
Freescale Semiconductor
Application Note

AN2714
Rev. 1, 11/2004

CONTENTS

1 Instruction Cache Basics .........................................2
1.1 Locality ...................................................................4
1.2 Types of Cache Misses ...........................................4
2 Extended Core Basics .............................................5
2.1 M1 Memory ............................................................6
2.2 Instruction Cache ....................................................7
3 Optimizing Code Performance ................................8
3.1 Cache Performance Characteristics ........................8
3.2 Code Optimization ..................................................9
3.3 System-Level Optimizations .................................10
3.4 Procedural-Level Optimizations ...........................15
3.5 Algorithmic-Level Optimizations .........................19
4 Conclusions........................................................... 21
5 References .............................................................23

Optimizing the Instruction Cache of 
StarCore™-Based Processors
by Hezi Rahamim
Although microprocessor speeds have dramatically increased in 
recent years, improvements in the access times of standard 
system memory such as SDRAM or DDR have proceeded much 
more slowly. The gap between microprocessor speed and 
memory access speed is increasing to such an extent that unless 
we can reduce memory access latencies, future improvements in 
CPU speeds will be increasingly nullified by the time taken to 
retrieve data from memory. The main technique to reduce 
memory access time is a cache hierarchy. Although accessing 
data in the first-level cache, which is the cache closest to the 
processor, does not carry much of a performance penalty, the 
required data will probably not be in the cache because the 
cache is so small. The result is a cache miss that causes the 
processor to stall until the desired data can be brought in from a 
higher level of the memory hierarchy. Cache misses are a 
common cause of CPU stalls and therefore limit performance. 
Reducing the numbers of stalls significantly improves overall 
system speeds. This application note describes how to write 
code to minimize the number of cache stalls. It explains how to 
use the cache environment of the SC140 extended core with 
maximum efficiency. 

Note: The SC140 and SC1400 cores are functionally identical 
and code-compatible. The information in this document 
applies to both cores. For simplicity, the SC140 core is 
referenced throughout this application note. 
StarCore™-based products to which this application 
note applies are the MSC7110, MSC7112, MSC7113, 
MSC7115, MSC7116, MSC8102, MSC8122, and 
MSC8126.
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Instruction Cache Basics
1 Instruction Cache Basics
Unlike general-purpose processors, most DSPs do not have a cache. Instead, they rely on multiple banks of on-chip 
memory and multiple bus sets to allow for several memory accesses per instruction cycle. However, some DSPs do 
incorporate a small, specialized instruction cache for storing instructions in small loops so that the internal bus sets 
can be free to retrieve data words. The increasingly high DSP clock rates enable DSPs to process more and more 
application channels for voice compression, video compression in wireless baseband applications, and packet 
telephony applications. Multi-channel processing usually requires both an increase in internal memory and multi-
core solutions. The instruction and data caches isolate the multi-core platform and the internal memory from the 
core, therefore maintaining a high clock rate to the core without significantly affecting application performance. 
The result is a significant decrease in expensive zero wait state memory and therefore DSP processor die area. In 
addition, the level of associativity and the high cache hit rate usually require almost no optimization, thus 
shortening code development and accelerating time to market.

Caches can be either direct-mapped or N-way set1 associative. In a direct mapped cache, each main memory line 
has only one possible location in the cache according to its index. Figure 1 shows the internal structure and 
operation flow of a direct-mapped cache. 

Figure 1.   Structure of a Direct-Mapped Cache
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Instruction Cache Basics
Figure 2 shows the internal structure of the instruction cache (ICache) in the SC140 extended core, which is a 16-
way set associative cache. Each main memory line has 16 different possible locations in the cache. The valid bit 
resolution (VBR) is 128 bits, and there is a valid bit for every 16-byte fetch set. 

