
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2004. All rights reserved.

This application note describes the procedure to setup the hash
tables for the three-speed Ethernet controller (TSEC).
PowerQUICC™ Ethernet controllers prior to TSEC accomplished
this task for the user. However, TSEC requires that the user
manually set the hash table entries by setting the appropriate bits
in the group and individual address registers.

This document should assist the user in successfully programming
registers and creating hash tables. Included are recommended
steps for determining and setting the appropriate bits in the hash
tables and example code.

AN2745
Rev. 0, 07/2004

Contents
1. Destination Address Recognition 2
2. Filling the Hash Tables . 3
3. Example C Code . 6
4. Revision History . 10

Setting Up TSEC Hash Tables
by Dana Castillo

NCSD Applications
Freescale Semiconductor, Inc.
Austin, TX

Setting Up TSEC Hash Tables, Rev. 0

2 Freescale Semiconductor

Destination Address Recognition

1 Destination Address Recognition
Figure 1 shows a flowchart for address recognition on received frames that is used to perform frame filtering using
destination address (DA) recognition to determine whether to receive or discard the frame. Frames can be either
individual (I) or group (G) addressed frames.

Figure 1. Ethernet Address Recognition Flowchart

The hash searches occur only when a DA does not match the station address or broadcast address. To determine
whether the DA maps to a bit in the hash table, the cyclic redundancy check (CRC) of the DA is determined and the
CRC value’s least significant byte is complemented and bit-reversed. The resulting value is then analyzed and
compared to the appropriate bit in the individual or group registers.

I/G Address

Station
Address Match?

IG

Broadcast

Address

Broadcast

Reject

T

F

Hash Search

(Use Group
Table)

T

Hash Match?

T

Promiscuous?
TF

F

F

F

T

Receive Frame

Incoming
Frame

Hash Search

(Use Individual
Table)

Discard Frame

Setting Up TSEC Hash Tables, Rev. 0

Freescale Semiconductor 3

Filling the Hash Tables

2 Filling the Hash Tables
The following subsections describe the IADDRs, GADDRs, and recommended procedure for setting bits in the hash
tables. Additional examples are also provided in this section.

2.1 Individual Address Registers 0-7 (IADDRn)
The user must write the IADDRn registers, shown in Figure 2. These registers represent 256 entries of the individual
(unicast) address hash table used in the address recognition process. While the DA field of a receive frame is
processed through a 32-bit CRC generator, the 8 bits of the CRC remainder are mapped to one of the 256 entries.
The user can enable a hash entry by setting the appropriate bit. A hash table hit occurs if the DA CRC result points
to an enabled hash entry. Each of the eight IADDR register fields represents the 32-bit value associated with the
corresponding register. IADDR0 contains the high-order 32 bits of the 256-entry hash table and IADDR7 represents
the low-order 32 bits.

Figure 2. IADDRn Register Definition

Setting Up TSEC Hash Tables, Rev. 0

4 Freescale Semiconductor

Filling the Hash Tables

2.2 Group Address Registers 0-7 (GADDRn)
The user must also write the GADDRn registers, shown in Figure 3. Together these registers represent 256 entries
of the group (multicast) address hash table used in the address recognition process. While the DA field of a receive
frame is processed through a 32-bit CRC generator, the 8 bits of the CRC remainder are mapped to one of the 256
entries. The user can enable a hash entry by setting the appropriate bit. A hash table hit occurs if the DA CRC result
points to an enabled hash entry. Each GADDRn represents the 32-bit value associated with the corresponding
register. GADDR0 contains the high-order 32 bits of the 256-entry hash table and GADDR7 represents the
low-order 32 bits.

Figure 3. GADDRn Register Definition

2.3 Setting the Appropriate Bits
If the DA field of a receive frame is processed through a 32-bit CRC generator, the lower order 8 bits of the CRC
remainder (1’s complemented and bit-reversed) are mapped to a hash table entry. The user can enable a hash entry
by setting the appropriate bit. A hash entry usually represents a set of addresses. A hash table hit occurs if the DA
CRC result points to an enabled hash entry.

