
This document contains information on a new product. Specifications and information herein
are subject to change without notice.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor
Application Note

1 Introduction
Embedded software should be self-reliant and it should not have
to rely on human intervention to start the system over when the
erroneous software causes a fatal error. The watchdog timer
(WDT) is used to detect defective software and allows the system
to reset itself when a fatal software error occurs, thereby avoiding
the need for an operator to manually reset the system. For
example, the ‘infinite for’ loop in a code can cause an erroneous
behavior of the software because the system may get stuck in the
infinite loop. This is not a desirable situation since all other
software modules can no longer use the CPU. Therefore, the
critical code of an embedded software should be designed in such
a way that it would start the watchdog just prior to entering that
code region. If the code doesn’t complete within a calculated
amount of time, the watchdog reset will occur. On the other hand,
if a code under investigation completes within a defined amount
of time, then it would be able to restart the watchdog timer and the
timeout will not occur, which will prevent the system from
resetting. However, the software designer needs to define the
timeout for the watchdog very carefully.

In this application note, the on-chip watchdog timer of the
MPC8555 silicon is discussed. The WDT is a part of the e500 core
complex module of the MPC8555. This documentation also
discusses the software accompanied with this application note.

AN2804
Rev. 0, 12/2004

Contents
1. Introduction . 1
2. Overview . 2
3. Configuration of the Watchdog Timer 3
4. Description of the Software and Hardware 5
5. Conclusion . 10

Watchdog Timer for e500

Watchdog Timer for e500, Rev. 0

2 Freescale Semiconductor

Overview

2 Overview
The watchdog timer is part of the e500 core complex. The state machine for this watchdog is shown in Figure 1.
Note that programming the WDT only requires a few special purpose registers of the e500. These are discussed in
detail in the following sections.

Figure 1. Watchdog State Machine

The state machine is defined by the status of the two bit Timer Status Register (TSR), which is described below. For
a detailed discussion on the state machine of the WDT, please refer to Section 3.5 of the PowerPC e500 Core
Complex Reference Manual.

The state of the watchdog timer state machine is stored in the Timer Status Register (TSR - SPR336). This register
is always set by hardware on successive time-outs of the watchdog reset timer. The TSR can only be reset by
software to force the state machine into a previous state. The two bits that hold the status are TSR[ENW] (Enable
Next Watchdog timer timeout - bit 32) and TSR[WIS] (Watchdog Interrupt Timer Status - bit 33) as shown in
Figure 1. Both TSR[ENW] and TSR[WIS] are set to 0 at reset. In the following discussion, the coordinate symbol
(x,y) is used to show the value of ENW and WIS; x being ENW and y being WIS.

T SR [E N W ,W IS]= 0 b0 0
T S R [E N W ,W IS]= 0 b1 0

T S R [E N W ,W IS]= 0 b 01
T S R [E N W ,W IS]= 0 b1 1

T im e-ou t . N o excep tion reord ed in T S R .W IS . S et
T SR .E N W so n ex t tim e-o u t w ill cau se ex cep tion .

S oftw are lo o p

T im e-ou t . Se t T SR .E N W
so n ext tim e-ou t w ill
cau se re set .

W atchd og
interru p t
h an d ler

W atch d og
interru p t
h and le r

1 st T im e-o ut . W D T
ex cep tio n reord ed
 in T SR .W IS . W D T
in te rru p t o ccu rs if en ab led
b y T C R .W IE an d
M SR .C E

- If T C R [W R C]

 = 00 , n othin g w ill h ap p en

 = 0 1 , a P ro cessor M ach in e C h eck E x cep tion w ill b e gen era ted

 = 10 , th e H ard R ese t R equ est extern a l o u tpu t sign a l w ill b e a sserted

T S R .W R S < - T C R .W R C

T C R .W R C < - 0b 0 0

2
nd tim

eout
 occurs

1 s t T im e-ou t. W D T
exce pt io n reo rde d
 in TS R .W IS . W D T
in te rrup t occu rs if
en ab le d by TC R .W IE
an d M S R .C E

T im e-o ut. N o exce pt io n reo rd ed in T S R .W IS . S et
TS R .E N W so n ext t im e-o ut w ill cause e xce pt io n .

S oftw are loo p

W atch do g
in terrup t
h and le r

W atchdo g
in terrup t
h an d ler

2
nd tim

eout occurs

T im e-ou t. S et TS R .E N W
so n ext t im e -ou t w ill cau se rese t.