The SC140 extended core uses prefetching to prevent cache misses. A prefetch operation is added to the normal 
processor memory access instructions. Instead of fetching data on a cache miss, prefetching anticipates these 
misses and issues a fetch to the memory system before the actual memory reference. This prefetch occurs in 
parallel with normal processor operations, allowing the memory system time to transfer the data from main 
memory to the cache. Ideally, the prefetch process completes just as the processor needs to access the required data, 
without stalling the processor. In a non-blocking prefetch system, more prefetches can be issued while the first one 
is occurring. 

Figure 3 shows the line prefetch mechanism of the SC140 extended core. In this example, a miss occurs in an 
address corresponding to the sixth valid bit. First, the miss is served and VBR number 6 is fetched from the 
memory to the cache (marked by a circle). Then the rest of the burst is fetched to the cache in a wrap-around order. 
When the missed burst finishes, the prefetch mechanism continues fetching data into the cache until the end of the 
line or until a new miss occurs.

Figure 2.   Structure of N-way Set Associative Cache
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Instruction Cache Basics
Figure 3.   Line Prefetch

1.1   Locality
An economical way to get large quantities of fast memory is a memory hierarchy scheme, which takes advantage 
of locality and the cost/performance rate of memory technologies. 

According to the principle of locality, once memory is accessed, the same data and its surroundings are likely to be 
used again shortly. Locality can be either temporal or spatial. When locality is temporal, a certain set of addresses 
may be accessed in a sequence—for example, when there is a short loop in the code. When the locality is spatial, a 
certain address and its surrounding addresses are likely to be accessed more than once. Program memory accesses 
are mostly sequential accesses, so spatial locality is very common to program accesses. The principle of locality 
has led to a hierarchy based on memories of different speeds and sizes. Since fast memory is expensive, a memory 
hierarchy is organized into several levels, each smaller, faster, and more expensive than the next level. 

Due to the locality, cache memory is the best way to handle the performance gap between memory and CPU. Cache 
access time can be significantly faster than that of main memory, and thus it can reduce the overall access time. 
Caches also reduce the number of accesses to external memory, which is important for systems with multiple bus 
masters that share the same memory. An efficient cache reduces external bus cycles and enhances overall system 
performance.

1.2   Types of Cache Misses
For each cache access miss, there is a penalty for fetching a line of data from memory into the cache. Therefore, the 
more often a cache line is successfully reused, the lower the impact of the initial penalty and the shorter the average 
memory access time becomes. The key is to reuse a line as much as possible before it is replaced with another line. 
Replacing a line involves removing the line from the cache and using the same line frame to store another line. If 
the replaced line is accessed again later, the access misses and the line must be fetched again from slower memory. 
Therefore, it is important to avoid replacing a line as long as it is still used.

1.2.1   Conflict and Capacity Misses
Line replacements are caused by conflicts, that is, an access to a memory location that is mapped to the same set as 
another memory location cached earlier. This type of miss is a conflict miss, which occurs because the line was 
replaced due to a conflict before it was reused. If cache capacity is exhausted, and all line frames in the cache are 
allocated when the miss occurs, the miss is referred to as a capacity miss. Capacity misses occur if a data set that 
exceeds the cache capacity is reused. When the capacity is exhausted, new lines accessed start replacing lines from 
the beginning of the array.
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Extended Core Basics
Identifying the cause of a miss may help you to choose the appropriate way to avoid the miss. Conflict misses mean 
that the data accessed fits into the cache but lines are evicted due to conflicts. In this case, we may want to change 
the memory layout so that the data accessed is located at addresses in memory that do not conflict (map to the same 
set) in the cache. For capacity misses, you should reduce the amount of data that is processed at any given time.

1.2.2   Compulsory Misses
A third category of misses is compulsory or first reference misses, which occur when the data is brought into the 
cache for the first time. A prefetch can reduce the amount of compulsory misses by predicting the program flow 
and then fetching the relevant instruction before it is accessed.

2 Extended Core Basics
The MSC81xx extended core contains the SC140 core (see Figure 4); the MSC711x extended core contains the 
SC1400 core. Both extended cores contain M1 memory, an instruction cache, a write buffer, and a programmable 
interrupt controller (PIC). However, the bus structures differ.