NOTE
The hash tables cannot be used to reject frames that match a set of selected
addresses because unintended addresses can map to the same bit in the hash tables.
Thus, an external CAM (content-addressable memory) or software must be used to
implement this function.

The three steps to setting the appropriate bits in the IADDRs and GADDRs are as follows:

1. Compute the CRC value of the DA.

2. Bit-reverse the least significant byte of the CRC.

3. Select the appropriate register bit to set.

NOTE
The Linux implementation of the CRC algorithm requires the user to complement
the least significant byte of the CRC value before you bit reverse it.

The following subsections will describe the three steps and step through an example with the following group
destination address:

• Destination MAC address: DA = 0x0100_0CCC_CCCC

Setting Up TSEC Hash Tables, Rev. 0

Freescale Semiconductor 5

Filling the Hash Tables

2.3.1 Computing the CRC
There are many algorithms for calculating the CRC value of a number. Refer to the RFC3309 standard (which can
be found at http://www.faqs.org/rfcs/rfc3309.html) to compute the CRC value for the purposes of TSEC. The
RFC3309 algorithm uses the following polynomial to calculate the CRC value:

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+x0 or 0x04C1_1DB7.

The algorithm results in the following CRC value using the previously given example values:

• CRC Value:

CRC =0xA29F_4BBC

2.3.2 Bit-Reversing the CRC
The high-order 3 bits of the BR_CRC value obtained from the last step are used to select which of the eight 32-bit
registersto use. The resulting value is shown below:

• Bit-Reversed CRC value:

BR_CRC = 0x3D = 0b0011_1101

2.3.3 Selecting the Appropriate Register Bit to Set
The high-order 3-bits of the BR_CRC value obtained from the last step are used to select which 32-bit register (of
the 8) to use. The on-going example maps the DA to register 1.

• High-Order 3 bits of BR_CRC:

HO_CRC = 0b001 = 1

The low-order 5 bits will be used to select which bit to set in the given register (with a value of 0 setting
0x8000_0000 and 31 setting 0x0000_0001). Therefore, the example DA maps to bit 29 of register 1.

• Low-Order 5 bits of BR_CRC:

LO_CRC = 0b1_1101 = 29

Therefore, GADDR1 would be ORed with the value 0x0000_0004.

Setting Up TSEC Hash Tables, Rev. 0

6 Freescale Semiconductor

Example C Code

2.3.4 Additional Calculated Examples
Example 1:

• Destination MAC address:

DA = 0x0100_5E00_0128

• CRC remainder value:

CRC = 0x821D_6CD3

• Bit-Reversed least significant byte of CRC Value:

BR_CRC = 0xCB = 0b1100_1011

• High-Order 3 bits of BR_CRC:

HO_CRC = 0b110 = 6

• Low-Order 5 bits of BR_CRC:

LO_CRC = 0b0_1011 = 11

• GADDR6 |= 0x0010_0000

Example 2:

• Destination MAC address:

DA = 0x0004_F060_4F10

• CRC remainder value:

CRC = 0x1F5A_66B5

• Bit-Reversed least significant byte of CRC Value:

BR_CRC = 0xAD = 0b1010_1101

• High-Order 3 bits of BR_CRC:

HO_CRC = 0b101 = 5

• Low-Order 5 bits of BR_CRC:

LO_CRC = 0b0_1101 = 13

• GADDR5 |= 0x0004_0000

3 Example C Code
The following example C code calculates the CRC and can be used to find the appropriate bits to set for a given DA
value. The code was developed using Metrowerks™ CodeWarrior™ Development Tools for Windows, Version
8.0.