TS R [E N W ,W IS]=0 b0 0
T S R [E N W ,W IS]= 0b1 0

T S R [E N W ,W IS]= 0b 01
T S R [E N W ,W IS]= 0b1 1

I f T C R [W R C]=

 00 , no th ing w ill h ap pe n

 01 , a P rocessor M a ch ine C heck E xce ption w ill be g ene ra ted

 10 , the H ard R e set R e qu es t e xte rn a l o u tpu t s ign a l w ill be
 asserte d

T S R .W R S < - TC R .W R C

T C R .W R C <- 0b 00

1 s t T im e-ou t. W D T
exce pt io n reo rde d
 in TS R .W IS . W D T
in te rrup t occu rs if
en ab le d by TC R .W IE
an d M S R .C E

T im e-o ut. N o exce pt io n reo rd ed in T S R .W IS . S et
TS R .E N W so n ext t im e-o ut w ill cause e xce pt io n .

S oftw are loo p

W atchd og
in terru p t
ha nd le r

W atchd og
 in te rrup t
 h an d ler

2 n d
T im e-
o u t
o cc urs

T im e -ou t. S et T S R .E N W
so n ext tim e -ou t w ill

cause rese t.

TS R [E N W ,W IS]=0 b0 0
T S R [E N W ,W IS]= 0b1 0

TS R [E N W ,W IS]=0 b0 1 TS R [E N W ,W IS]=0b 11

I f T C R [W R C]=

 00 , no th ing w ill h ap pe n

 01 , a P rocessor M a ch ine C heck E xce ption w ill be g ene ra ted

 10 , the H ard R e set R e qu es t e xte rna l o u tpu t s ign a l w ill be
 asserte d

T S R .W R S < - TC R .W R C

T C R .W R C <- 0b 00

Watchdog Timer for e500, Rev. 0

Freescale Semiconductor 3

Configuration of the Watchdog Timer

Note that the transition of the state machine from (0,0) to (1,0) is not known as first timeout. Rather, the first timeout
is defined as the timeout when the state machine is in (1,0) state and a timeout occurs. This first timeout moves the
state of the state machine from (1,0) to (1,1).

On the first watchdog timer timeout, a watchdog timer exception is generated and logged by setting TSR[WIS] = 1.
If watchdog timer interrupts are enabled (TCR[WIE] = 1 and MSR[CE] = 1), a watchdog timer interrupt will be
taken. The interrupt handler would clear the WIS bit of TSR register by writing a 1 to this location. Additionally,
the handler can bring the state machine to (0,0) or (1,0). In the former case, 1 will be written to the ENW bit of the
TSR, bringing the state machine to the initial state of (0,0). In the latter case, the ENW bit is not cleared, leaving the
state machine in this state (1,0).

When TSR[ENW] = 1 and TSR[WIS] = 1 (either the watchdog timer interrupt is not taken or the handler does not
reset the state machine), the next watchdog timer timeout is effectively the second watchdog timeout. Note that on
a second timeout, the state still remains at (1,1) and no state transition takes place. In this case, the behavior is
determined by TCR[WRC]. In the event that either a machine check exception is generated (TCR[WRC] = 01) or
hardware reset request is generated (TCR[WRC] = 10), the value of TCR[WRC] is copied into TSR[WRS]
(Watchdog Timer Reset Status - bits 34:35) and the value of TCR[WRC] is reset back to 00.

3 Configuration of the Watchdog Timer

3.1 Defining the Timeout
The watchdog timer is based on the Time Base Registers (Time Base Lower TBL - Read = SPR268, Write = SPR284
and Time Base Upper TBU - Read = SPR269, Write = SPR285). The watchdog timer will timeout on a low to high
transition of one of the 64 bits of TBU/TBL. This bit is set by configuring with the Watchdog Timer Period in the
Timer Control Register (TCR - SPR 340). The Watchdog Timer period is a 6-bit concatenation of {TCR[WPEXT],
TCR[WP]} representing bits TCR[43:46, 32:33]. When {TCR[WPEXT], TCR[WP]} = 0b11_1111, the LSB of the
Time Base (TBL[63]) is selected as the watchdog timer period, resulting in the shortest possible timeout period.
Decrementing {TCR[WPEXT], TCR[WP]} increases the timer period by one bit of the Time Base until
{TCR[WPEXT], TCR[WP]} = 0b00_0000, the MSB of the Time Base (TBU[32]) is selected resulting in the longest
possible timeout. See Figure 2 below.

