
Freescale Semiconductor
Application Note

AN2839
Rev. 0, 9/2004
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

This product incorporates SuperFlash® technology licensed from SST.

Implementing a Lamp Dimmer
with an HC908Q Family MCU
by: Jefferson Daniel de Barros Soldera

Andre Luis Vilas Boas
Alfredo Olmos
Marcus Espindola
Brazil Semiconductor Technology Center — BSTC/SPS

Introduction

Many homes have lamps that can be made brighter or dimmer by a control on the on/off switch. This
application note describes how to implement a low-cost lamp brightness control or dimmer using a
member of the M68HC08 MCU Family. The circuit controls the amount of energy that reaches the bulb
during each half-cycle of the AC power line. Moreover, a microcontroller may grant extra automation
features to the circuit, such as soft start and programmable timing. Additionally, an application in which a
lamp is turned on for a specific amount of time is described. The dimmer circuit implementation requires
few external components.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Dimmer Features
Dimmer Features
• 110 V or 220 V, 60 Hz or 50 Hz supply voltage
• Up to 100 W lamp dimming
• Full wave AC phase control
• No transformer for AC power isolation
• Up/down touch control option
• Customized programmable timer
• Low-cost 8-pin MCU implementation

Control Method

Many homes have lamps that can be made brighter or dimmer by rotating or sliding a control on the on/off
switch. Years ago, this was done using a device called a rheostat which consists of a large variable
resistor. To control the amount of energy going to the light, the rheostat had to dissipate the excess
energy as heat. For example, at half brightness for a 100-watt bulb, approximately 20 W would be
converted to heat in the rheostat.

Modern dimmers work in an entirely different way. They use transistor-like devices called triacs to switch
on the current to a lamp part way into each half-cycle. Unlike the silicon-controlled rectifier (SCR), the triac
can conduct current in both half-cycles when turned on. As soon as it is triggered, the triac will allow the
current to flow through the bulb until that current gets to zero, which happens whenever the voltage
crosses zero.

The amount of energy that reaches the bulb during each half-cycle depends on how long the control waits
before triggering the triac. The longer it waits, the less energy reaches the bulb and it will glow.

Triacs

To successfully apply triacs for power control, an understanding of the triac’s characteristics, ratings, and
limitations is imperative.

Figure 1 shows the triac power control principle. Triacs are three-terminal AC semiconductor switches
that are triggered into conduction when a low-energy signal is applied to their gate, allowing a full wave
AC control. In Figure 1a, terminals MT1 and MT2 are the current-carrying terminals; G is the gate terminal
used for triggering the device. To avoid confusion, it has become standard practice to specify all currents
and voltages using MT1 as reference.

Triggering a triac requires meeting its gate energy specification. Therefore, the gate should be driven hard
and fast to ensure complete gate turn-on, which helps to prevent false triggering. Usually that means a
gate current of at least three times the gate turn-on current with a pulse train. It is also important to keep
up the input trigger pulse synchronized with the AC power line in order to have a constant conduction
angle.

The dashed region in Figure 1b corresponds to the voltage applied to the load. The delay angle is the
angle, measured in electrical degrees, during which the device is blocking the line voltage. The period
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

2 Freescale Semiconductor

HC908Q Family Features
during which the device is on is called the conduction angle (α). Varying α will control the portion of the
total AC sine wave applied to the load and, thereby, regulate the power flow to the load.

The main disadvantage of using phase control in triac applications is the generation of electro-magnetic
interference (EMI). In incandescent lamps, phase control gives a continuous brightness and good
performance.