Figure 4.   MSC81xx SC140 Extended Core
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Extended Core Basics
Figure 5.   MSC711x SC1400 Extended Core

2.1   M1 Memory
In the MSC81xx family, the 224 KB M1 memory, which is divided into 32 KB groups, can be accessed with zero 
wait states from the SC140 core. Three accesses can be performed concurrently on every SC140 core clock cycle. 
The SC140 core accesses one 128-bit instruction fetch set and two 64-bit data words. In addition, an external host 
or a DMA controller can access 64 bits (8 bytes) through the local bus at the bus clock rate. To reduce the size of 
the memory, M1 is a single-access memory and is hierarchically divided so that four accesses can be performed in 
parallel. 

In the MSC711x family, the M1 memory space (available in 64 KB or 192 KB) is a full speed, zero wait state 
memory supporting parallel accesses from the SC1400 core. Up to three accesses can be performed concurrently 
on every SC1400 core clock cycle, one 128-bit instruction fetch set and two 64-bit data words. In addition, the 
DMA controller can simultaneously access a 64-bit word from M1 memory through the crossbar switch. To 
optimize the memory size, the M1 memory is subdivided into four groups in the 192 KB option, two that are 32 KB 
and two that are 64 KB.1 Each group has four ports and is implemented as a single-access memory. This 
subdivision allows four accesses to be performed, in parallel, to different groups. Parallel accesses can also occur 
when the two SC1400 data accesses occur to the same group. When a collision occurs due to two or more accesses 
to the same memory group, the SC1400 core stalls for one or more core clock cycles.
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Extended Core Basics
Intelligent memory allocation significantly decreases the probability of collisions between an SC140 core bus and 
the DMA bus. For example, two accesses cannot collide if they belong to different 32 KB memory groups, which is 
usually the case since program code is stored in a different group than the data space of the program. The DMA 
controller stores the “next” buffers in yet a different group. Even in the same group, if two data elements are placed 
on a different module, a collision between two SC140 core buses is prevented. When a collision does occur, the 
SC140 core stalls for one clock cycle. 

The overall memory size available for one SC140 core in both M1 and M2 memories and the partition between the 
memories is carefully designed as a trade-off between chip size and the memory requirements imposed by the 
bandwidth of the SC140 core. Typically the M1 memory contains critical routines and most of the channel data. 

2.2   Instruction Cache
The SC140 ICache is highly optimized for real-time DSP applications and minimizes miss ratios, latencies, bus 
bandwidth requirements, and silicon area. The 16 KB ICache is 16-way set associative. Figure 6 illustrates its 
logic structure and demonstrates how an address is mapped to this structure. Each of the 16 ways contains four 
256-byte lines and is divided into 16 fetch sets, each with an associated valid bit. The 2-bit index field of the 
address serves as an index to the line within the way. The line whose tag matches the tag field of the address is the 
selected line.

When a cache miss occurs, the new data is fetched in bursts of 1, 2, or 4 fetch sets (the MSC8102 DSP can fetch 
instructions in bursts of one fetch set only). There is also an option to fetch until the end of the line. This option, 
referred to as prefetch, takes advantage of the spatial locality of the code. When there is a need to fetch new data to 
the cache and the cache is full, one of the lines of the cache is thrashed using the least recently used (LRU) 
algorithm. The cache can be programmed so that only part of it is thrashed. For example, suppose task A needs to 
be preempted in favor of task B. While task B runs, the instructions of task A are thrashed from the instruction 
cache. When task B finishes and task A takes over, task A may find that its most recently used instructions are not 
in the cache. To prevent such a situation and thus keep task A’s most recently used instructions in the cache, the 
operating system can exclude the ways of task A from the part of the cache that can be thrashed. Another method of 
guaranteeing that the critical routines are always available for a task is to store them in the SC140 core M1 private 
memory. All the cache entries are flushed by issuing a cache flush command from the SC140 core, which is useful, 
for example, when new code is written to lines in the M2 memory that are already cached. 