Figure 2. Bit in Timebase to be Toggled

3.1.1 An Example
The example below explains how to calculate the period of the watchdog timer and which bit needs to be toggled in
the Timebase register.

0 31 32 63

TBU TBL

Watchdog Timer for e500, Rev. 0

4 Freescale Semiconductor

Configuration of the Watchdog Timer

Period

When WPEXT[0:3]=0b1001 and WP[0:1]=0b00, the period is 36. Period 36 is counted from the left in Figure 1.
The bit position that must be toggled is counted from the right in Figure 2. In this case, the bit position of the
Timebase which needs to be toggled to get a timeout is 63 – 36 + 1 = 28.

1st and 2nd Timeout

Once the Timebase is enabled on every 8 Platform/CCB (Core Complex Bus) cycles, the value of the Timebase is
incremented once. Position 28 will toggle in the following fashion:

• In (0.5 x timeout) time, this position will be toggled once, which will move the state machine of the
watchdog from (00) to (10). Note that, by definition, this is not considered to be the first timeout.

• In the next (1 x timeout) time, this position will be toggled again (first timeout) and the state machine would
change from (10) to (11).

• In another (1 x timeout) time, this position will be toggled once again (second timeout) and the state machine
would change from (10) to (11).

Note that in the following calculations, CCB clock rate is assumed to be 266MHz.

The total time needed for the first timeout is calculated by adding the time in the first two bullets shown above:

1.5 × (2^(63 - period + 1)) / (CCBclock rate ÷ 8) = 12.11 sec

The total time needed for the second timeout is calculated by adding the time in the above three bullets:

2.5 × (2^(63 - period + 1)) / (CCB clock rate ÷ 8) = 20.18 sec

3.2 Timebase Register
In order for watchdog timer timeouts to occur, a 0-1 transition on the appropriate bit of the Time Base Registers must
occur. This can be done in the following way:

Enable the time base and supply it a clock using the HID0 (SPR1008 - Hardware Independent Register 0). Setting
HID0[TBEN} (bit 49 of HID0) will cause the Time Base Register to be incremented at each cycle of the timebase
clock. The Time Base clock is controlled by HID0[SEL_TBCLK] (bit 50 of HID0). When HID0[SEL_TBCLK] = 0,
the platform clock/CCB clock is used; otherwise, if HID0[SEL_TBCLK] = 1, an external input TBCLK is used.

3.3 Action on aTimeout
The Timer Control Register (TCR - SPR340) is used to control the actions that occur on a timeout using the fields
TCR[WIE] (bit 36 - Watchdog Timer Interrupt Enable) and TCR[WRC] (bits 34:35 - Watchdog Timer Reset
Control). The number of timeouts that occur is monitored using the Timer Status Register (TSR). If TCR[WIE] = 1,
a watchdog timer interrupt will be generated on the first timeout of the watchdog timer. The general purpose of this
interrupt handler is to reset the state machine using the TSR such that no action is taken on the second timeout of
the watchdog timer. In the event that either TCR[WIE] = 0 or the Watchdog Timer Interrupt handler does not reset
the state machine, one of the following will occur on the second watchdog timer timeout based on the value of
TCR[WRC]:

• If TCR[WRC] = 00, nothing will happen

• If TCR[WRC] = 01, a Processor Machine Check Exception will be generated

Watchdog Timer for e500, Rev. 0

Freescale Semiconductor 5

Description of the Software and Hardware

• If TCR[WRC] = 10, the Hard Reset Request external output signal will be asserted

• TCR[WRC] = 11 is reserved

After a machine check exception is taken, logic resets the TCR[WRC] field.

3.3.1 Taking the Watchdog Timer Interrupt on a First Timeout
When a watchdog timer interrupt event is generated, the interrupt will be taken only if watchdog timer interrupts are
enabled (TCR[WIE] = 1 and MSR[CE] = 1). In this case, the routine at IVOR12 (Watchdog timer interrupt offset
register - SPR412) will be executed.