Figure 1. Performing Power Control with Triac — Triggering the Device

HC908Q Family Features

High-performance 8-bit HC08 CPU:

• Object-code compatible with Freescale’s 68HC05 architecture for easy migration

• Enables the higher performance required of many 8-bit applications while saving development
time — as fast as 125 ns minimum instruction cycle time

• Designed to allow efficient, compact modular coding in assembly or C with full 16-bit stack pointer
and stack relative addressing

• Efficient instruction set with multiply and divide that is easy to learn and use

Memory:

• In-application, in-circuit re-programmable FLASH memory (1.5K to 4K bytes)

• 128 bytes of random access memory (RAM)

Peripherals:

• Two-channel, 16-bit timer with selectable input capture, output compare, or PWM

• Trimmable 5% accuracy internal clock oscillator

• Four-channel, 8-bit analog-to-digital converter (ADC) (on the MC68HC908QT2/QT4/QY2/QY4)
provides an easy interface to analog inputs such as sensors

Delay
angle

Conduction
angle

α MT2

MT1

G

Lamp

a. Triac Symbol b. Sine Wave Showing Phase
Control Principles
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 3

Application Description
• Flexible I/Os allow direct drive of LEDs and other circuits to eliminate external drivers and help
reduce system cost

• System protection features, including watchdog timer and on-chip low-voltage detect/reset to help
reduce cost and increase reliability

• Space-sensitive packages — 8 PDIP, 8 SOIC, 16 PDIP, 16 SOIC, and 16 TSSOP — with more to
come as the Family develops

Application Description

The HC908Q Family allows the user to choose the MCU clock source. The microcontroller has three clock
source options available. Because this application aims to be low cost, the clock frequency is internally
generated. The internal oscillator circuit is designed to provide a clock source with tolerance less than
±25% untrimmed without external components. An 8-bit trimming register allows adjustment to a
tolerance of less than ±5%.

Other possible choices, although more expensive and definitely not necessary for this sort of application,
would be a built-in RC oscillator module that requires an external resistor connected to the chip. There is
also a built-in XTAL oscillator module designed to operate with an external crystal or ceramic resonator
to provide an accurate clock source.

The software accomplishes the brightness control by adjusting the conduction angle. The circuit does not
require a transformer to supply DC voltage to the MCU. For this reason, the user must use caution during
circuit assembly.

Figure 2 illustrates the complete schematic diagram of the dimmer. The supply voltage is connected to
the AC line through the capacitor C1 that provides circuit isolation. C1 must be a 1 µF/ 600 V
non-polarized polyester capacitor. The diodes D1 and D2 enforce the half-wave rectification and the
capacitor C2 implements the ripple filtering. C3 is a ceramic bypass capacitor located as near as possible
to the MCU power pins in order to suppress high-frequency noise. The zener diode helps provide a
reasonable regulated voltage, which reduces the rectifier voltage to the desired supply voltage.

R1 and R2 provide the zero-crossing detection to the MCU to synchronize the triac trigger pulses with the
AC power line, achieving an accurate control. All four diodes are 1n4007, which allows the circuit to be
supplied by 115 V or 240 V AC.
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

4 Freescale Semiconductor

Application Description
Figure 2. Dimmer with the HC908Q Family

The triac must be chosen according to the required load current. For a 100-W lamp, the load current at
115 V is 0.87 A and at 240 V, it is 0.42 A. Therefore, for the triac MCR22-8, 600 V isolation is a
reasonable choice and can be used for both 115 V and 240 V AC. The resistor R3 limits the triac gate
current.

All discrete devices in the circuit are not critical and similar devices can be substituted. The user must be
careful about reverse voltage and direct current on diodes and zener, isolation voltage of capacitors, and
maximum current in the triac.

Two push buttons and a switch are used to set the lamp brightness and turn the circuit on/off. When the
up/down control is pressed, the MCU receives a low level and varies the conduction angle by shifting the
short pulses that trigger the triac. The down button allows the MCU to apply pulses reducing α and the
lamp brightness is reduced continuously. Conversely, the up button is used to increase α, which increases
lamp brightness.

Because there is no transformer for power-line isolation, the user must be very careful during assembly
and testing to provide the appropriate isolation from the AC power line.