#define CRC32_POLY 0x04c11db7 // AUTODIN II, Ethernet, & FDDI

// CRC table (256 entries) generated by RFC3309

unsigned crctab[] = {

 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,

 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,

 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,

 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,

Setting Up TSEC Hash Tables, Rev. 0

Freescale Semiconductor 7

Example C Code

 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,

 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,

 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,

 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,

 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,

 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,

 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,

 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,

 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,

 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,

 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,

 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,

 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,

 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,

 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,

 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,

 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,

 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,

 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,

 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,

 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,

 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,

 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,

 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,

 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,

 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,

 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,

 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,

 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,

 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,

 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,

 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,

Setting Up TSEC Hash Tables, Rev. 0

8 Freescale Semiconductor

Example C Code

 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,

 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,

 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,

 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,

 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,

 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,

 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,

 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,

 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,

 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,

 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,

 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,

 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,

 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,

 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,

 0x2d02ef8d,

};

// crc32core: returns RFC3309 CRC value

unsigned crc32core(unsigned char *buf, int len){

 unsigned crc = 0xffffffff;

 while(len--) {

 crc = (crc>>8) ^ crctab[(crc ^ *buf)&0xff];

 //printf("data: 0x%02x, crc: %08x\n", *buf, crc);

 buf++;

 }

 return crc;

}

// reflect: bit-reverse value, swap 0 for n, 1 for n-1 and so on

unsigned reflect(unsigned val, int nbits){

 unsigned ret = 0;

 int k;

 for (k=1; k < (nbits+1); k++){

Setting Up TSEC Hash Tables, Rev. 0

Freescale Semiconductor 9

Example C Code

 if (val & 1)

 ret |= 1 << (nbits-k);

 val >>= 1;

 }

 return ret;

}

//crc32hash: calculates DA’s CRC and the appropriate bit in G/IADDR

void crc32hash (unsigned char *da, int len){

unsigned *GADDR = (unsigned *) (0xFF700000 + 0x24880);

unsigned *IADDR = (unsigned *) (0xFF700000 + 0x24800);

 unsigned crc = crc32core(da, len);

 unsigned lsb = reflect(crc, 8); //bit-reverse 8 lsb

 unsigned bitIndex = lsb & 0x1f; //least 5 bits for bit index

 unsigned regIndex = lsb >> 5; //most 3 bits for register index

if (da[0] & 0x01) { //check for multicast group (I/G bit)

 GADDR[regIndex] |= 0x80000000 >> bitIndex;

}

 else {

 IADDR[regIndex] |= 0x80000000 >> bitIndex;

}

}

//main: calls crc32hash to compute DA’s CRC and the corresponding I/GADDR bit

void main() {

unsigned char da_pat1[] = { //example DA pattern

 0x01,0x00,0x5E,0x00,0x01,0x28, //DA

};

crc32hash(da_pat1, 6);

}

Setting Up TSEC Hash Tables, Rev. 0

10 Freescale Semiconductor

Revision History

4 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev. No. Date Substantive Change(s)

0 07/29/04 Initial release.

Setting Up TSEC Hash Tables, Rev. 0

Freescale Semiconductor 11

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

USA/Europe/Locations Not Listed:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405,
Denver, Colorado 80217
1-480-768-2130
(800) 521-6274

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Home Page:
www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part

Learn More: For more information about Freescale Semiconductor products, please visit
www.freescale.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004.

AN2745
Rev. 0
07/2004

	Setting Up TSEC Hash Tables
	1 Destination Address Recognition
	Figure�1. Ethernet Address Recognition Flowchart

	2 Filling the Hash Tables
	2.1 Individual Address Registers 0-7 (IADDRn)
	Figure�2. IADDRn Register Definition

	2.2 Group Address Registers 0-7 (GADDRn)
	Figure�3. GADDRn Register Definition

	2.3 Setting the Appropriate Bits
	2.3.1 Computing the CRC
	2.3.2 Bit-Reversing the CRC
	2.3.3 Selecting the Appropriate Register Bit to Set
	2.3.4 Additional Calculated Examples

	3 Example C Code
	4 Revision History
	Table�1. Document Revision History�

