.

5 Fixed-Point Approximation
Use a fixed-point method to reduce code size with a small degradation in accuracy. The following example 
explains how to use a fixed-point method to create a temperature reading. See the example provided in the 
Fixed_Point_Basic_Temp folder associated with this application note.

When using fixed-point operations, keep in mind the precision used for all the operations. A number can 
represent different things for our application; for instance, the number 1000 in our application can mean 
100.0, 10.00, 1.000, 0.1000, or even smaller numbers. At every step of our application, we decide the 
precision used for each number, so we know where the decimal point is for the variables.

Remember the important step of adding comments to each operation to simplify the understanding of what 
we do, for either us or other people that can use our code. The amount of code size and execution speed 
saved in these implementations is significant. This allows this implementation to help give a much better 
performance of a design working with an 8-bit machine.

5.1 Calculating VDD

As described previously, you used this equation to complete a temperature reading:

The value of VTEMP25 given in the data sheet is also the typical value calculated for VDD = 3 V. If the 
system voltage can vary or it is not set to 3 V, then one important step in calculating temperature is 
determining the value of VDD. Determine the value of VTEMP25 by using the value of VDD.

Temp 25
VTEMP VTEMP25–

m
------------------------------------------------⎝ ⎠
⎛ ⎞–=
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Fixed-Point Approximation
Knowing that the value of VDD equals the maximum return value for the ATD, with a 10-bit resolution 
ATD conversion like the one possibly used for the MC9S08QG8, 0x3FF hexadecimal (1023 decimal) will 
represent the VDD. We can easily determine the value of the supply voltage with the following equations:

Eqn. 2

Where:
• ADCRBG results from the ATD conversion of the Bandgap channel stored in the ADC result 

register.
• ADCRVDD is the analog to digital conversion of VDD.

Because we can make a conversion for the Bandgap channel and get a value for ADCRBG, we can solve 
with the following expression with a one-variable equation:

Eqn. 3

We can determine the precision needed here because we want a fixed-point representation of the value. 
The floating-point variables represent a value in a predefined format by an IEEE standard where we have 
a sign bit, eight bits for the exponent and 23 bits for the fraction, but at the end is a 32 bit (or 64 bit) variable 
with a special interpretation. The standard was intended to represent values from ±2-126 to (2-2-23) × 2127 
(approximately from 10-44.85 to 1038.53) when using 32-bit format. However, our application has a very 
limited range of possible values (and many of the applications we see in embedded systems are the same). 
In cases like this application note, we can choose the way to represent the value in a fixed-point way that 
helps the MCU to perform all the operations in an easier, smaller, and faster way by having a couple of 
digits after the decimal point for most of the operations and in each of the operations.

The first approach has a representation of the supply voltage with one value after the decimal point with 
the intention of adding precision to the final result. The easiest way is to have the original value multiplied 
times 10. From Equation 3, we can tell that:

VDD 1023 ADCRVDD
= =

VBG 1.2volts ADCRBG= =

VDD
VBG
------------

ADCRVDD
ADCRBG

----------------------------=

VDD

ADCRVDD
VBG×

ADCRBG
----------------------------------------------=

VDD
1023 1.2volts×

ADCRBG
---------------------------------------=

VDD 10× 1023 1.2×( )
ADCRBG

------------------------------ 10×=
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Fixed-Point Approximation
The value of 1023 × 1.2 × 10 will always stay fixed; this code’s operation will be something like:

Eqn. 4

The division then performs with 16-bit fixed-point operations that are much cheaper and faster than 
floating-point operations. This gives a fixed-point result with one decimal value interpretation and the rest 
as the integer part. For instance, for a conversion value of ADCRBG = 409 we have the following result:

In the code, VDD will have a calculated value of 30, and we know that the interpretation for that value is 
one integer and one decimal value (3.0 in our case). The same kind of equations can lead to calculate a 
representation of   in an equivalent ADC conversion value and use it directly in the original equation. It is 
possible to make the conversion in the other way where the result from the Temperature Channel would 
convert to a voltage value and then perform the operation. They have similar steps in either case. At the 
beginning of the execution, we can calculate all the values needed for the conversion. In addition, every 
time a new conversion finishes after this, it will perform the conversion to a temperature value faster. In 
the software files, the equations meant to determine the ATD conversion value for 0.7012 volts (which is 
the typical VTEMP25). To simplify the writing of further expressions we will use:

Because the example uses everything in values equivalent to ATD conversion values, we have to find a 
representation of VTEMP25. Knowing the value of VDD from the previous equations, we can tell that:

Replacing VDD with   (10 × VDD, the value in our code) and replacing with the typical values, we have the 
following equation:

VDDCODE
12276

ADCRBG
-------------------------=

VDD 10× 1023 1.2×
ADCRBG
------------------------- 10× 12276

409
--------------- 30= = =

VDD
30.0
10

---------- 3.00 volts = =

VDDCONV
10 VDD×=

VDD

VTEMP25
----------------------

ADCRVDD

ADCRTEMP25
--------------------------------------=

ADCRTEMP25

ADCRVDD
VTEMP25×

VDD
--------------------------------------------------------------=

ADCRTEMP25

ADCRVDD
VTEMP25 10××

VDDCONV

----------------------------------------------------------------------------=

ADCRTEMP25
1023 0.7012 10××

VDDCONV

--------------------------------------------------------=
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Fixed-Point Approximation
Again, the divided value is fixed and the code with the result of the operation (approximately 7173) 
replaces it. For the previous example where VDD = 3 V and replacing VDD with VDDCONV = 30, we have:

Eqn. 5

The equivalency between VTEMP25 and its conversion to a digital value as ADCRTEMP25 helps make a direct 
subtraction between the result of the Temperature Sensor channel conversion and ADCRTEMP25. From the 
original equation, we need a useful value for m to perform the operations directly with fixed-point. 
Because of the precision used for each of the operations and the small value of m, (either 1.769 or 1.646 
millivolts) we need to have a big multiplier.

If we perform the operations without any multiplier, we will have:

Eqn. 6

However, if we keep these values, we will see a smaller result of the multiplication than the minor value 
allowed for VDD. This means that a fixed-point approximation is impossible if we do not multiply for a 
fixed value to make the previous division possible. Because of the small value, we multiply everything by 
100(or 10 or 1,000 because the idea is to use a value that helps to improve the precision with 16-bit 
operations). The result will be:

Eqn. 7

ADCRTEMP25
7173

VDDCONV

------------------------=

ADCRTEMP25
7173
30

------------=

ADCRTEMP25 239≈

VDD

m
---------

ADCRVDD

ADCRm
---------------------------=

ADCRm
ADCRVDD

m×

VDD
--------------------------------------

ADCRVDD
m× 10×

VDDCONV

--------------------------------------------------= =

ADCRm
1023 0.001646× 10×

VDDCONV

-----------------------------------------------------=

ADCR100m
ADCRVDD

m× 100×

VDD
-----------------------------------------------------

ADCRVDD
m× 10× 100×

VDDCONV

-----------------------------------------------------------------= =

ADCR100m
1023 0.001646× 10× 100×

VDDCONV

-------------------------------------------------------------------- 1684
VDDCONV

-------------------- 40°C– Temp 25°C< <↔≈=

ADCR100m
1023 0.001769× 10× 100×

VDDCONV

-------------------------------------------------------------------- 1810
VDDCONV

-------------------- 25°C Temp 85°C< <↔≈=
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Fixed-Point Approximation
After this point, we have a representation of each of the values needed for the conversion. In order to know 
where the decimal point for our operations lies, recall if those values were previously multiplied:

Where ADCRT = analog to digital conversion of the Temperature sensor channel

If we replace ADCRm with ADCR100m (100 × ADCRm), we have to multiply all the expression times 100 
to keep the same units. If we do that, we will have the following result:

Eqn. 8

Here is a full example using all the previous equations in the way possibly written into the code. The only 
value we have is the Bandgap conversion which is 380. Calculate the value of the supply voltage as the 
first step. Knowing that the Bandgap voltage is typically 1.2 volts, we can say that:

From Equation 4, we have;

CalcVDD = 12276/ADCR;

CalcVDD = 32;    /* we know that this means 3.2 volts */

After this, we have to determine the value of ADCRTemp25. From Equation 5, we have that 

ADCRTemp25 = 7173/CalcVDD;

ADCRTemp25 = 224/* this value is the direct equivalency to its ATD conversion in our system*/

As the final step, calculate the two possible used temperature slopes. From Equation 7,

TempSlopeCold = 1684/CalcVDD;

TempSlopeCold = 52/* this value is times 100*/

TempSlopeHigh = 1810/CalcVDD;

TempSlopeHigh = 56/* this value is times 100 */

Temp 25 Temp Temp25–
m

------------------------------------------–=

Temp 25
ADCRT ADCRTEMP25–

ADCRm
----------------------------------------------------------------–=

Temp 25
ADCRT ADCRTEMP25–

ADCR100m
----------------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

100×–=
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Fixed-Point Approximation
Calculate all these values at the start of the code. After this, we only need to make the conversion of the 
Temperature Sensor channel in the MC9S08QG8 and then apply it to the formula. For two values in the 
conversion, ADCR = 235 and ADCR = 210 we will have the following results:

In this example, we see that the result with fixed-point and floating-point is almost the same. Because we 
determine the precision in each operation, we can make it with determine positions for each operation and 
can establish the accuracy of the result. The good thing about this implementation is the smaller code size 
and a faster execution time because everything uses fixed-point and has 16-bit operations.