Figure 3, Figure 4, and Figure 5 show the power line signal (a), zero-crossing reference signal (b), MCU
short pulses triggering the triac (c), and the waveform of the voltage applied to the load at different
average powers (d). Notice that only a portion of the sine wave is applied to the load. The average power
is proportional to absolute average voltage.
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 5

Application Description
Figure 3. Triac Control with the HC908Q Family

a) The Power Line Signal

b) The Zero-Crossing
Reference Signal

c) MCU Short Pulses
Triggering the Triac

d) The Load supplied
Approximately 75% of the
Total Average Power
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

6 Freescale Semiconductor

Application Description

Figure 4. The Load Supplied at 50% of the Total Average Power

Figure 5. The Load Supplied Approximately 25% of the Total Average Power
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 7

Design Customization
Design Customization

This design works for many applications without modification. However, some customers may want to
customize its functionality. A few variations for this circuit include:

• Modifying the circuit to use a single button. For this modification, pressing the button would turn the
lamp on and off and if held would gradually brighten the lamp to full bright, then gradually dim to
full dim. The brightness would stay at whatever level it was at when the button was released.

• Enhance the timer feature to allow the user to choose the period (“on” time).

• Add a sensor to automatically switch the lamp on and off based on the room occupancy.

• Use the two available pins to add a serial bus for control from a remote computer.

• Add a photo sensor to adjust a given brightness level in a room according to the ambient light.

• Isolate the load by an opto-isolator IC. This provides isolation between the load and the control
circuit, especially when high isolation voltage is required. Applications involving industrial controls,
vending machines, or motor controls would benefit from this technology. Figure 6 illustrates how to
implement this type of modification. T1 must have a secondary of 9 V or 12 V so that the zener
operates adequately.

• Another practical application is to keep the load turned on for a certain amount of time. In this case,
the load is supplied at full power and the triac is triggered at a desired time. Refer to Figure 7 for a
schematic diagram of the timer.

When the start button is pressed, the MCU is reset and enters into run mode. The software counts
the desired time (set previously) and enters into stop mode, which turns off the lamp. When the
MCU is in stop mode, all internal modules are disabled and the power consumption is negligible.
The circuit is kept in this state until the start button is pressed again.

The software was set to a one minute delay time. This is the value used in most applications where
it is required that a lamp must be turned on for a short time. However, the software can be easily
be changed to set the desired delay time and lamp brightness.

For higher loads (greater than 100 watts), the triac must be changed to accommodate the
maximum current and a heat sink might be required. A high-current triac requires a non-negligible
gate current and it might not be possible to drive the triac gate directly from an MCU port. In this
case, a driver is needed.

NOTE
The circuits above control resistive loads only. For inductive loads, it is
recommended that the MCU be isolated from the load with opto couplers
and that a triac snubber network be adopted as shown in Figure 8.
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

8 Freescale Semiconductor

Design Customization
Figure 6. Isolated Dimmer with HC908Q Family

Figure 7. Lamp Timer with HC9098Q Family
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 9

Software Description
Figure 8. Switching Inductive Loads with HC908Q Family

Software Description

Two software codes were developed for this application note. The first one implements a lamp dimmer;
the second one was developed for an application where a lamp is turned on for a specific amount of time.

Lamp Dimmer Source Code

For the lamp dimmer source code, the MCU controls the lamp brightness by adjusting the conduction
angle with the timer modulus as illustrated in Figure 9.

The code starts initializing configuration and timer registers, defining ports, and clearing variables and
accumulators. The initial timer value is set to have almost the maximum brightness adjusting the
constants InitTMODH and InitTMODL.

PTA0 senses the zero-crossing detection circuit. Each time a positive or negative edge is detected, the
timer starts to count until the timer module value (composed by TMODH:TMODL) is reached.

When PTA0 recognizes a positive edge, the MCU verifies PTA5 and PTA4.

If PTA5 is in low level, the routine increments the timer modulus value if it is below the upper limit. PTA4
decrements the timer modulus value if it is above the lower limit when applied a low level. When a timer
overflow occurs, PTA1 generates a pulse train triggering the triac.
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

10 Freescale Semiconductor

Software Description
Figure 9. Flowchart for Lamp Dimmer Source Code

Lamp Timer Source Code

Figure 10 shows the flowchart for a lamp timer.

The code starts by initializing configuration and timer registers, defining ports, and clearing variables and
accumulators.

