
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2004. All rights reserved.

This application note describes the process of obtaining U-Boot
source code and building a binary that runs on Freescale’s High
Performance Platform II (HPC II, also referred to as Taiga).

1 Introduction
HPC II is a high-performance PowerPC-based platform featuring
Freescale’s MPC7448 microprocessor with Tundra
Semiconductor’s Tsi108 bridge chip. The board bring-up tasks
have been successfully completed with U-Boot, a common open
source firmware and boot-loader (sourceforge.net/projects/u-boot),
and Linux kernel (2.6.11), with both RAM disk and
network-mounted root file systems, running on the target platform.
A version of U-Boot has been ported for the HPC II and is available
as part of the Linux BSP from the HPC II product summary page
found in the Freescale web site. It is also possible to obtain code
from the top of the CVS tree in SourceForge and enhance it to
support the board-specific features. Steps to implement the latter
have been listed and explained in Section 4, “U-Boot”, of this
paper. The paper has been organized as follows—terminology used
in the rest of the application note, a brief description of the
hardware, obtaining and building the source, downloading the
firmware to the platform, using U-Boot on HPC II, and steps for
porting U-Boot to the HPC II target platform.

AN2924
Rev. 1.0, 09/27/2005

Contents
1. Introduction . 1
2. Terminology . 2
3. Hardware and Software . 2
4. U-Boot . 3
5. Source Code . 4
6. Modifying the Code . 6
7. Running U-Boot . 24
8. References . 35
9. Document Revision History 35

U-Boot for HPC II
by Srikanth Srinivasan,

Maurie Ommerman
CPD Applications, Freescale Semiconductor, Inc.

risc10@email.sps.mot.com

U-Boot for HPC II, Rev. 1.0

2 Freescale Semiconductor

Terminology

2 Terminology
The following terms are used in this document:

U-Boot Universal Boot Loader—an open-source firmware project providing code under GPL

HPC II Freescale’s High Performance Platform II featuring MPC7448 and Tsi108

Linux OS Linux Operating System

Yellow Dog A distribution of Linux

Debian A distribution of Linux

Host Computer used for compiling and linking target programs

TFTP Trivial file transfer protocol—a method of sending files across the ethernet interface

PVR Processor version release—a read only register which identifies the processor

OCN OnChipNetwork fabric switch—Pronounced OCeaN

PCI Peripheral Component Interconnect—a common bus architecture for add-on chips and cards

MB Mega bytes—1 million bytes

GB Giga bytes—1 billion bytes

RTC Real-Time Clock

NVRAM Non-Volatile RAM, battery-backed, usually used for storage of environment variables

3 Hardware and Software
The target hardware includes a HPC II board. For details on the platform itself, refer to the MCEVALHPC2-7448
documentation on the Freescale web page.

The host equipment includes software and hardware for code development, download, and execution, as well as
tools for debugging. For code development, it is advisable to use PowerPC platforms such as a Genesi Pegasos
machine with Debian or Yellow Dog distribution of Linux. However, an x86 Linux machine with a cross-compiler
for PowerPC will work just as well.

PROMjet is a flash emulator used for quick download and test of software (these can be done away with once the
ability to program the on-board flash in U-Boot exists). HPC II provides PROMjet ports (two 16-bit ports) for use
when the firmware is not fully functional with on-board flash operations. The emulator is controlled using software
on x86 Windows and, therefore, needs a Windows-based PC. The firmware displays messages through serial ports
on the platform. A serial communication program, such as HyperTerminal, mincom, or Smartcom, is employed to
facilitate software debugging.

Usually, until flash erase and program functions are supported in U-Boot, the PROMjets and a serial port monitor
are used on a Windows machine. After that, development can be continued on a Linux machine.

An integral part of U-Boot development is the use of COP-based tools. Powerscan, an internal COP debugger (not
available to customers), along with the supporting hardware, was the debugging tool of choice for the authors,
mostly out of familiarity. Customers can use similar tools, such as PowerTap and BDI2000, to serve the same
purpose.

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 3

U-Boot

4 U-Boot

4.1 What is U-Boot?
U-Boot is an open source firmware for hardware platforms. It supports many processor architectures, boards, and
network drivers. It is a popular firmware for bring-up of PowerPC processor based platforms.

U-Boot is widely used in embedded space platforms. It is similar to DINK32, Open Firmware, and x86 bios, in that
it is the first code run at startup.

4.2 What Does It Do?
U-Boot configures different hardware blocks on the board and brings them out of reset into a sane state. It can load
and start an OS automatically (auto-boot) or, alternatively, it allows the user to run commands to start the OS. The
subset of default commands that are part of U-Boot also provide capability to the user to perform memory, network,
flash operations, and more prior to OS boot-up.

4.3 What Does It Not Do?
It is not designed for debugging (setting breakpoints, stepping through the user code, etc.).

4.4 Origins
U-Boot has its origins in PPCBoot. It was started by Wolfgang Denk of DENX Software Engineering. More
information and free distributions are available at http://www.denx.de/twiki/bin/view/DULG/WebHome.

4.5 This U-Boot Version’s Origins
Freescale supports an internal SourceForge repository, which is populated from the world wide web repository for
relevant projects. U-Boot is obtained from the Master U-Boot repository on the public web,
http://sourceforge.net/projects/u-boot.

The Freescale internal SourceForge repository maintains current versions in sync with external SourceForge. It is
only available for Freescale employees. Contact risc10@freescale.com for current U-Boot source code for Freescale
platforms that do not have board support packages (BSP) and/or have not been sent out to open source.

Customers can get U-Boot source from the Metrowerks web site when the BSP for the HPC II board is available
(3Q2005). U-Boot will be available as part of the BSP software.

This version of U-Boot was derived from a version based on external SourceForge and modified for an evaluation
platform built by Tundra Semiconductor, Inc.

4.6 U-Boot Control Sequence
When power is applied to the platform, the U-Boot code begins executing and performing the following operations:

1. Power-on/reset

2. Reset vector points to FLASH (0xFFF00100)

3. Begins execution in FLASH

U-Boot for HPC II, Rev. 1.0

4 Freescale Semiconductor

Source Code

4. Relocates itself to RAM

5. Continues execution in RAM

6. Initializes higher level devices

7. Begins command interpreter

5 Source Code
The source tree for U-Boot is similar to the source tree for Linux. The structure and some of the files are organized
in a way similar to those in Linux. Like the Linux kernel, U-Boot is subject to the GPL license.

Figure 1 shows the U-Boot directory structure.

fs

/u-boot

board common cpu drivers include lib_* netdisk

rtc toolsdoc examples postdtt fs

/u-boot

board common cpu drivers include lib_* netdisk

rtc toolsdoc examples postdtt

Figure 1. U-Boot Directories

Following is a short description of each directory:

board contains platform, board-level files; i.e. Sandpoint, cds, Marvell. The board directory
contains all the specific board initialization functions, which are called from
lib_ppc/board.c.

board/Freescale/freeserve2
contains specific board info for HPC II; i.e. serial, asm_init.S config.mk, flash.c, pci.c,
tsi108.[hc], ns1650.[hc], etc.

common contains all the commands; i.e. cmd_boot.c, cmd_date.c,environment, env.c, main.c, etc.

cpu contains all the cpu specific information; i.e. 74xx_7xx, mpc824xcpu/74xx_7xx contains
cpu.c, cpu_init.c, cache.S, interrupts.c, start.S, traps.S, etc.

disk contains partition and device information for disks

drivers contains various device drivers; i.e. ns9750_eth, rt18019, serial, usbtty, etc.

include contains various header files; i.e. console.h, version.h, usb.h, pci.h. version.h has the
version display header #define u-boot_VERSION “xxx” include/configs contains the
configurations for all the various boards

lib_generic contains generic libraries; i.e. bzlib.c vsprintf, string.c, etc.

lib_ppc contains ppc specific libraries; i.e. bat_rw.c, board.c (memory sizes, baud rates, and calls
board specific routines in /u-boot/board), interrupts.c, ppcstring.S, time.c, etc.

net contains ethernet files; i.e. eth.c, net.[ch], nfs.[ch], bootp.c [ch], etc.

doc contains various readme

dtt contains temperature sensor code

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 5

Source Code

examples contains some stand-alone example code; i.e. hello_world.c, etc.

fs contains file system directories and code; i.e. fat, fdos, jffs2

rtc contains real time clock code; i.e. date.c, mpc8xx.c, etc.

tools contain various tool directories and files; i.e. env, gdb, logos, scripts, mkimage.c, etc.

post contains directories and files; i.e. post.c codec.c, cache.c, memory.c, uart.c, etc.