The bandgap channel (channel 27 of the ADC peripheral in the MC9S08QG8) has a typical value of 1.2 V. 
We can start an ADC conversion for the bandgap channel and use the result (ADCR) in Equation 9 to 
determine the value of VDD.

Eqn. 9

5.2 Fixed-Point Calculations
To use fixed point, multiply VDD (calculated in Equation 9) by 10. Knowing the supply voltage value 
(CalcVDD), make an equivalency of the value of VTEMP25 (VADCTEMP25). Using this method, you can also 
calculate the value to use for slope (m). See Equation 10.

Temp 25 235 224–( ) 100×
52

--------------------------------------------–=

Floating-point Equation

Example 1: 

Fixed-point Equation

Temp 25 20–=

Temp 5°C=

VTEMP 235 0.003125× 0.7343= =

Temp 25 0.7343 0.7012–
0.001646

---------------------------------------–=

Temp 25 20.155– 4.845°C= =

Example 2: Temp 25 210 224–( ) 100×
56

--------------------------------------------–=

Temp 25 25–( )–=

Temp 50°C=

VTEMP 210 0.003125× 0.6562= =

Temp 25 0.6562 0.7012–
0.001769

---------------------------------------–=

Temp 25 25.4–( )– 50.4°C= =

ADCR = 235

ADCR = 210

In this example, VDD = 3.2 volts for the VTEMP conversion

VDD
1023 1.2 Volts×

ADCR
----------------------------------------=
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Fixed-Point Approximation
CalcVDD = VDD × 10 Eqn. 10

After calculating the VTEMP25 value in an ADC conversion (VADCTEMP25), start a conversion in the 
temperature sensor channel and use Equation 11 to approximate the temperature. Use fixed-point values 
to perform all the needed operations using the result of the ADC conversion (ADCR).

. Eqn. 11

Remember the real value multiplied by 1000 equals the value used for the temperature slope; also, you 
used a VDD multiplied by 10 in all your calculations. You must multiply the subtraction by 100 to have the 
same order in the final result. This gives the final equation (Equation 12).

Eqn. 12

Also, the VDD is calculated with only one decimal value and can add errors for some scenarios of the 
calculation. For instance, if VDD = 2.97 volts, the calculated VDD will be 2.9 and all the results carry the 
same error. Fix this and add more precision by having two decimal digits; it is up to the user to determine 
the way to obtain the best results according to the application. In this case, the finished project is an 
example on how to implement this.

VTEMP25 = 0.7012 Volts

(1023 × .7012 Volts)
VDD

(1023 × 7.012 Volts)
CalcVDD

7173
CalcVDD

VADCTEMP25 = = ≈

(1000 × m) × 1023
CalCVDD

mADC = 

mADC = 
1.769 × 1.023

CalcVDD
1809

CalcVDD
↔ Temp ≥ 25°C=

mADC = 
1.646 × 1.023

CalcVDD
1685

CalcVDD
↔ Temp < 25°C=

Temperature = 25 –
ADCR – VADCTEMP25

mADC
1000

Temperature = 25 –
(ADCR – VADCTEMP25) × 100

(mADC)
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Fixed-Point Approximation
5.3 Initialization Flowcharts

Init parameters

ADC bandgap
conversion
complete?

TempSlopeLow = 1000 * .001646 * 1023/CalcVDD

CalcVDD = 1023 * Bandgap Voltage * 10/ADCR

VADCTEMP25 = VTEMP25 * 1023 * 10/CalcVDD

TempSlopeLow = 1000 * .001769 * 1023/CalcVDD

No

Yes

Return

Get temperature

ADC temp sen.
conversion
complete?

Temperature = 25 – ((ADCR – VTEMP25) * 100/m)

No

Yes

Return
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Fixed-Point Approximation
1 Using calibrated parameters to calculate temperature does not affect code size or execution times.

Uncalibrated Calibrated (3 Points) Uncalibrated Calibrated (3 Points)

Floating-Point Fixed-Point

Code Size 2295bytes1 698 bytes1

# of cycles 46361

Typical Accuracy ± 8degs C ± 2.5degs C ±18degs C ±12degs C

Ease of implementation Easiest Difficult Easy Most Difficult
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