PTA0 senses the zero-crossing detection circuit. Each time a positive or negative edge is detected the
timer starts to count until the timer modulus value (composed by TMODH:TMODL) is reached. When a
timer overflow occurs, PTA1 generates a pulse triggering the triac.

Start

MCU Initialization

Clear Variables

Initialize Timer Module

Turns on Lamp with
Maximum Brightness

Increment Timer
Timer Value

< Upper
Limit?

PTA5 = 0?

N

Y

Y Y

Y

N

N

N

Decrement Timer
Timer Value

> Lower
Limit?

PTA4 = 0?
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 11

Software Description
A 2-byte counter is incremented at each zero-crossing of 60 Hz (or 50 Hz if it is used) and compared to
CntHcmp and CntLcmp constants. These constants may also be changed if the user desires to increase
or decrease the timer. A simple formula can be used:

 Equation (1)

Where: t = desired timer, [s]

 = line frequency, [Hz]

CntHcmp:CntLcmp = constant values, [decimal]

The user must remember that for a 2-byte counter, the maximum time will be approximately 18 seconds
for 60-Hz and 21 seconds for 50-Hz line frequency, according to the equation. Software timing techniques
can be used to extend this delay time.

When the defined time is reached, the MCU enters stop mode to minimize current consumption.

The lamp timer turns on again after a reset.

Figure 10. Flowchart for Lamp Timer

f

Start

MCU Initialization

Clear Variables

Initialize Timer Module

N

Y

Lamp Timer Initiated

Desired Time
Reached?

MCU Enters STOP Mode

RST
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

12 Freescale Semiconductor

Software Description
;***
;* Title: dimmer.asm Copyright (c) Freescale 2004
;***
;* Author: Marcus Espindola - Freescale SPS/BSTC
;*
;* Description: Implementing a Lamp Dimmer with HC908Qx MCU.
;*
;* Documentation: HC908QY4 Data Sheet (MC68HC908QY4/D) for register and bit explanations
;*
;* Include Files: dimmer.equ, MC68HC908QT4.equ
;*
;* Assembler: P&E Microcomputer Systems - CASM for HC08
;* Metrowerks CodeWarrior Compiler for HC08 V-5.0.17
;*
;* Revision History:
;* Rev # Date Who Comments
;* ----- ----------- --------- ---
;* 0.3 10-Sep-04 Espindola Adjusted timer values according to circuit
;* 0.2 15-May-04 Espindola Included 1 minute timer
;* 0.1 09-Feb-04 Espindola Initial data entry
;***
;***
;* Freescale reserves the right to make changes without further notice to any product
;* herein to improve reliability, function, or design. Freescale does not assume any
;* liability arising out of the application or use of any product, circuit, or software
;* described herein; neither does it convey any license under its patent rights nor the
;* rights of others. Freescale products are not designed, intended, or authorized for
;* use as components in systems intended for surgical implant into the body, or other
;* applications intended to support life, or for any other application in which the
;* failure of the Freescale product could create a situation where personal injury or
;* death may occur. Should Buyer purchase or use Freescale products for any such
;* intended or unauthorized application, Buyer shall indemnify and hold Freescale and
;* its officers, employees, subsidiaries, affiliates, and distributors harmless against
;* all claims, costs, damages, and expenses, and reasonable attorney fees arising out
;* of, directly or indirectly, any claim of personal injury or death associated with
;* such unintended or unauthorized use, even if such claim alleges that Freescale was
;* negligent regarding the design or manufacture of the part.
;*
;* Freescale is a registered trademark of Freescale Semiconductor, Inc.
;***

;***
;* Equates and Data Table Includes
;***

 include 'MC68HC908QT4.equ' ; For the QT1, QT2, QT4, QY1, QY2, QY4

 org $FFC0

trim_val: DC.B $FF ; here we set the FLASH trim to a default value.
 ; DO NOT change this value, as the trim will not be
 ; automatically calibrated by the programming interface if
 ; this value is anything other than $FF

 org RamStart

;***
;* Constants and Variables for this file
;***

 include 'dimmer.equ'
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 13

Software Description
;***
;* SUBROUTINES
;* This part includes subroutines
;***

 org FlashStart

;***
;* Table used for timer value after zero-crossing detection
;* This table uses indexed addressing mode
;***