Relevant directories for possible modifications are:

u-boot/. u-boot/include

u-boot/board u-boot/cpu

u-boot/lib_ppc u-boot/common

The major changes required for porting to any board and, specifically to this board, are the changes related to a new
processor and a new bridge chip, as well as any other peripheral devices. For the HPC II board, the processor,
MPC7447A and MPC7448, and bridge chip, Tsi108 are new. The flash, although new, complies with the Common
Flash Interface (CFI) standards and flash operations can, therefore, use the existing driver by adding flash specific
definitions.

A common practice is to use an existing configuration for some similar board and create a new configuration for the
new board.

First, create a new set of directories and files to mimic the existing configuration. The directories and files necessary
are:

1. u-boot/board/Freescale

2. u-boot/board/Freescale/freeserve2

3. u-boot/board/Freescale/freeserve2/freeserve2.c

4. u-boot/include/configs/freeserve2.h

5. u-boot/Makefile

Then, create new directories, copy files, and make changes to Makefile and platform specific files to retarget the
code for HPC II.

5.1 u-boot/board
These commands will create a new directory and populate it with an existing set of files, changing the file names
appropriately.

cp -r Tundra/tsi108board Freescale/freeserve2

cd Freescale/freeserve2

mv tsi108board.c freeserve2.c

5.2 u-boot/makefile
Modify the top level makefile to specify the new configuration. All the configurations are listed under various titles.
Use the major title, 74xx_7xx, since the MPC7447A/8 is a 74xx style processor. Under this title, add these lines:

FS2: unconfig

 @./mkconfig $(@:_config=) ppc 74xx_7xx freeserve2 Freescale

U-Boot for HPC II, Rev. 1.0

6 Freescale Semiconductor

Modifying the Code

5.3 u-boot/include/configs
Finally, a header file needs to be created with all the definitions (i.e. #define) for the various processor and board
parameters.

 cp TSI108BOARD.h fs2.h

5.4 Steps for Make
At this point, there is a new configuration called FS2 which, when built, will mimic the original Tundra board. The
following commands will build the executables for the Tundra board. This is our first step to ensure that the targets
will build satisfactorily. Following this, the files will be modified in these directories for our specific HPC II board.

make distclean

make FS2_config

make

The result of these commands will build the following targets and there should be no compilation errors. (The
compile-time warnings are ok, but should be fixed before a final release.)

1. u-boot.bin is the binary image.

2. u-boot.srec is the Freescale S-Record image.

3. u-boot is the ELF file and can be used to generate the disassembly.

— objdump -D u-boot > u-boot.dis

4. u-boot.map has the global addresses for symbols, etc.

6 Modifying the Code
Figure 2 shows the block diagram for the HPC II board.

MPC7448
or

MPC7447A

MPX@
166-200 MHz

Marvell
Discovery3

DDR2-400
2 DIMMs

Marvell
Discovery3

2 Enet
10/100/G

P
C

I-
X

 /
P

C
I s

lo
t

Vterm

SATASATA

VDD

OVDD, etc

UART(CONSOLE)

USB
2.0

System
Logic

P
C

I-
X

/P
C

I s
lo

t

PCI / PCI-X
@ 33-133 MHz PCI / PCI-X

@ 33-133 MHz

PCI @ 33 MHz

Tundra
TSI108
Tundra
TSI108

Boot FlashBoot Flash

Figure 2. Block Diagram of HCP II

The processor can be either an MPC7447A or MPC7448; the code must be able to recognize either processor from
it’s PVR. Memory, Ethernet, Flash, PCI, USB, and SATA are all controlled via the Tsi108 bridge chip. The system
logic block is an FPGA that controls start up and temperature.

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 7

Modifying the Code

A series of files needs to be modified to accommodate the processor and bridge chip. These are listed below:

1. Low level processor and board initialization
u-boot/include/configs/FS2.h
u-boot/board/Freescale/freeserve2/tsi108_init.c, board_early_init_r function

2. RS232 serial input and output.
u-boot/board/Freescale/freeserve2/serial.c

3. DRAM controller initialization
u-boot/include/configs/FS2.h
u-boot/board/Freescale/freeserve2/asm_init.S

4. PCI bus controller initialization
u-boot/include/configs/FS2.h
u-boot/board/Freescale/freeserve2/tsi108_init.c
u-boot/board/Freescale/freeserve2/pci.c

5. Flash memory programming from U-Boot
u-boot/include/configs/FS2.h
u-boot/include/flash.h
u-boot/board/Freescale/freeserve2/cfi_flash.c

6. Ethernet drivers for U-Boot; TFTP file download
u-boot/include/configs/FS2.h
u-boot/board/Freescale/freeserve2/tsi108_eth.c <----------Gigabit ethernet in Tsi108
u-boot/drivers/rtl8139.c <-----PCI-based Network Interface Card

7. No hard drive controllers are defined at this time

8. Board configuration

The basic board configuration is done in the file include/configs/FS2.h and includes protective conditional
compilation. It is invoked at compile time via the makefile configuration command. Also, the Tsi108 bridge chip
memory reference address, i.e. the address of the start of the Tsi108 registers, is set. The DUART serial port registers
are also specified here.

These changes are shown below:

/* Macro for conditional compilation protects all FS2 specific code */

#define CONFIG_FS2

Source code is protected by the construct:

#ifdef CONFIG_FS2

#else /*! CONFIG_FS2 */

#endif /* CONFIG_FS2 */

Set base address for the system controller Tsi108

#define CFG_TSI108_CSR_RST_BASE 0xC0000000

#define CFG_OCN_CLK 133000000 /* Internal OnChipNet bridge switch fabric speed in
MHz */

#define CFG_DUART_IO (CFG_TSI108_CSR_RST_BASE + 0x7808)

U-Boot for HPC II, Rev. 1.0

8 Freescale Semiconductor

Modifying the Code

The DUART clock divisor is set in the file board/Freescale/freeserve2/serial.c, serial_init():

 int clock_divisor = (CFG_OCN_CLK/2) / gd->baudrate;

6.1 Bridge Chip Switch Fabric Specification
The Tsi108 has a switch fabric for communication between the various integrated peripheral devices within it. This
diagram shows the relationship of the fabric. The CPU can access the memory via the bridge chip. The other devices
access memory through the on-chip memory controller and DMA.

TSI108
switch
fabric

Memory
DDR2

MPX bus @ 100, 133, 166, 200

Memory access

Other devices -
PCI, serial,

local bus devices

C P U

Figure 3. OCN Fabric Switch

In order to access these devices via the bridge chip, the memory map must be specified.

 Device Address Destination
 ====== ========== ====================================

 Tsi108 0xC000_0000 Bridge Chip internal base

These four devices hang off of the local bus
 DCS0 0xFF00_0000 Boot flash or PROMjet

 DCS1 0xFD00_0000 TICK Register File (HPC2 FPGA Controller)

 DCS2 0xFC00_0000 Battery-backed NVRAM + RTC (optional)

 DCS3 0xFE00_0000 PROMjet or boot flash (alternate Flash)

Figure 4. Base Address Values

The flash is defined in board/Freescale/freeserve2/cfi_flash.c in flash_init().

The TICK (FPGA), NVRAM, and PROMjet are set in board/Freescalefreeserve2/tsi108_init.c.

In order to access these addresses, the BAT registers are used to define accessible memory, and these are defined in
include/configs/FS2.h.

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 9

Modifying the Code

6.2 Setting the BATs

 In include/configs/FS2.h

 #define CFG_IBAT0U 0xFE0003FF

 #define CFG_IBAT0L 0xFE000002

 #define CFG_IBAT1U 0x00007FFF

 #define CFG_IBAT1L 0x00000012

 #define CFG_IBAT2U 0x80007FFF

 #define CFG_IBAT2L 0x80000022
==============NOT USED===========

 #define CFG_IBAT3U 0x00000000

 #define CFG_IBAT3L 0x00000000

 #define CFG_IBAT4U 0x00000000

 #define CFG_IBAT4L 0x00000000

 #define CFG_IBAT5U 0x00000000

 #define CFG_IBAT5L 0x00000000

 #define CFG_IBAT6U 0x00000000

 #define CFG_IBAT6L 0x00000000
 #define CFG_IBAT7U 0x00000000

 #define CFG_IBAT7L 0x00000000

 #define CFG_DBAT0U 0xE0003FFF

 #define CFG_DBAT0L 0xE000002A

 #define CFG_DBAT1U 0x00007FFF

 #define CFG_DBAT1L 0x00000012

 #define CFG_DBAT2U 0x80007FFF

 #define CFG_DBAT2L 0x8000002A

 #define CFG_DBAT3U 0xC0000003

 #define CFG_DBAT3L 0xC0000022
============NOT USED===========

 #define CFG_DBAT4U 0x00000000

 #define CFG_DBAT4L 0x00000000

 #define CFG_DBAT5U 0x00000000

 #define CFG_DBAT5L 0x00000000

 #define CFG_DBAT6U 0x00000000

 #define CFG_DBAT6L 0x00000000

 #define CFG_DBAT7U 0x00000000

 #define CFG_DBAT7L 0x00000000

Figure 5. BAT Assignments

The first three instruction BAT registers are used and the first four data BAT registers are used, while the rest are set
to zero (are not used).