The ICache has run-time debug support. A counter in the Emulation and Debug (EOnCE) module is incremented 
for cache hits and misses. When the SC140 core is in the Debug processing state, its fetch unit is also in the Debug 
state and all the cache arrays can be read.
Optimizing the Instruction Cache of StarCore™-Based Processors, Rev. 1
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Optimizing Code Performance
Figure 6.   Mapping an Address to the ICache

3 Optimizing Code Performance
A high cache hit rate requires almost no optimization, but the goal is to reduce the cache cycle overhead as much as 
possible. In some cases, performance can be further improved by implementing algorithms with a cached 
architecture in mind.

3.1   Cache Performance Characteristics
Cache performance mostly depends on the reuse of cache lines. You can maximize line reuse by carefully 
organizing the code and data in memory and by altering the memory access order. To perform these optimizations, 
you should be familiar with such characteristics of the cache memories as line size, associativity, capacity, 
replacement scheme, read/write allocation, miss pipelining, and the write buffer. You must also understand the 
conditions in which CPU stalls occur and the cycle penalty associated with these stalls.

To examine the impact of instruction cache performance on an application and pinpoint the problematic functions, 
use the EOnCE, which can count ICache hits or misses. Figure 7 and Figure 8 are screen captures of the 
CodeWarrior® ICache performance tool, which uses the EOnCE to measure the number of hits/misses for each 
function. In Figure 7, the ICache tool gives detailed hit/miss information for each function of the application, 
which you can use to pinpoint the problematic locations in the code for cache performance optimization. 
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Optimizing Code Performance
Figure 7.   Misses in Each Application Function 

Figure 8.   Misses in a Specific Function

The number of hits is zero for all the applications because the EOnCE has only one counter and therefore cannot 
count both misses and hits in the same run—whereas running the application on the simulator can produce both 
numbers in a single run. Here, the relevant information is only the miss count, so there is no need to run the 
application on the simulator. For details on the ICache performance tool, see CodeWarrior Help.

3.2   Code Optimization
A good strategy for optimizing level one cache performance proceeds top-down. Start on the basic level where the 
techniques are easy to implement yet significantly influence cache performance. Next, move to system-level 
optimizations, and, if necessary, consider optimizations on the procedural and algorithmic level. Therefore, the 
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Optimizing Code Performance
structure of this section reflects the order in which to address the optimizations. At the most basic level, you need 
only activate the cache by setting the enable bit in the ICache control register and enabling the SC140 prefetch 
mechanism, as follows:

volatile unsigned short *pIFUR = (unsigned short *) 0x00f0ff60; 
volatile unsigned short *pWBCR = (unsigned short *) 0x00f0ff82; 
volatile unsigned short *pICCR = (unsigned short *) 0x00f0fc00;

int main(int argc, char *argv[]) 
{  

   *pIFUR = 0x0000; // Prefetch enabled. 
   *pWBCR = 0x03FF; // Write Buffer enabled. 
   *pICCR = 0xF001; // Cache enabled. 

}

Figure 9 shows the performance impact of running an application using the ICache compared to running an 
application from unlimited zero wait state memory. 

Figure 9.   ICache Performance Impact

3.3   System-Level Optimizations
Using the fastest memory available reduces the number of stall cycles per miss. Consider using M1 memory 
(internal zero-wait-state memory) or M2 memory (internal second-level memory) rather than an external memory. 
If M2 memory is not large enough, consider using overlays. The SC140 extended core does not support memory 
access snooping, so you must resolve coherency issues. 

M1 memory provides zero-wait-state access to as many as 256 bits per cycle (128 program bits and 128 data bits). 
Obviously, the problematic functions can be positioned according to miss count in M1 and thus reduce the total 
stall count. To split an application between external and internal memory for optimum performance, use the ICache 
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Optimizing Code Performance
performance tool shown in Figure 7 and Figure 8 to consider the misses each function produces. A useful 
guideline is to analyze the code size of the application and its miss rate and then maximize the “normalized miss 
rate,” defined as follows: 

 

Move the functions and variables with the highest normalized miss count. Figure 10 displays the performance 
impact of the ICache from zero wait state unlimited memory when problematic functions are moved from external 
memory to M1 memory. Each column in the graph shows the performance impact of the cache using sequentially 
larger M1 sizes.