LSBTimer: dc.b $73;
 dc.b $90;
 dc.b $AD;
 dc.b $CA;
 dc.b $E7;
 dc.b $04;
 dc.b $21;
 dc.b $3E;
 dc.b $5B;
 dc.b $78;
 dc.b $95;
 dc.b $B2;
 dc.b $CF;
 dc.b $EC;
 dc.b $09;
 dc.b $26;
 dc.b $43;
 dc.b $60;
 dc.b $7D;
 dc.b $9A;
 dc.b $B7;
 dc.b $D4;
 dc.b $F1;
 dc.b $0E;
 dc.b $2B;
 dc.b $48;
 dc.b $65;
 dc.b $82;
 dc.b $9F;
 dc.b $BC;
 dc.b $D9;
 dc.b $F6;

MSBTimer: dc.b $03;
 dc.b $04;
 dc.b $05;
 dc.b $06;
 dc.b $07;
 dc.b $09;
 dc.b $0A;
 dc.b $0B;
 dc.b $0C;
 dc.b $0D;
 dc.b $0E;
 dc.b $0F;
 dc.b $10;
 dc.b $11;
 dc.b $13;
 dc.b $14;
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

14 Freescale Semiconductor

Software Description
 dc.b $15;
 dc.b $16;
 dc.b $17;
 dc.b $18;
 dc.b $19;
 DC.B $1A;
 dc.b $1B;
 dc.b $1D;
 dc.b $1E;
 dc.b $1F;
 dc.b $20;
 dc.b $21;
 dc.b $22;
 dc.b $23;
 dc.b $24;
 dc.b $25;

InitTimer: mov #initTim,TSC ;Timer - Cleared + Stopped.

 mov #InitTMODH,TMODH ;Set max. brightness
 mov #InitTMODL,TMODL ;after we start the timer.

 bra Skip

;Subroutine for Thyristor gate control

Gate: lda #GateVal ;Gate pulse duration
loop: bset PTA1,PTA
 nop
 bclr PTA1,PTA
 dbnza loop

 jmp Skip

;Subroutine for Timer Overflow

TOverflow: nop
 nop
 brclr TOF,TSC,TOverflow ;Wait for Timer Overflow

 lda TSC
 and #TSCClr
 sta TSC ;Clear TOF bit

 mov #initTim,TSC ;STOP and RESET Counter

 bra Skip

;Subroutine for Dimmer

IncTimer: incx
 cpx #IncTcomp
 bhi Escape

 lda MSBTimer,x
 sta TMODH
 lda LSBTimer,x
 sta TMODL

 bra Skip

Escape: ldx #IncTcomp
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 15

Software Description
 lda MSBTimer,x
 sta TMODH
 lda LSBTimer,x
 sta TMODL

 bra Skip

DecTimer: decx
 cpx #DecTcomp
 blo EscapeDec

 lda MSBTimer,x
 sta TMODH
 lda LSBTimer,x
 sta TMODL

 bra Skip

EscapeDec: ldx #DecTcomp

 lda MSBTimer,x
 sta TMODH
 lda LSBTimer,x
 sta TMODL

 bra Skip

Delay: lda #Delval
Xloop: brn *
 brn *
 dbnza Xloop

Skip: rts

;***
;* Main Init
;* This is the point where code starts executing after a RESET.
;***

main:
 mov #initCfg1,CONFIG1 ;Set config1 register
 ;(LVI and COP disabled)

 mov #initCfg2,CONFIG2 ;set MCU to internal oscillator, IRQ enabled

 mov #InitDDRA,DDRA ;PTA0 -> Zero Crossing detection
 bset DDRA1,DDRA ;PTA1 -> Pulses on Thyristor gate
 ;PTA2 as IRQb -> Turns on dimmer
 ;PTA3 as RSTb -> Turns on 1-minute timer
 ;PTA4 -> Dec. lamp brightness
 ;PTA5 -> Inc. lamp brightness
 bset PTAPUE4,PTAPUE
 bset PTAPUE5,PTAPUE

 clr Counter1
 clr Counter2

 clrh
 ldx #Xval

 jsr InitTimer ;Goes config Timer
 cli ;Allow interrupts to happen
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

16 Freescale Semiconductor

Software Description
Waitpta0: nop
 brclr PTA0,PTA,Waitpta0 ;Wait for a edge on PTA0 (Zero crossing)

 brclr PTA5,PTA,IncT ;Inc timer if PTA5 is clear
 brclr PTA4,PTA,DecT ;Dec timer if PTA4 is clear

Next: mov #StartTim,TSC ;Start the timer

 jsr TOverflow ;Go to Timer Overflow subroutine

 jsr Gate ;Go to Gate subroutine

Waitpta: nop
 brset PTA0,PTA,Waitpta ;Wait for a edge on PTA0 (Zero crossing)

Next1: mov #StartTim,TSC ;Start the timer

 jsr TOverflow ;Go to Timer Overflow subroutine

 jsr Gate ;Go to Gate subroutine

 bra Waitpta0

IncT: jsr Delay
 cpx #IncTcomp
 beq Next
 jsr IncTimer
 bra Next

DecT: jsr Delay
 cpx #DecTcomp
 beq Next
 jsr DecTimer
 bra Next

;**** Interrupt Vectors ***********

 org $FFFE
 dcw main

END
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 17

Software Description
;***
;* Title: timer.asm Copyright (c) Freescale 2004
;***
;* Author: Marcus Espindola - Freescale SPS/BSTC
;*
;* Description: Implementing a Lamp Dimmer with HC908Qx MCU.
;*
;* Documentation: HC908QY4 Data Sheet (MC68HC908QY4/D) for register and bit explanations
;*
;* Include Files: dimmer.equ, MC68HC908QT4.equ
;*
;* Assembler: P&E Microcomputer Systems - CASM for HC08
;* Metrowerks CodeWarrior Compiler for HC08 V-5.0.17
;*
;* Revision History:
;* Rev # Date Who Comments
;* ----- ----------- --------- ---
;* 0.3 10-Sep-04 Espindola Adjusted timer values according to circuit
;* 0.2 15-May-04 Espindola Included 1 minute timer
;* 0.1 09-Feb-04 Espindola Initial data entry
;***
;***
;* Freescale reserves the right to make changes without further notice to any product
;* herein to improve reliability, function, or design. Freescale does not assume any
;* liability arising out of the application or use of any product, circuit, or software
;* described herein; neither does it convey any license under its patent rights nor the
;* rights of others. Freescale products are not designed, intended, or authorized for
;* use as components in systems intended for surgical implant into the body, or other
;* applications intended to support life, or for any other application in which the
;* failure of the Freescale product could create a situation where personal injury or
;* death may occur. Should Buyer purchase or use Freescale products for any such
;* intended or unauthorized application, Buyer shall indemnify and hold Freescale and
;* its officers, employees, subsidiaries, affiliates, and distributors harmless against
;* all claims, costs, damages, and expenses, and reasonable attorney fees arising out
;* of, directly or indirectly, any claim of personal injury or death associated with
;* such unintended or unauthorized use, even if such claim alleges that Freescale was
;* negligent regarding the design or manufacture of the part.
;*
;* Freescale is a registered trademark of Freescale Semiconductor, Inc.
;***

;***
;* Equates and Data Table Includes
;***

 include 'MC68HC908QT4.equ' ; For the QT1, QT2, QT4, QY1, QY2, QY4

 org $FFC0

trim_val: DC.B $FF ; here we set the FLASH trim to a default value.
 ; DO NOT change this value, as the trim will not be
 ; automatically calibrated by the programming interface if
 ; this value is anything other than $FF

 org RamStart

;***
;* Constants and Variables for this file
;***

 include 'dimmer.equ'
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

18 Freescale Semiconductor

Software Description
;***
;* SUBROUTINES
;* This part includes subroutines
;***

 org FlashStart

InitTimer: mov #initTim,TSC ;Timer - Cleared + Stopped.