IBAT1 and DBAT1 define all the instruction and data memory space from 0 to 7FFF_FFFF, which is shown as
SDRAM space, designated as PB_SDRAM_BAR_1 and PB_SDRAM_BAR_2 and shown in green in Figure 6
below.

In the memory diagrams below, the BAR stands for the Base Address Register. The memory addressed by each BAR
is separated into 32 regions of equal size and same, or different, in attributes.

The memory map is shown below.

1G

2G

4G

3G

SDRAM

PCI Memory

I & D BAT1 - PB_SDRAM_BAR_1,2

PB_OCN_BAR_2

PB_OCN_BAR_1

0x80000000

0xC0000000

3.5G0xE0000000

U-Boot for HPC II, Rev. 1.0

10 Freescale Semiconductor

Modifying the Code

Figure 6. SDRAM Memory Assignment

IBAT2 and DBAT2 define all the instruction and data memory space from 8000_0000 to 8FFF_FFF. The PCI
memory space is shown below, which is addressed by PB_OCN_BAR_2 shown as blue.

1G

2G

4G

3G

SDRAM

PCI Memory

PB_SDRAM_BAR_1,2

PB_OCN_BAR_2

PB_OCN_BAR_1

0xC0000000

3.5G0xE0000000

Figure 7. PCI Memory Assignment

DBAT3 defines data space from C000_0000 to C001_FFFF (part of the region shown in grey above).

1G

2G

4G

3G

SDRAM

PCI Memory

PB_SDRAM_BAR_1,2

PB_OCN_BAR_2

PB_OCN_BAR_1

0x80000000

3.5G0xE0000000

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 11

Modifying the Code

Figure 8. PB_OCN_BAR_1 Space

DBAT0 defines the data space from E000_0000 to EFFF_FFFF, which is covered by the PB_OCN_BAR_1 mapping
register (designated in yellow). This size of this space is 0.5 GB.

1G

2G

4G

3G

SDRAM

PCI Memory

PB_SDRAM_BAR_1,2

PB_OCN_BAR_2

PB_OCN_BAR_1

0x80000000

0xC0000000

3.5G

DBAT0 - 0xE0000000

Figure 9. DBAT0 Space Within All Memory Space

Finally, IBAT0 defines the instruction space from FE00_0000 to FFFF_FFFF, which is the last section of memory
and is used for alternate and boot ROM space, as shown below. This alternate flash space is from FE00_0000 to
FEFFFFFF.

In summary, the BATs define these spaces:

DBAT1 & IBAT1 is 0x00000000

DBAT2 & IBAT2 is 0x80000000

U-Boot for HPC II, Rev. 1.0

12 Freescale Semiconductor

Modifying the Code

DBAT3 is 0xC0000000

DBAT0 is 0xE0000000

The final memory picture shown below contains just the last 1GB of memory, from 3GB to 4GB, and is defined by
DBAT0 and IBAT0.

This is the last 1GB of space, starting at 3GB, 0xC0000000.

Tsi108 registers are in the first section of this space.

DBAT3 is 0xC0000000 Tsi108 registers.

IBAT0 is 0xFE000000 (alternate flash) and 0xFF000000 (main flash).

256MB

TSI108 Registers

PCI Memory

DBAT3 - 0xc0000000

0xc0007FFF

DBAT0 - 0xE0000000

SDRAM

0xF0000000

0xFB000000

0xFC000000
0xFD000000

IBAT0 - 0xFE000000
0xFF000000

PCI Memory

0xFA000000

4G

0xFA000000 – PCI I/O

0xFB000000 – PCI CONFIG

0xFC000000 – NVRAM (CS2)

0xFD000000 – System Logic

(CS1)

IBAT0=======================

0xFE000000 – Alternate FLASH

(CS3)

0xFF000000 – Boot ROM (CS0) HLP Devices

PCI CONFIG

PCI I/O

Figure 10. The Last 1GB (i.e. 3GB–4GB) of Space

The BAT registers are not completely ready for use at this point. The BAT registers, by default, cannot access greater
than 256MB, however, BAT1 and 2 need to define a 1GB space. Hence, turn on the XBSEN bit to allow BATs to
define these larger spaces.

Add this code to board/Freescale/freeserve2/asm_init.S:

mfspr r5, HID0

oris r5, r5, 0x0080 // Set HID0[HIGH_BAT_EN] bit #8

ori r5, r5, 0x0380 //Set SPD,XBSEN,SGE bit #22,23,24

mtspr HID0, r5

isync

sync

mfmsr r3

ori r3, r3, 0x2000

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 13

Modifying the Code

mtmsr r3

isync

sync

The above piece of code also enables the bit for floating point unit availability. Extended BAT size has been allowed
and the high BATs have been turned on (not used). In effect, the following BAT registers have been specified,
corresponding to the pictures of the memory maps above.

IBAT BLOCK ADDRESS SIZE REPLACEMENT ADDR WIMG PROT VALID STATUS
==== ================== ==== ================== ===== ==== ===== ==========
0 fe000000..ffffffff 32M fe000000..ffffffff 0000 R/W [S,U] [ENABLED]
1 00000000..3fffffff 1G 00000000..3fffffff 0010 R/W [S,U] [ENABLED]
2 80000000..bfffffff 1G 80000000..bfffffff 0100 R/W [S,U] [ENABLED]
3 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
4 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
5 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
6 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
7 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]

DBAT BLOCK ADDRESS SIZE REPLACEMENT ADDR WIMG PROT VALID STATUS
==== ================== ==== ================== ===== ===== ===== ==========
0 e0000000..ffffffff 512M e0000000..ffffffff 0101 R/W [S,U] [ENABLED]
1 00000000..3fffffff 1G 00000000..3fffffff 0010 R/W [S,U] [ENABLED]
2 80000000..bfffffff 1G 80000000..bfffffff 0101 R/W [S,U] [ENABLED]
3 c0000000..c001ffff 128K c0000000..c001ffff 0100 R/W [S,U] [ENABLED]
4 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
5 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
6 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]
7 00000000..0001ffff 128K 00000000..0001ffff 0000 NONE [-,-] [DISABLED]

6.3 Memory Settings
The following code sets the parameters for the DDR2 memory in the bridge chip.

In board/Freescale/freeserve2/asm_init.S,

#ifdef CONFIG_FS2 /* Hardcoded settings for HPC II */

/* Micron MT9HTF6472AY-40EA1 : Unbuffered, 512MB, 400, CL3, Single Rank */

#define VAL_SD_REFRESH (0x61A)

#define VAL_SD_TIMING (0x0308336b)

#define VAL_SD_D0_CTRL (0x07100021) /* auto-precharge disabled */

#define VAL_SD_D0_BAR (0x0FE00000) /* 512MB @ 0x00000000 */

#define VAL_SD_D1_CTRL (0x07100020) /* auto-precharge disabled */

#define VAL_SD_D1_BAR (0x0FE00200) /* 512MB @ 0x20000000 */

#endif /* CONFIG_FS2 */

Note that the code is protected by the #ifdef CONFIG_FS2

U-Boot for HPC II, Rev. 1.0

14 Freescale Semiconductor

Modifying the Code

The above code snippet employs hard-coded values to initialize the memory controller. For the
memory controller to perform efficiently, the frequency of the bus is detected and the timing and
control registers are initialized accordingly. A flag called SDC_HARDCODED_INIT is used to
choose between hard-coded values and spd-based initialization values.

sdc_init:

 ori r4,r29,TSI108_SD_REG_OFFSET // r4 - ptr to SDRAM registers

LOAD_U32(r5,0x00)

 stw r5,SD_INT_ENABLE(r4) // Ensure that interrupts are disabled

#ifdef ENABLE_SDRAM_ECC

 li r5, 0x01

#endif // ENABLE_SDRAM_ECC

 stw r5,SD_ECC_CTRL(r4) // Enable/Disable ECC

 sync

#ifdef SDC_HARDCODED_INIT /* config sdram controller with hardcoded values */

 //First read the CG_PWRUP_STATUS register to get the

 //memory speed from bits 22,21,20

 LOAD_U32(r3,0xC0002234)

 lwz r3,0(r3)

 rlwinm r3,r3,12,29,31

 //Now first check for 166, then 200, or default

 cmpi 0,0,r3,0x0005

 bne check_for_200mhz

 //set values for 166 Mhz memory speed

/* Set refresh rate and timing parameters */

 LOAD_U32(r5,0x00000515)

 stw r5,SD_REFRESH(r4)