3.3.2 Taking the Machine Check Exception on a Second Timeout
When a watchdog timer machine check condition is generated, it will be indicated in MPCSUMR[WRS] (Machine
Check Summary Register, offset 0xE_0090 - bit 29). When MPCSUMR[WRS] = 1, the system has generated a
watchdog timer machine check event. The core will only respond to the machine check event if watchdog timer (and
external input) machine checks are enabled. This is enabled by setting HID0[EMCP] = 1 (Hardware Implementation
Dependent Register 0, bit 32 - Enable Machine Check Pin). When HID0[EMCP] = 1 and if MSR[ME] = 1 (Machine
State Register - Machine check Enable, but 51), the machine check exception will be taken by the core, in which
case the routine at IVOR1 (Machine Check Interrupt Offset register) will be invoked.

4 Description of the Software and Hardware
The software tests the functionality of the WDT and runs on the CDS platform. It was also tested in the
MPC8560ADS Pilot board. For the purpose of discussion we restrict the platform to be CDS. The platform is
described in the following sections. Also, the files in the software project and the important routines are described.
In order to get a detailed understanding of the software, please browse through the source files. The main.c file
describes what are the various platforms on which this software is tested. Note that whichever platform you pick
among the ones listed in the main.c file, the platform/Core Complex Bus frequency has to be set to 266MHz.
Because the mathematical values used in the project assumes the platform frequency to be 266MHz.

The software was tested both in Debug mode and in Flash mode. By Flash mode we mean programming the ROM
image into the onboard Flash of the platform and then run it in a standalone fashion. If you are interested in the ROM
version then select the ROM Version from the drop down list of the ‘Debug Version Setting’ of the CodeWarrior
project, compile it and then with the use of the ‘Flash Programmer’ of the CodeWarrior IDE program the image into
the FLASH.

4.1 Platform
Target System : CDS board

Debugger: MetroWorks CodeWarrior for PowerQUICC III, Rev 1.1

Debugger Probe: PowerTAP Pro

Watchdog Timer for e500, Rev. 0

6 Freescale Semiconductor

Description of the Software and Hardware

4.2 Files

Table 1. Files

File Name File Description

main.c This file contains all the WDT APIs.

interrupt.c Contains the exeption vector table, including the machine check handler and
watchdog timer interrupt

tuning.c Contains definitions used in main.c and interrupt.c

time.c It provides the utility routines to perform the time measurements. In the WDT
project the timeout period is programmed and then using the utility it is
measured.

UART2_MOT_8540_ADS.UC.a Serial driver is a part of the standard CodeWarrior source tree. Provided in the
package for convenience. Typically this serial driver component is picked up
from the Codewarrior’s source installation tree.

__ppc_eabi_init.c Iniatialization related file which is part of the standard CodeWarrior source tree
but provided with the package for convenience.

8555cds_init.c Used with the ROM version only. This file contains all the low level intializations.

eppc_exception.c Contains the low level layout of all the e500 related exceptions. This is part of
the standard CodeWarrior project.

reset.c Part of this package and also part of standard CodeWarrior project. This file is
used when you select the ROM target which you want to program into the Flash
of your platform.

MSL_C.PPCEABI.bare.E.UC.a Standard CodeWarrior library which includes complete C and C++ library
collection.

Runtime.PPCEABI.E.UC.a Standard Codewarrior runtime libray.

flash_prog_bank_0.xml This is the *.xml file which holds all the configuration parameters needed to
program the flash. For your use you have to make sure that the paths provided
for certains files are accurate.

Watchdog Timer for e500, Rev. 0

Freescale Semiconductor 7

Description of the Software and Hardware

4.3 Routines
The important routines are defined in main.c. These are described in the following sections.

4.3.1 WatchDogCreate() - create a watchdog timer
void WatchDogCreate (int delay, int FirstTimeout, int SecondTimeout)

DESCRIPTION

This routine configures the watchdog timer of the e500 core complex. By the argument delay, the user provides the
timeout in milliseconds. This timeout is for the WDT’s second timeout. Also, FirstTimeout argument indicates
whether the user wants to take an interrupt upon hitting the first timeout of the WDT. This argument can have a value
of 0 or 1. If the value is 1, that indicates that the user wants to interrupt on the first timeout; otherwise, if the value
is 0, no interrupt is taken on the first timeout. Similarly, SecondTimeout argument specifies whether the user wants
to take a second timeout and get a machine check exception. Note that the acceptable values for FirstTimeout and
SecondTimeout respectively are 1,0 and 0,1.