 mov #InitTMODH,TMODH ;Set max. brightness
 mov #InitTMODL,TMODL ;after we start the timer.

 bra Skip

;Subroutine for Thyristor gate control

Gate: lda #GateVal ;Gate pulse duration
loop: bset PTA1,PTA
 nop
 bclr PTA1,PTA
 dbnza loop

 jmp Skip

;Subroutine for Timer Overflow

TOverflow: nop
 nop
 brclr TOF,TSC,TOverflow ;Wait for Timer Overflow

 lda TSC
 and #TSCClr
 sta TSC ;Clear TOF bit

 mov #initTim,TSC ;STOP and RESET Counter

 bra Skip

Skip: rts

;***
;* Main Init
;* This is the point where code starts executing after a RESET.
;***

main:
 mov #initCfg1,CONFIG1 ;Set config1 register
 ;(LVI and COP disabled)

 mov #initCfg2,CONFIG2 ;set MCU to internal oscillator, IRQ enabled

 mov #InitDDRA,DDRA ;PTA0 -> Zero Crossing detection
 bset DDRA1,DDRA ;PTA1 -> Pulses on Thyristor gate
 ;PTA3 as RSTb -> Turns on 1-minute timer

 clr Counter1
 clr Counter2

 clrh
 clrx

Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 19

Software Description
 jsr InitTimer ;Goes config Timer
 cli ;Allow interrupts to happen

ZeroDetec: nop
 brclr PTA0,PTA,ZeroDetec ;Wait for a edge on PTA0 (Zero crossing)

 mov #StartTim,TSC ;Start the timer

 jsr TOverflow ;Go to Timer Overflow subroutine

 jsr Gate ;Go to Gate subroutine

ZeroDetect: nop
 brset PTA0,PTA,ZeroDetect ;Wait for a edge on PTA0 (Zero crossing)

 mov #StartTim,TSC ;Start the timer

 jsr TOverflow ;Go to Timer Overflow subroutine

 jsr Gate ;Go to Gate subroutine

 inc Counter1 ;Increment 1st byte Counter for charge time OVF period
 lda #CntLcmp
 cbeq Counter1,Count1

 bra ZeroDetec

Count1: inc Counter2 ;Increment 2nd byte Counter for charge time OVF period
 lda #CntHcmp
 cbeq Counter2,Out

 bra ZeroDetec

Out: clr Counter1
 clr Counter2
 stop

;**** Interrupt Vectors ***********

 org $FFFE
 dcw main

END
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

20 Freescale Semiconductor

Software Description
;***
;* Title: dimmer.equ Copyright (c) Freescale 2004
;***
;* Author: Marcus Espindola - Freescale SPS/BSTC
;*
;* Description: Constants and variables definitions for MC68HC908QY4 and MC68HC908QT4.
;*
;* Documentation: HC908QY4 Data Sheet (MC68HC908QY4/D) for register and bit explanations
;*
;* Include Files:
;*
;* Assembler: P&E Microcomputer Systems - CASM for HC08
;* Metrowerks CodeWarrior Compiler for HC08 V-5.0.17
;*
;* Revision History:
;* Rev # Date Who Comments
;* ----- ----------- --------- --
;* 0.1 09-Feb-04 Espindola Initial data entry
;***
;***
;* Freescale reserves the right to make changes without further notice to any product
;* herein to improve reliability, function, or design. Freescale does not assume any
;* liability arising out of the application or use of any product, circuit, or software
;* described herein; neither does it convey any license under its patent rights nor the
;* rights of others. Freescale products are not designed, intended, or authorized for
;* use as components in systems intended for surgical implant into the body, or other
;* applications intended to support life, or for any other application in which the
;* failure of the Freescale product could create a situation where personal injury or
;* death may occur. Should Buyer purchase or use Freescale products for any such
;* intended or unauthorized application, Buyer shall indemnify and hold Freescale and
;* its officers, employees, subsidiaries, affiliates, and distributors harmless against
;* all claims, costs, damages, and expenses, and reasonable attorney fees arising out
;* of, directly or indirectly, any claim of personal injury or death associated with
;* such unintended or unauthorized use, even if such claim alleges that Freescale was
;* negligent regarding the design or manufacture of the part.
;*
;* Freescale is a registered trademark of Freescale Semiconductor, Inc.
;***