 LOAD_U32(r5,0x03073368)

 stw r5,SD_TIMING(r4)

 sync

 /* Initialize DIMM0 control and BAR registers */

LOAD_U32(r5,VAL_SD_D0_CTRL)/* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 15

Modifying the Code

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

 stw r5,SD_D0_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D0_BAR)

 stw r5,SD_D0_BAR(r4)

 sync

 /* Initialize DIMM1 control and BAR registers

 * (same as dimm 0, next 512MB, disabled)

 */

 LOAD_U32(r5,VAL_SD_D1_CTRL) /* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

 stw r5,SD_D1_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D1_BAR)

 stw r5,SD_D1_BAR(r4)

 sync

 b sdc_init_done

check_for_200mhz:

 cmpi 0,0,r3,0x0006

 bne set_default_values

 //set values for 200Mhz memory speed

/* Set refresh rate and timing parameters */

 LOAD_U32(r5,0x0000061a)

 stw r5,SD_REFRESH(r4)

 LOAD_U32(r5,0x03083348)

 stw r5,SD_TIMING(r4)

 sync

 /* Initialize DIMM0 control and BAR registers */

LOAD_U32(r5,VAL_SD_D0_CTRL)/* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

U-Boot for HPC II, Rev. 1.0

16 Freescale Semiconductor

Modifying the Code

 stw r5,SD_D0_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D0_BAR)

 stw r5,SD_D0_BAR(r4)

 sync

 /* Initialize DIMM1 control and BAR registers

 * (same as dimm 0, next 512MB, disabled)

 */

 LOAD_U32(r5,VAL_SD_D1_CTRL) /* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

 stw r5,SD_D1_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D1_BAR)

 stw r5,SD_D1_BAR(r4)

 sync

 b sdc_init_done

set_default_values:

/* Set refresh rate and timing parameters */

 LOAD_U32(r5,VAL_SD_REFRESH)

 stw r5,SD_REFRESH(r4)

 LOAD_U32(r5,VAL_SD_TIMING)

 stw r5,SD_TIMING(r4)

 sync

 /* Initialize DIMM0 control and BAR registers */

LOAD_U32(r5,VAL_SD_D0_CTRL)/* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

 stw r5,SD_D0_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D0_BAR)

 stw r5,SD_D0_BAR(r4)

 sync

 /* Initialize DIMM1 control and BAR registers

 * (same as dimm 0, next 512MB, disabled)

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 17

Modifying the Code

 */

 LOAD_U32(r5,VAL_SD_D1_CTRL) /* auto-precharge disabled */

#ifdef SDC_AUTOPRECH_EN

 oris r5,r5,0x0001 /* set auto precharge EN bit */

#endif

 stw r5,SD_D1_CTRL(r4)

 LOAD_U32(r5,VAL_SD_D1_BAR)

 stw r5,SD_D1_BAR(r4)

 sync

#endif /* SDC_HARDCODED_INIT */

The current version of u-boot supports SPD (Serial Presence Detect) initialization of the memory
controller. Rather than using hard-coded values to set-up DDR2, the I2C interface is used to read
the memory settings and set-up the controller for optimal performance. In this case, the following
line in asm_init.S is commented:

//#define SDC_HARDCODED_INIT

Also the SPD routine is called during the initialization process.

#else //!SDC_HARDCODED_INIT

b tsi108_sdram_spd

#endif //SDC_HARDCODED_INIT

The reader is referred to the actual code, in board/Freescale/freeserve2/asm_init.S, for the
spd-based init routines to populate the memory controller registers.

6.4 HLP Space
The HLP (Host Local Port, commonly known as the local bus) space shown in Figure 10 refers to the Host Local
Ports 0–3.

It has four banks (i.e. four chip selects):

cs0 0xFF000000 flash

cs1 0xFC000000 nvram + rtc

cs2 0xFD000000 TICK system logic

cs3 0xFE000000 PROMjet or alternate flash

Appropriate values are set to access this HLP space.

6.5 Base Address Registers (BAR)
Each of the two Base Address Registers maps memory spaces separated into 32 equal regions with independent
attributes defined in a table of 32 entries.

PB_OCN_BAR_1: 0xE000_0000 - 0xFFFF_FFFF 512MB

PB_OCN_BAR_2: 0x8000_0000 – 0xBFFF_FFFF 1GB

U-Boot for HPC II, Rev. 1.0

18 Freescale Semiconductor

Modifying the Code

The Look Up Table (LUT) entries are used to define this space.

Figure 11 shows the BAR1 space allocation as defined in a LUT.

 In board/Freescale/freeserve2/tsi108_init.c

PB2OCN_LUT_ENTRY pb2ocn_lut1[32] =
{
 // 0 - 7
 {0x00000000, 0x00000201}, // PBA=0xE000_0000 -> PCI/X (Byte-Swap)
 {0x00000000, 0x00000201}, // PBA=0xE100_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE200_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE300_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE400_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE500_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE600_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE700_0000 -> PCI/X
 // 8 - 15
 {0x00000000, 0x00000201}, // PBA=0xE800_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xE900_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xEA00_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xEB00_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xEC00_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xED00_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xEE00_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xEF00_0000 -> PCI/X

continued.

Figure 11. BAR1 LUT (Look Up Table) Part 1

The first set of values defines the PCI/X space, {0x00000000, 0x00000201}, // PBA=0xE000_0000 -> PCI/X.

Each set of numbers has a specific meaning. BAR2 starts at 0xE000_0000 and covers 1/32 of the space. Each entry
is 0100_0000 bytes long. (An entry covers 1/32 of the total region addressed by PB_OCN_BARn; the size of each
region is decided by value in PB_OCN_BARn). Below is a more detailed look at the LUT entries:

{0x00000000, 0x00000201}, // PBA=0xE100_0000 -> PCI/X

(upper, lower), // comments to describe the entry

upper is the translated address, and 0 implies no translation

lower is the attribute list as defined in the Tsi108 reference manual section 17.2.22

0x0000_0y0z where the y =>endian mode, z => port number

The port numbers are shown below:

0 = HLP

1 = PCI-X

2 = processor interface master

3 = processor interface slave

4 = memory controller

5 = dma controller

6 = ethernet controller

7 = reserved

So, for the first entry, the lower value in the LUT (i.e. 0x0000_0201) means byte swap and port 1 = PCI

Similarly, with the following entry:

{0x00000000, 0x18000004}, // PBA=0xE800_0000 -> SDRAM_OCN,

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 19

Modifying the Code

the 0004 means no byte swap and use memory controller to address a region in the memory.

In board/Freescale/freeserve2/tsi108_init.c

 // 16 - 23
 {0x00000000, 0x00000201}, // PBA=0xF000_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF100_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF200_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF300_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF400_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF500_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF600_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF700_0000 -> PCI/X

// 24 - 31
 {0x00000000, 0x00000201}, // PBA=0xF800_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xF900_0000 -> PCI/X
 {0x00000000, 0x00000201}, // PBA=0xFA00_0000 -> PCI/X /* PCI I/O space */
 {0x00000000, 0x00000201}, // PBA=0xFB00_0000 -> PCI/X /* PCI config space */
 {0x00000000, 0x02000240}, // PBA=0xFC00_0000 -> HLP /* cs1 nvram */
 {0x00000000, 0x01000240}, // PBA=0xFD00_0000 -> HLP /* cs2 TICK */
 {0x00000000, 0x03000240}, // PBA=0xFE00_0000 -> HLP /* cs3 alternate flash */
 {0x00000000, 0x00000240} // PBA=0xFF00_0000 -> HLP /* cs0 boot flash */
} Figure 12. HLP Space

0x00000000, 0x00000240} // PBA=0xFF00_0000 -> HLP /* cs0 boot flash */

0240 => 2 = byte swap, 4 = enable translation, 0 = port # = HLP

 In b o a rd /F re e s c a le /h p c 2 /t s i1 0 8 _ in it .c , b o a rd _ e a r ly _ in it_ r()

 / /B a s e a d d r e s s e s fo r C S 0 , C S 1 , C S 2 , C S 3

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 0 _ A D D R , 0 x 0 0 0 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 1 _ A D D R , 0 x 0 0 1 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 2 _ A D D R , 0 x 0 0 2 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 3 _ A D D R , 0 x 0 0 3 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 //M a s k s fo r H L P b a n k s

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 0 _ M A S K , 0 x F F F 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 1 _ M A S K , 0 x F F F 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 2 _ M A S K , 0 x F F F 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

 o u t3 2 (C F G _ T S I1 0 8 _ C S R _ B A S E + T S I1 0 8 _ H L P _ R E G _ O F F S E T + H L P _ B 3 _ M A S K , 0 x F F F 0 0 0 0 0) ;
 _ _ a s m _ _ _ _ v o la t ile _ _ (" s yn c ");

c o n t in u e d .

N O T E : T h e 1 6 -b it u p p e r b its in th e H L P _ B n _ A D D R re g is te r in d ic a te w h ic h H L P b a n k w ill b e
 u s e d b y th e H L P p o r t fo r a g iv e n a d d re s s ra n g e .

Figure 13. Setting the Base Address Registers

CFG_TSI108_CSR_BASE =0xc000_0000 is set in u-boot/include/configs/FS2.h.

The U-Boot macro, out32, is used for writing these values to the Tsi108 registers starting at 0xc000_0000.

The first set writes the CSx addresses and the next set writes the masks.

 In b oard/Freesca le /freeserve2/tsi108_ in it.c , b oard _early_ in it_ r()

 //S e t C TRL0 va lues fo r banks

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B0_CTRL0, 0x7FF C44C2);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B1_CTRL0, 0x7FF C44C0);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B2_CTRL0, 0x7FF C44C0);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B3_CTRL0, 0x7FF C44C2);
 __asm __ __vo la tile__ ("sync");

 //S et banks to latched m ode, enab led , and other defau lt s ettings

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B0_CTRL1, 0x7C0F2000);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B1_CTRL1, 0x7C0F2000);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B2_CTRL1, 0x7C0F2000);
 __asm __ __vo la tile__ ("sync ");

 out32(CFG _TS I108_CS R_B A SE + TS I108_HLP _R EG _OF FSE T + HLP _B3_CTRL1, 0x7C0F2000);
 __asm __ __vo la tile__ ("sync ");

U-Boot for HPC II, Rev. 1.0

20 Freescale Semiconductor

Modifying the Code

Figure 14. Setting the Base Address Registers (continued)

The macro, out32, writes control values.

The values shown in the figure above were obtained from Tundra.

Description of the bank values are: last digit indicate 0 => 8 bit for nvram and TICK, 2 => 32 bit for the flashes.

Finally, in board/Freescale/freeserve2/tsi108_init.c, board_early_init_r() write the HLP address value.

out32(CFG_TSI108_CSR_BASE + TSI108_PB_REG_OFFSET + PB_OCN_BAR1, 0xE0000011);

This code specifies that the PB_OCN_BAR_1 starts at 0xE000_0000 and the last two bits:

11 => boot bit is cleared and PB_OCN_BAR_1 is enabled.

6.6 Enable Flash Commands
The following code enters the commands into U-Boot when it is compiled for use during execution.

CFG_CMD_FLASH enables flash commands such as flinfo, etc.

CFG_CMD_ENV enables saving the environment variables. It works in conjunction with
CFG_ENV_IS_IN_NVRAM; indicating where the environment variables are to be stored.

CFG_CMD_PING enables the ping command to check the status of machines on a designated network.

include/configs/FS2.h

#define CONFIG_COMMANDS ((CONFIG_CMD_DFL \
| CFG_CMD_ASKENV \
| CFG_CMD_CACHE \
| CFG_CMD_JFFS2 \

| CFG_CMD_KGDB \
| CFG_CMD_PCI \
| CFG_CMD_I2C \

| CFG_CMD_SDRAM \
| CFG_CMD_EEPROM \
| CFG_CMD_NET \
| CFG_CMD_FLASH) \
| CFG_CMD_ENV) \
| CFG_CMD_PING)

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 21

Modifying the Code

Figure 15. Enabling Commands

NOTE
The bold lines indicate the new commands added; the other commands were
already present in the code.

In include/configs/FS2.h, the following #defines describe the flash configuration adopted for HPC II board.

#define CFG_MAX_FLASH_BANKS 1 /* 1 bank of Flash */
#define FLASH_BANK_SIZE 0x01000000 /* 16 MB Total */

#define CFG_FS2_FLASH_CFI_DRIVER
#define CFG_FLASH_CFI

#define PHYS_FLASH_SIZE 0x01000000

#define CFG_MAX_FLASH_SECT (128)

The flag, CFG_FS2_FLASH_CFI_DRIVER, controls the inclusion of HPC II specific flash code, which is in
cfi_flash.c under board/Freescale/freeserve2.

The following code allows for flash to flash programming:

 //Enable the code to run from either the promjet or the flash
 //and enable programming the flash from the u-boot flash
 //For Taiga, the on-board flash is 16MB in 2 16-bit chips i.e.
 //32-bit wide flash. With this knowledge, we can determine
 //if we are running from Flash or promjet and accordingly
 //decide the base address and any future interactions with flash.

 info->portwidth = FLASH_CFI_32BIT;
 info->chipwidth = FLASH_CFI_BY16;

 cptr1.cp = flash_make_addr(info,0,FLASH_OFFSET_CFI_RESP);
 cptr2.cp = flash_make_addr(info,0,FLASH_OFFSET_CFI_RESP + 1);

U-Boot for HPC II, Rev. 1.0

22 Freescale Semiconductor

Modifying the Code

 cptr3.cp = flash_make_addr(info,0,FLASH_OFFSET_CFI_RESP + 2);

 flash_write_cmd (info, 0, 0, FLASH_CMD_RESET);
 flash_write_cmd (info, 0, FLASH_OFFSET_CFI, FLASH_CMD_CFI);

 if (!(flash_isequal (info, cptr1, 'Q')
 && flash_isequal (info, cptr2, 'R')
 && flash_isequal (info, cptr3, 'Y')))
 {
 printf("Started u-boot from FLASH. Not using Promjet\n");
 base = 0xFF000000;
 info->start[0] = base;
 }

The above code is required to enable programming of flash from either start-up locations (the PROMjet
or the flash itself). Note that the default base address for the flash is 0xFE000000, as specified in
include/configs/FS2.h:
#define CFG_FLASH_BASE 0xfe000000 /* Base Address of Flash device */

6.7 PCI Controller Initialization
Configuration setup is performed in include/configs/FS2.h.

/* PCI Memory */

#define CFG_PCI_MEM_SIZE 0x10000000 //256 MB

#define CFG_PCI_MEM32_BASE 0xE0000000

/* PCI view of the system memory */

#define CFG_PCI_MEMORY_SIZE 0x80000000 //2G

/* PCI I/O Space */

#define CFG_PCI_IO_PHYS 0xfa000000

#define CFG_PCI_IO_SIZE 0x01000000 //16MB

/* PCI Config Space mapping */

#define CFG_PCI_CFG_BASE 0xfb000000

#define CFG_PCI_CFG_SIZE 0x01000000 // 16MB

Values are written to the Tsi108 registers in board/Freescale/freeserve2/tsi108_init.c, board_early_init_r():

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 23

Modifying the Code

//PCI Config space

out32(CFG_TSI108_CSR_BASE + TSI108_PCI_REG_OFFSET + PCI_PFAB_BAR0, 0xFB000001);

//PCI I/O space

out32(CFG_TSI108_CSR_BASE + TSI108_PCI_REG_OFFSET + PCI_PFAB_IO, 0xFA000001);

6.7.1 Setting Up the NIC
The NIC, Network Interface Card, usually is one of the last steps in coding U-Boot. The NIC allows ethernet
facilities for downloading files, specifically, Linux kernels. The configuration code is u-boot/include/configs/FS2.h.

#define CONFIG_RTL8139

For the Taiga board, an RTL8139 PCI-based NIC was used.

The buffers are in u-boot/drivers/rtl8139.c. Change the relevant code in rtl8139.c source file to change the byte
alignment as shown below.

/* The RTL8139 can only transmit from a contiguous, aligned memory block. */

static unsigned char tx_buffer[TX_BUF_SIZE] __attribute__((aligned(32)));

static unsigned char rx_ring[RX_BUF_LEN+16] __attribute__((aligned(32)));

6.8 Setting Up the Gigabit Ethernet Controller
The NIC initialization mentioned in Section 6.7.1, “Setting Up the NIC”, is required as a back-up if the GigE ports
require more time and effort to be functional during the U-Boot development process.

The Gigabit Ethernet driver for the Tsi108 is in board/Freescale/freeserve2/tsi108_eth.c.

To enable the use of this driver, the following flags need to be enabled and the init function needs to be called as part
of the Ethernet initialize routine:

In net/eth.c, function eth_initialize()

#if defined(CONFIG_TSI108_ETH)

tsi108_eth_initialize(bis);
#endif

In include/configs/FS2.h,

#define CONFIG_TSI108_ETH

6.9 Building and Starting U-Boot
The first command is:

make distclean,

U-Boot for HPC II, Rev. 1.0

24 Freescale Semiconductor

Running U-Boot

which cleans up all the directories and removes all intermediate files, including objects and artifacts of a previous
build.

This make command will set up all the configuration for the HPC II:

 make FS2_config

Finally, make will compile and link U-Boot:

 make

u-boot is an ELF file of the code.

u-boot.bin is the binary (with ELF headers striped out) and used for download and debugging.

Before Flash programming is available on U-Boot, a PROMjet is used to download the image and start execution.

A COP debug tool was employed for on-chip debugging.

A disassembly of the U-Boot ELF file is required for debugging; the instruction addresses in the disassembly file
correspond to the addresses shown during COP debugging. The disassembly is generated using the following
command:

objdump -D u-boot > u-boot.dis

7 Running U-Boot
Section 6.9, “Building and Starting U-Boot”, starts U-Boot running in the board. The first thing displayed on the
serial console is the flash screen.

u-boot 1.1.2(HPC2_V2_r1 20050520) (May 20 2005 - 11:14:29)Freescale Tsi108 HPC2
Reference Platform(2.0)

CPU: MPC7447A v1.1 @ 665 MHz
BOARD: HPC2
Top of RAM usable for u-boot at: 02000000
Reserving 208k for u-boot at: 01fcb000
Reserving 257k for malloc() at: 01f8ac00
Reserving 68 Bytes for Board Info at: 01f8abbc
Reserving 48 Bytes for Global Data at: 01f8ab8c
Stack Pointer at: 01f8ab68
New Stack Pointer is: 01f8ab68
Now running in RAM - u-boot at: 01fcb000
In: serial
Out: serial
Err: serial
Initializing MPICdone
KGDB: kgdb ready
ready
u-boot relocated to 01fcb000
Net: RTL8139#0
=>

Figure 16. U-Boot Splash Screen

If U-Boot stops anywhere short of the prompt, =>, then it will be necessary to debug the code. Discussion on
debugging the code is beyond the scope of this paper. However, it is vital to understand that the first part of U-Boot
initialization runs directly from ROM and, therefore, the addresses shown in the disassembly file (obtained from
objdump -D command) will correspond directly to the addresses shown from the COP debugging tool. The second
part of U-Boot copies itself to RAM and then continues execution from RAM. At start-up, the splash screen displays
the relocation value,

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 25

Running U-Boot

u-boot relocated to 01FCB000.

Once relocated to RAM, addresses displayed by the COP debugging tool must be offset by this relocation address.
For example, the address specified by the COP tool, 1fd0200, will correspond to the disassembly address of
fff05200. This technique should be kept in mind while reading RAM locations. Prior to relocation, the u-boot code
runs from the flash as stated above.

To read memory locations in the flash, it is important to be aware of the addressing behavior of Tsi108 for local bus
devices. Due to the way the Tsi108 bridge chip translates addresses on the local bus, the addresses to be read must
be calculated as explained below. The BOOT bit in PB_OCN_BAR1 (bit 30) is set to 1 when u-boot starts executing.
At this point, the only region of memory visible to Tsi108 is the HLP0 bank to which the Boot ROM
(Flash/PROMjet) is connected. During the boot-up process, the LUTs are set-up, memory regions are initialized to
be assigned as PCI, SDRAM, etc. and finally the BOOT is cleared. At this point, a larger area of the flash is visible
to the CPU. Address masks (as shown in Figure 13) have to be applied to avoid duplication of the image in other
regions of the flash. This results in an address translation as follows:

after BOOT bit is cleared

fff00000 + x =================> ff000000 + x

Therefore, to display the first few memory locations in flash, the command in U-Boot is md ff000000. In fact,
even before arriving at the u-boot prompt, once the BOOT bit is set to 0 in board_early_init_r() function
(board/Freescale/freeserve2/tsi108_init.c), the base address of the flash is ff000000 for any subsequent reads
using the COP debuggers.

Figure 15 described turning on the FLASH, ENV, and PING commands. This table of commands determines which
commands from the U-Boot superset of commands are available for this instantiation of U-Boot. The ‘help’ or ‘?’
commands will display the subset of commands available with this version of U-Boot.

 =>help
? - alias for 'help'
askenv - get environment variables from stdin
autoscr - run script from memory
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootm - boot application image from memory
bootp - boot image via network using BootP/TFTP

protocol
cmp - memory compare
coninfo - print console devices and information
cp - memory copy
crc32 - checksum calculation
dcache - enable or disable data cache
echo - echo args to console
eeprom - EEPROM sub-system
erase - erase FLASH memory
flinfo - print FLASH memory information
fsinfo - print information about filesystems
fsload - load binary file from a filesystem image
go - start application at address 'addr'
help - print online help
icache - enable or disable instruction cache
icrc32 - checksum calculation
iloop - infinite loop on address range
imd - i2c memory display
iminfo - print header information for application image
imls - list all images found in flash

 imm - i2c m emory m odify (auto-incrementing)
im w - memory write (fill)
inm - m emory m odify (constant address)
iprobe - probe to discover valid I2C chip addresses
isdram - print SDRAM configuration inform ation
itest - return true/false on integer com pare
kgdb - enter gdb remote debug m ode
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loop - infinite loop on address range
ls - list files in a directory (default /)
m d - m em ory display
m m - mem ory modify (auto-incrementing)
m test - sim ple RAM test
m w - mem ory write (fill)
nfs - boot im age via network using NFS protocol
nm - m em ory modify (constant address)
pci - list and access PCI Configuraton Space
printenv- print environm ent variables
protect - enable or disable FLASH write protection
rarpboot- boot image via network using RARP/TFTP protocol
reset - Perform RESET of the CPU
run - run commands in an environm ent variable
saveenv - save environm ent variables to persistent storage
setenv - set environm ent variables
sleep - delay execution for som e tim e
tftpboot- boot im age via network using TFTP protocol
version - print m onitor version

=>

Figure 17. HPC II U-Boot—Available Commands

U-Boot for HPC II, Rev. 1.0

26 Freescale Semiconductor

Running U-Boot

The U-Boot command, help <command> (i.e. help printenv), gives more detail on how to use the command.

The next series of figures shows examples of using some of the more popular commands.

7.1 Displaying and Setting Environment Variables
The command, printenv, will display the current environment variables.

The commands => setenv loadaddr 200000 and => printenv change the “loadaddr” variable and then reprint all the
environment variables. This change is only reflected in the local RAM of U-Boot and is non-persistent (i.e. will
revert to it’s previous value upon a reboot).

The command => saveenv will save the environment variables to non-volatile storage, nvram. Upon reboot,
Figure 21 shows that the value of loadaddr is changed across a reboot.

 E x a m p l e s h o w i n g p r i n t e n v & s e t e n v c o m m a n d s

= > p r in t e n v
b a u d r a t e = 1 1 5 2 0 0
l o a d s _ e c h o = 0
i p a d d r = 1 9 2 . 1 6 8 . 1 .2 0 0
s e r v e r ip = 1 9 2 .1 6 8 . 1 . 1
g a t e w a y i p = 1 9 2 . 1 6 8 . 1 . 1
n e t m a s k = 2 5 5 . 2 5 5 .2 5 5 .0
b o o t f i l e = z I m a g e . in i t r d .e l f
l o a d a d d r = 0 x 4 0 0 0 0 0
s t d i n = s e r i a l
s t d o u t = s e r i a l
s t d e r r = s e r i a l
e t h a c t = R T L 8 1 3 9 # 0
 c o n t i n u e d …

Figure 18. Display the Environment Variables

E n v i r o n m e n t s i z e : 2 1 8 /1 0 2 0 b y t e s
= > s e t e n v lo a d a d d r 2 0 0 0 0 0
= > p r in t e n v
b a u d r a t e = 1 1 5 2 0 0
lo a d s _ e c h o = 0
ip a d d r = 1 9 2 .1 6 8 .1 .2 0 0
s e r v e r ip = 1 9 2 .1 6 8 .1 .1
g a t e w a y ip = 1 9 2 .1 6 8 .1 .1
n e t m a s k = 2 5 5 .2 5 5 .2 5 5 .0
b o o t f i l e = z Im a g e . in i t r d .e l f
s t d in = s e r ia l
s t d o u t = s e r ia l
s t d e r r = s e r ia l
e t h a c t = R T L 8 1 3 9 # 0

Figure 19. Modify One Variable

 Environm ent size: 216/1020 bytes
=>saveen v
Saving Environm ent to NVR AM ...
=>
Now Reboot the system .

u-boot 1 .1.2(HPC 2_V2_r2) (Jun 7 2005 - 16:37:06)Freescale Tsi108 HPC2
R eference Platform (2 .0)

C PU: M P C7448 v1.0 @ 1200 M Hz
B US S PEED: 200 M Hz
M E M O RY SPE ED: 200 M H z
B O AR D: HP C2
D R AM : 512 M B
:
:
:

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 27

Running U-Boot

Figure 20. Save the Environment Variables

=>printenv
baudrate=115200
loads_echo=0
ipaddr=192.168.1.200
serverip=192.168.1.1
gatewayip=192.168.1.1
netmask=255.255.255.0
bootfile=zImage.initrd.elf
stdin=serial
stdout=serial
stderr=serial
ethact=RTL8139#0
loadaddr=200000

Figure 21. Show That loadaddr is Now Persistent

7.2 bdinfo—Board Information Used for Booting uImage Linux
bdinfo displays the boot parameters for the Linux kernel when invoked from the U-Boot boot command. In this case,
the kernel needs to be compiled to create a uImage binary file.

 bdinfo shows the contents of struct bd_t which is passed to
linux built as a uImage

=>bdinfo
bd address = 0x0FF8DBC8
memstart = 0x00000000
memsize = 0x20000000
flashstart = 0xFFF00000
flashsize = 0x01000000
flashoffset = 0x0002A800
sramstart = 0x00000000
sramsize = 0x00000000
bootflags = 0x00000001
intfreq = 1200 MHz
busfreq = 200 MHz
ethaddr = 00:00:00:00:00:00
IP addr = 192.168.1.200
baudrate = 115200 bps
=>

U-Boot for HPC II, Rev. 1.0

28 Freescale Semiconductor

Running U-Boot

Figure 22. uImage Parameter List

7.3 version, ping and pci
The version command displays the U-Boot version, which is the first line of the splash screen. The pci command
displays the current cards in any PCI slot and/or on the PCI bus. The ping command, when an Ethernet card is
present or the GigE controller is enabled, will ping a specified Ethernet address.