The following steps are performed in this routine:

• User’s specified delay is converted to period.

• WP and WPEXT fields are programmed based upon the calculated period.

• By setting the TBCLK bit of the HID0 register, the platform/CCB clock is routed to WDT. Note that the
TBEN bit is not set at this point, so the Timebase will not start counting.

• Finally, depending upon whether the user configured to take an interrupt on the first or second timeout, the
TCR register is programmed. If the first timeout is chosen, then the WIE bit in TCR is set, as is the CE bit
in the MSR. For the second timeout, WRC bit field is set to 0b01, ME bit in the MSR is set, and EMCP bit
in the HID0 is set, which ensures that on a second timeout, machine check exception is generated and the
corresponding handler is invoked.

RETURNS

None

4.3.2 WatchDogStart() - starts the watchdog timer
void WatchDogStart (void)

DESCRIPTION

This routine starts the WDT, assuming that the WDT has been created using WatchDogCreate() prior to calling this
routine. The following steps are performed in the WatchDogStart routine:

• Reset Timebase.

• Enable Timebase by setting the TBEN bit of the HID0 register. At this point, the Timebase will start
counting. When counting reaches the period of WDT, the timeout happens.

RETURNS

None

Watchdog Timer for e500, Rev. 0

8 Freescale Semiconductor

Description of the Software and Hardware

4.3.3 WatchDogCancel () – stops the watchdog timer
void WatchDogCancel (void)

DESCRIPTION

This routine would stop the watchdog timer so that the timeouts do not take place.

The following actions are performed in this routine:

• ENW,WIS and WRS bits are cleared to bring the watchdog timer to its initial state, which is
TSR[ENW,WIS]=0b00.

• WP and WPEXT fields of the TCR register are cleared.

• Timebase registers are cleared.

RETURNS

None

4.4 Interrupts and Exceptions
The project eppc_exception.asm file contains the exception vector table. In this file, IVOR1 is for machine check
exception and IVOR12 is for Watchdog timer Interrupt. On a first timeout, IVOR12 is taken, and on a second
timeout, IVOR1 is taken. Once the code jumps to either of these locations, it calls the InterruptHandler routine
located in the interrupt.c file. The switch statements in this routine differentiate among various interrupts: ‘case
0x200’ is for machine check and ‘case 0xB00’ is for watchdog timer interrupt.

4.5 Example Run and Results
The main routine calls the WatchDogCreate, followed by WatchDogStart, which kicks off the Timebase. The
watchdog timer’s state machine begins watching for the timeout that is going to occur. The program then comes is
a tight loop keeping the CPU busy. Once the first/second timeout happens, the CPU jumps to the corresponding
handler. Inside the handler, the timebase is stopped so that it does not roll over or continue counting. Then, the status
in the TSR register is cleared. If it is a second timeout, then the status in the MCPSUMR register is also cleared;
particularly the WRS bit in the MCPSUMR register is cleared. Then, the TCR register and timebase is programmed
again so that timeout can keep happening. The following two cases were tested out in the lab:

CASE 1: Second timeout, 20sec

WatchDogCreate(20000, 0, 1); //20,000msec

WatchDogStart ();

This case is used to test out the 2nd timeout with a timeout of 20 seconds. It was observed that software was printing
the following things (shown in bold below) at the console (57600 baud rate) after almost every 20 seconds. The
console dump is made from the machine check handler. Software prints out the state of WDT at the time when the
machine check handler is invoked. Then, it also prints the state after the status is cleared in the TSR register. Notice
that once you clear the status of the TSR register, the WDT will come back to its initial state.

Watchdog Timer for e500, Rev. 0

Freescale Semiconductor 9

Description of the Software and Hardware

2nd tm

Watchdog state before...
End State : TSR[ENW,WIS] = 0b11
Watchdog state after...
End State : TSR[ENW,WIS] = 0b00

CASE 2 : First timeout, 3sec

WatchDogCreate(5046, 1, 0);//5046msec

WatchDogStart ();

This case is used to test out the 1st timeout with a timeout of ((1/2.5) × (1.5) × 5046 msec) = 3 seconds. Note that
in WatchDogCreate, the user is asked to provide a timeout value for the 2nd timeout. The first timeout value is then
calculated in software.