;***
;* Constants and Variables for this file
;***

initCfg1: equ %00010011 ;Config1 Register value
; |||||||| CONFIG1 is a write once register
; |||||||+-COPD - 1 disable COP Watchdog
; ||||||+--STOP - 1 enable STOP instruction
; |||||+---SSREC - 0 4096 cycle STOP recovery
; ||||+----LVI5OR3 - 0 set LVI for 3V system
; |||+-----LVIPWRD - 1 disable power to LVI system
; ||+------LVIRSTD - 0 enable reset on LVI trip
; |+-------LVISTOP - 0 disable LVI in STOP mode
; +--------COPRS - 0 long COP timeout

initCfg2: equ %01000001 ;Config2 Register value
; |||||||| CONFIG2 is a write once register
; |||||||+-RSTEN - 1 Reset function active in pin
; ||||||+--R - 0 Reserved bit
; |||||+---R - 0 Reserved bit
; ||||+----OSCOPT0 - 0 Set oscillator option as internal
; |||+-----OSCOPT1 - 0 Set oscillator option as internal
; ||+------R - 0 Reserved bit
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 21

Notes
; |+-------IRQEN - 1 enable IRQ function
; +--------IRQPUD - 0 Internal pullup connect IRQ and VDD

initTim: equ %00110001 ;Timer Status and control Reg. value
; |||||||| TIM Status and Control Register
; |||||||+-PS0 - 1 Prescaler select bit
; ||||||+--PS1 - 0 Prescaler select bit
; |||||+---PS2 - 0 Tim clock source int. bus
; ||||+----0 - 0
; |||+-----TRST - 1 TIM reset bit
; ||+------TSTOP - 1 TIM counter stopped
; |+-------TOIE - 0 disable TIM overflow interrupts
; +--------TOF - 0 TIM overflow flag bit

StartTim: equ %00000001 ;Timer Status and control Reg. value
; |||||||| TIM Status and Control Register
; |||||||+-PS0 - 1 Prescaler select bit
; ||||||+--PS1 - 0 Prescaler select bit
; |||||+---PS2 - 0 Tim clock source int. bus
; ||||+----0 - 0
; |||+-----TRST - 0 TIM reset bit
; ||+------TSTOP - 0 TIM counter started
; |+-------TOIE - 0 disable TIM overflow interrupts
; +--------TOF - 0 TIM overflow flag bit

InitDDRA: equ %00000010 ;PTA0 -> Zero Crossing detection
 ;PTA1 -> Pulses on Thyristor gate
 ;PTA2 -> Increment Dimmer
 ;PTA4 -> Decrement Dimmer
 ;PTA5 -> Turns on 1-minute timer.

InitIRQ: equ $00 ;IRQ configuration

InitTMODH: equ $00 ;Set max. brightness
InitTMODL: equ $FF ;after we start the timer.

GateVal: equ $50 ;Gate pulse duration

TSCClr: equ $7F ;Value to clear TOF bit on TSC register

Counter1: rmb 1
Counter2: rmb 1

IncTcomp: equ $1F
DecTcomp: equ $01

CntLcmp: equ $00
CntHcmp: equ $0E

Delval: equ $FF
Xval: equ $01

Notes
Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

22 Freescale Semiconductor

Notes

Implementing a Lamp Dimmer with an HC908Q Family MCU, Rev. 0

Freescale Semiconductor 23

This page is intentionally blank.

AN2839
Rev. 0, 9/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

	Introduction
	Dimmer Features
	Control Method
	Triacs

	HC908Q Family Features
	Application Description
	Design Customization
	Software Description
	Lamp Dimmer Source Code
	Lamp Timer Source Code