=>version

u-boot 1.1.2(HPC2_V2_r2) (Jun 7 2005 - 16:37:06)Freescale Tsi108 HPC2 Referen
ce Platform (2.0)

=>pci
Scanning PCI devices on bus 0
BusDevFun VendorId DeviceId Device Class Sub-Class

00.01.00 0x10ec 0x8139 Network controller 0x00

=>ping 192.168.1.1
Trying RTL8139#0
rtl8139_probe() - in
MAC addr = 00:40:f4:7a:eb:a8
rtl8139_probe() - out
Using RTL8139#0 device
host 192.168.1.1 is alive
=>

Figure 23. version, pci, and ping Commands

7.4 Memory Display
U-Boot does not have the facility to display any processor level registers, however, it can display memory. Since all
the Tsi108 registers are memory mapped, the memory display command can show the contents of these registers.
The Tsi108 registers start at 0xc000_0000.

 0xC0004000 - sdram controller registers in Tsi108 (base is 0xc0000000
 and sdram controller is offset from base by 0x4000)

=>md c0004000
c0004000: 00000230 00000001 03083348 0000061a ...0......3H....
c0004010: 00000000 00000000 00000000 ffffffff
c0004020: 00110021 00110020 0fe00000 0fe00200 ...!...
c0004030: ffffffff ffffffff ffffffff ffffffff
c0004040: 00000000 00000000 00000000 00000000
c0004050: 00000000 00000000 00000000 00000000
c0004060: ffffffff ffffffff ffffffff ffffffff
c0004070: ffffffff ffffffff ffffffff ffffffff
c0004080: 00011102 ffffffff ffffffff ffffffff

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 29

Running U-Boot

Figure 24. Bridge Chip Register Values as Memory Addresses

7.5 Memory Modify and Execution of Small Program
U-Boot commands can display and modify memory, and the go command can start execution at any memory
location. The next example shows a way to modify memory with a hexadecimal value that is the representation of
an instruction. Then, by a “go” to this address, U-Boot can begin execution of this instruction and then a whole
program (i.e. a series of instructions).

In order to terminate the program nicely and return to U-Boot, a blr needs to terminate the program.
U-Boot will set it’s return address in the link register, lr, and then transfer to the address specified.
The program will execute the blr and return to U-Boot.

Figure 25 shows the program and it’s corresponding hex values, which are then entered into memory with the mm
command at address 0x10_000.

Figure 26 sets address 0x20020 to zero and displays it as zero. Then the command go 100000 starts the program and,
following normal termination, returns to U-Boot. Finally, the last command, md 20020, shows that the program
executed properly because the address 0x20020 now contains the value 0x23.

NOTE

U-Boot commands always assume hex values, thus, the prefix 0x is not used for
U-Boot commands.

 M odify m em ory, bu ild a sm all program to set 0x00020020 to 0x23 and
execute it us ing go com m and.

The fo llow ing program executed correctly, and w ith the d-cache set to
w rite -through, it w rote to the m em ory as expected

 lis r5,2 3ca00002
 ori r5 ,r5,32 60a50020
 li r3,35 38600023
 s tw r3 ,0(r5) 90650000
 b lr 4e800020

Th is w rites 0x23 to m em ory address 0x20020

=>m m 100000
00100000: 41820034 ? 3ca00002
00100004: 80040024 ? 60a50020
00100008: 39200008 ? 38600023
0010000c: 91240020 ? 90650000
00100010: 39200000 ? 4e800020

U-Boot for HPC II, Rev. 1.0

30 Freescale Semiconductor

Running U-Boot

Figure 25. Modify Memory with a Program

=>mm 20020
00020020: 00000023 ? 00000000
00020024: 7c003670 ?

=>md 20020
00020020: 00000000 7c003670 7c004a14 7c005850 |.6p|.J.|.XP
00020030: 901f52c0 4bfffe90 801c146c 70000030 ..R.K......lp ..0...................
00020110: 3c00c22e 60004507 3d200001 7c0a0096 <...`.E.= ..|...

=>go 100000
Starting application at 0x00100000 ...
Application term inated, rc = 0x23

=>md 20020
00020020: 00000023 7c003670 7c004a14 7c005850 ...#|.6p|.J.|.XP
00020030: 901f52c0 4bfffe90 801c146c 70000030 ..R.K......lp ..0...................
00020110: 3c00c22e 60004507 3d200001 7c0a0096 <...`.E.= ..|...
=>

Figure 26. Execute the Program

7.6 Programming the Flash
There are eight steps to programming the flash. The example below will copy the U-Boot instructions from the
PROMjet location, ff00_0000 to the flash location, fe00_0000. Then, by flipping the switch on the board (see
Section 8, “References”), the board will boot from flash instead of PROMjet.

The following sequence of commands shows how flash programming is done using U-Boot on HPC II:

1. Display the sector protection information using flinfo, showing that they are read-only (RO).

— The command, flinfo, displays the flash protection. Default is on. See Figure 27.

2. Unprotect the sectors

— The command, protect off all, turns off all protection for the flash. The flinfo command this time shows
that there is no protection (i.e. no (RO)). See Figure 28.

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 31

Running U-Boot

3. Display the sector protection information

— Use flinfo, showing that they are writable. See Figure 28.

— Display current contents of flash, md fe000000. See Figure 29.

4. Erase all flash

— Use the command md fe000000 to see if the contents of flash are erased (i.e. all f's). See Figure 30.

5. Copy the contents of the PROMjet into the flash location

— cp.w <promjet> <flash> <#words>

— cp.w ff000000 fe000000 b100

– Copy words from PROMjet ff00_0000 to flash fe00_0000 for 0xb100 words, more than enough to
capture all of U-Boot. See Figure 32.

6. Use md fe000000 to see if U-Boot has been copied into the flash. See Figure 32.

7. Change switch settings to boot from flash instead of PROMjet

8. Reset the board

— Boot U-Boot from flash. Also, the command protect on all resets the protection to read-only.

— This command should reboot the board from flash and display the splash screen.

All flash is Read-Only (RO) protected
=>flinfo

Bank # 1: AMD AM29LV641MH (64 Mbit)

Size: 16 MB in 128 Sectors

Sector Start Addresses:
FE000000 (RO) FE020000 (RO) FE040000 (RO) FE060000 (RO) FE080000 (RO)

FE0A0000 (RO) FE0C0000 (RO) FE0E0000 (RO) FE100000 (RO) FE120000 (RO)

………………….

FEF00000 (RO) FEF20000 (RO) FEF40000 (RO) FEF60000 (RO) FEF80000 (RO)

FEFA0000 (RO) FEFC0000 (RO) FEFE0000 (RO)

Figure 27. Display Flash Protection Info

=>protect off all

Un-Protect Flash Bank # 1

=>flinfo

Bank # 1: AMD AM29LV641MH (64 Mbit)

Size: 16 MB in 128 Sectors

Sector Start Addresses:
FE000000 FE020000 FE040000 FE060000 FE080000

FE0A0000 FE0C0000 FE0E0000 FE100000 FE120000

……………….

FEF00000 FEF20000 FEF40000 FEF60000 FEF80000

FEFA0000 FEFC0000 FEFE0000

U-Boot for HPC II, Rev. 1.0

32 Freescale Semiconductor

Running U-Boot

Figure 28. Turn All Protection Off

• Flash is at 0xfe00_0000

=>md fe000000
fe000000: 27051956 552d426f 6f742031 2e312e32 '..Vu-boot 1.1.2
fe000010: 28546169 67615f56 325f7232 2920284a (HPC2_V2_r2) (J
fe000020: 756e2020 31203230 3035202d 2031373a un 1 2005 - 17:
fe000030: 33373a32 39294672 65657363 616c6520 37:29)Freescale
fe000040: 54736931 30382054 61696761 20526566 Tsi108 HPC2 Ref
fe000050: 6572656e 63652050 6c617466 6f726d20 erence Platform
fe000060: 28322e30 29000000 00000000 00000000 (2.0)...........