In this experiment, it was observed that software was printing the following things (shown in bold below) at the
console after almost every 3 seconds. The console dump is made from the watchdog timer handler. Software prints
out the state of the WDT at the time when the watchdog timer handler is invoked. Then, it also prints the state after
the status is cleared in the TSR register. Notice that once you clear the status of the TSR register, the WDT will come
back to its initial state.

1st tm

Watchdog state before...
TSR[ENW,WIS] = 0b11
Watchdog state after...
TSR[ENW,WIS] = 0b00

4.6 Example Usage of the Watchdog Timer APIs Provided
Consider an embedded system where an I/O pin is driven low from high after every 50 msec. The embedded
software reads this port and, if the logic value of this pin is zero, it writes to some other I/O port. Consider the
embedded software to be something like what is shown in Listing 1 below.

Suppose that the loop (in Listing 1 below) must execute at least once every fifty milliseconds. If the watchdog timer's
counter is initialized to a value that corresponds to fifty milliseconds of elapsed time, and the software has no bugs,
the watchdog timer will never expire; the software will always restart the counter before it reaches zero.

Listing 1: Restarting the Watchdog
main(void)
{
 int value;
 for (;;)
 {

/* kicking/restarting the dog */
WatchDogCreate(50, 0, 1);//50msec
WatchDogStart ();

Watchdog Timer for e500, Rev. 0

10 Freescale Semiconductor

Conclusion

/* code that should finish in 50msec */
while (!(value = read_io_port()));
write_io_port();
print_status();

/* stopping the WDT */
WatchDogCancel ()

 }
}

Suppose that the software gets stuck in the ‘while’ loop. This loop should break when the value read from the I/O
becomes 0. If the I/O is not driven to 0 from 1, this means that the software is stuck in this ‘while’ loop. Meanwhile,
the WDT states rolled over and 2nd timeout has happened. This would allow the software to break the ‘while’ loop
because now the machine check handler will be taken and the CPU can then reset the entire system.

5 Conclusion
This application note discussed the watchdog timer of e500 core complex, as well as the accompanying software
and the test results of the software. The software code is compiled and tested using the Codewarrior debugger on
CDS platform. This software can be easily ported to some other platform as well. An example usage of the APIs
developed is provided in this application note.

Watchdog Timer for e500, Rev. 0

Freescale Semiconductor 11

Conclusion

THIS PAGE INTENTIONALLY LEFT BLANK

AN2804
Rev. 0
12/2004

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-0047 Japan
0120 191014
+81 3 3440 3569
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@

hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The
PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service
names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004.

Information in this document is provided solely to enable system and software implementers to

use Freescale Semiconductor products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the

information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any

products herein. Freescale Semiconductor makes no warranty, representation or guarantee

regarding the suitability of its products for any particular purpose, nor does Freescale

Semiconductor assume any liability arising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation consequential or

incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor

data sheets and/or specifications can and do vary in different applications and actual performance

may vary over time. All operating parameters, including “Typicals” must be validated for each

customer application by customer’s technical experts. Freescale Semiconductor does not convey

any license under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for surgical

implant into the body, or other applications intended to support or sustain life, or for any other

application in which the failure of the Freescale Semiconductor product could create a situation

where personal injury or death may occur. Should Buyer purchase or use Freescale

Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,

and distributors harmless against all claims, costs, damages, and expenses, and reasonable

attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

THIS PAGE INTENTIONALLY LEFT BLANK

	1 Introduction
	2 Overview
	Figure 1. Watchdog State Machine

	3 Configuration of the Watchdog Timer
	3.1 Defining the Timeout
	Figure 2. Bit in Timebase to be Toggled
	3.1.1 An Example

	3.2 Timebase Register
	3.3 Action on aTimeout
	3.3.1 Taking the Watchdog Timer Interrupt on a First Timeout
	3.3.2 Taking the Machine Check Exception on a Second Timeout

	4 Description of the Software and Hardware
	4.1 Platform
	4.2 Files
	Table 1. Files

	4.3 Routines
	4.3.1 WatchDogCreate() - create a watchdog timer
	4.3.2 WatchDogStart() - starts the watchdog timer
	4.3.3 WatchDogCancel () - stops the watchdog timer

	4.4 Interrupts and Exceptions
	4.5 Example Run and Results
	4.6 Example Usage of the Watchdog Timer APIs Provided

	5 Conclusion
	Watchdog Timer for e500