Figure 29. Display Current Contents of Flash

 =>erase all
Erase Flash Bank # 1
Erasing in progress..please wait 1-2 mins 20
Erasing Done

=>md fe000000
fe000000: ffffffff ffffffff ffffffff ffffffff
fe000010: ffffffff ffffffff ffffffff ffffffff
fe000020: ffffffff ffffffff ffffffff ffffffff
fe000030: ffffffff ffffffff ffffffff ffffffff

Figure 30. Erase and Display Flash

• Promjet is at 0xff00_0000

=>md ff000000
ff000000: 27051956 552d426f 6f742031 2e312e32 '..Vu-boot 1.1.2
ff000010: 28546169 67615f56 325f7232 2920284a (HPC2_V2_r2) (J
ff000020: 756e2020 37203230 3035202d 2031363a un 7 2005 - 16:
ff000030: 33373a30 36294672 65657363 616c6520 37:06)Freescale
ff000040: 54736931 30382054 61696761 20526566 Tsi108 HPC2 Ref
ff000050: 6572656e 63652050 6c617466 6f726d20 erence Platform
ff000060: 28322e30 29000000 00000000 00000000 (2.0)...........
ff000070: 00000000 00000000 00000000 00000000

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 33

Running U-Boot

Figure 31. Display Contents of PROMjet (U-Boot Code)

 =>cp.w ff000000 fe000000 b100
Copy to Flash...
Writing in progress....
0x000004
Writing done

=>md fe000000
fe000000: 27051956 552d426f 6f742031 2e312e32 '..Vu-boot 1.1.2
fe000010: 28546169 67615f56 325f7232 2920284a (HPC2_V2_r2) (J
fe000020: 756e2020 37203230 3035202d 2031363a un 7 2005 - 16:
fe000030: 33373a30 36294672 65657363 616c6520 37:06)Freescale
fe000040: 54736931 30382054 61696761 20526566 Tsi108 HPC2 Ref
fe000050: 6572656e 63652050 6c617466 6f726d20 erence Platform
fe000060: 28322e30 29000000 00000000 00000000 (2.0)...........

Figure 32. Copy U-Boot from PROMjet to Flash and Display It

7.7 Starting Linux on U-Boot
The following steps will enable Linux to run on U-Boot:

1. Build Linux kernel on the host system

2. Copy kernel to /tftpboot on the host system

3. Download using tftp, the kernel to the HPC II board running U-Boot. This assumes that the network
environment variables on U-Boot have been correctly initialized.

4. Start Linux

U-Boot for HPC II, Rev. 1.0

34 Freescale Semiconductor

Running U-Boot

7.7.1 Building Linux on Host System
To obtain the source and build the kernel, in the top level directory,

make taiga_defconfig

followed by,

make zImage (for a hard drive root file system)

or

make zImage.initrd (for a RAM disk root file system)

To create a zImage.initrd.elf (kernel + RAM disk file system), it is assumed that the user has the file
ramdisk.image.gz in arch/ppc/boot/images directory. The Linux source tarball on the Freescale website includes the
ramdisk.image.gz file.

7.7.2 Ready the Kernel for Download
Copy the kernel image to the tftpboot directory (/tftpboot).

cp arch/ppc/boot/images/zImage.elf /tftpboot

or

cp arch/ppc/boot/images/zImage.initrd.elf /tftpboot

7.7.3 Download Kernel From Host System to HPC II
From the HPC II board, make sure all the environment variables are correctly initialized for a network download
using the printenv command. At the U-Boot prompt:

tftp 200000 zImage.elf

or

tftp 200000 zImage.initrd.elf

7.7.4 Start Linux
go 210000

This should launch the kernel and use the specified file system. For the RAM disk file system, during Linux boot-up,
change the arguments as follows:

root=/dev/sda3

to

root=/dev/ram

By default, the kernel uses the hard-drive file system.

Reference 1 provides the link to the web-page with source code.

U-Boot for HPC II, Rev. 1.0

Freescale Semiconductor 35

References

8 References
The following documents are referenced in this application note:

1. HPC II User Guide Rev 1.1, http://www.freescale.com/powerpc, PowerPC Processors Evaluation Systems
and Verification Platforms. The MCEVALHPC2-7448 page provides source code for both U-Boot and
Linux, as well as the RAM disk file system.

2. Tsi108 Host bridge for PowerPC, Users Manual,
http://www.tundra.com/Products/PowerPC/Tsi108/index.cfm

3. DENX U-Boot and Linux Guide, DENX Software Engineering,
http://www.denx.de/twiki/bin/view/DULG/Manual

4. PROMjet Web page, http://www.emutec.com/pjetmain.html

For assistance or answers to any question on the information that is presented in this document, send an e-mail to
risc10@freescale.com.

9 Document Revision History
Table 1 provides a revision history for this application no

Table 1. Document Revision History

Rev. No. Date Substantive Change(s)

1.0 9/27/2005 Initial public release.

te.

How to Reach Us:

USA/Europe/Locations Not Listed:
Freescale Semiconductor
 Literature Distribution Center
P.O. Box 5405,
Denver, Colorado 80217
1-480-768-2130
(800) 521-6274

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Home Page:
www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part

Learn More: For more information about Freescale Semiconductor products, please visit
www.freescale.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The PowerPC
name is a trademark of IBM Corp. and is used under license. All other product or service names are
the property of their respective owners.

© Freescale Semiconductor, Inc. 2004.

AN2924
Rev. 1.0
09/2005

	U-Boot for HPC II
	1 Introduction
	2 Terminology
	3 Hardware and Software
	4 U-Boot
	4.1 What is U-Boot?
	4.2 What Does It Do?
	4.3 What Does It Not Do?
	4.4 Origins
	4.5 This U-Boot Version’s Origins
	4.6 U-Boot Control Sequence

	5 Source Code
	Figure 1. U-Boot Directories
	5.1 u-boot/board
	5.2 u-boot/makefile
	5.3 u-boot/include/configs
	5.4 Steps for Make

	6 Modifying the Code
	Figure 2. Block Diagram of HCP II
	6.1 Bridge Chip Switch Fabric Specification
	Figure 3. OCN Fabric Switch
	Figure 4. Base Address Values

	6.2 Setting the BATs
	Figure 5. BAT Assignments
	Figure 6. SDRAM Memory Assignment
	Figure 7. PCI Memory Assignment
	Figure 8. PB_OCN_BAR_1 Space
	Figure 9. DBAT0 Space Within All Memory Space
	Figure 10. The Last 1GB (i.e. 3GB-4GB) of Space

	6.3 Memory Settings
	6.4 HLP Space
	6.5 Base Address Registers (BAR)
	Figure 11. BAR1 LUT (Look Up Table) Part 1
	Figure 12. HLP Space
	Figure 13. Setting the Base Address Registers
	Figure 14. Setting the Base Address Registers (continued)

	6.6 Enable Flash Commands
	Figure 15. Enabling Commands

	6.7 PCI Controller Initialization
	6.7.1 Setting Up the NIC

	6.8 Setting Up the Gigabit Ethernet Controller
	6.9 Building and Starting U-Boot

	7 Running U-Boot
	Figure 16. U-Boot Splash Screen
	Figure 17. HPC II U-Boot-Available Commands
	7.1 Displaying and Setting Environment Variables
	Figure 18. Display the Environment Variables
	Figure 19. Modify One Variable
	Figure 20. Save the Environment Variables
	Figure 21. Show That loadaddr is Now Persistent

	7.2 bdinfo-Board Information Used for Booting uImage Linux
	Figure 22. uImage Parameter List

	7.3 version, ping and pci
	Figure 23. version, pci, and ping Commands

	7.4 Memory Display
	Figure 24. Bridge Chip Register Values as Memory Addresses

	7.5 Memory Modify and Execution of Small Program
	Figure 25. Modify Memory with a Program
	Figure 26. Execute the Program

	7.6 Programming the Flash
	Figure 27. Display Flash Protection Info
	Figure 28. Turn All Protection Off
	Figure 29. Display Current Contents of Flash
	Figure 30. Erase and Display Flash
	Figure 31. Display Contents of PROMjet (U-Boot Code)
	Figure 32. Copy U-Boot from PROMjet to Flash and Display It

	7.7 Starting Linux on U-Boot
	7.7.1 Building Linux on Host System
	7.7.2 Ready the Kernel for Download
	7.7.3 Download Kernel From Host System to HPC II
	7.7.4 Start Linux

	8 References
	9 Document Revision History
	Table 1. Document Revision History