Figure 10.   Performance Impact with Different Internal Memory Sizes

Results can vary for different applications. In the example shown in Figure 10, and in other test cases, there is a 
point of significant improvement gained from allocating the code in M1, but from that point on, the resultant 
improvement decreases. In our example, the improvement point occurs at the 1 KB value. This value gives the best 
performance while using as little expensive M1 memory as possible.

3.3.1   Locking Mechanism
In a multi-task environment, the locking mechanism is a way to favor one task over the other by giving it a 
dedicated portion of the ICache. When a part of the cache is locked for one task, the effective cache size dedicated 
for the other tasks decreases. Therefore, the practice of locking can result in better performance for the favored task 
but can also degrade the performance of the other tasks, thus reducing overall performance. Remember that 
intervening in the normal cache operation usually causes a degradation in performance, so each use of locking 
should be carefully considered. 
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Optimizing Code Performance
In Figure 11, three tasks are running in a multi-task environment that uses the locking mechanism. While task 1 is 
running, all the cache ways are accessible to it. However, when task 2 or task 3 is running and is locked, only ways 
0 to 8 are accessible to task 1. If the code size of task 1 is very large compared to that of other tasks, when it runs 
again, part of its code will still be present in the cache, and therefore there will be fewer misses. 
 

Figure 11.   Locking Mechanism

Figure 12 shows two tasks: AMR, which has a small code size, and MPEG4, which has a large code size. Several 
cases are simulated, and in each case more ways are locked when AMR is running, dedicating more and more 
cache space to the MPEG4 task, with a consequent degradation in overall performance. Figure 11 shows the 
performance impact from ideal unlimited memory when the ICache is used with or without the locking mechanism. 
The X-axis in Figure 12 shows the number of cache ways locked when AMR is running, starting from no lock at 
all. Notice that the “No Locking” column has better cache performance than the other columns. These results 
indicate that it is better not to tamper with the ordinary operation of the cache, except in extreme cases. 
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Optimizing Code Performance
Figure 12.   Locking Mechanism Example

3.3.2   Code Size Decrease
Ideally, in cache-based architectures, all code fits into the cache, and there is a very small miss rate. If the code size 
exceeds the ICache size, and in most cases it does, every decrement in code size brings the benefit of fewer misses. 
Several methods can be used to decrease code size:

• Use low memory space addresses for the data variables (the first 64 KB of memory), allowing the 
compiler to save from two to four bytes each time an instruction uses an address as an immediate. Such 
compiler savings can occur only under the following conditions:

— All the application static data should fit into 64 KB.

— The linker must place the entire static data segment in the first 64 KB of memory.

— You must revoke the “big memory mode” check box in the project settings. See Figure 13. 

• When writing in assembly language, try to use the eight lower registers (R[0–7] and D[0–7]), which 
eliminates four bytes from the code size each time these registers are used. 

• Use the code space optimization built in to the compiler. You can instruct the compiler to optimize 
space on the entire application (see Figure 13), or you can use a pragma on specific functions to 
instruct the compiler to optimize only these functions. However, this pragma option adversely affects 
compiler ability to produce good code optimization, thus increasing cycle count. For details on the 
pragma, see the Metrowerks® CodeWarrior® documentation. 
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Optimizing Code Performance
Figure 13.   Code Warrior Big Memory Option 

Figure 14.   Code Warrior Space Optimization Option
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Optimizing Code Performance
3.4   Procedural-Level Optimizations
The procedural-level optimizations discussed in this section are function alignment and function inlining.

3.4.1   Function Alignment 
A miss is served by the instruction fetch unit (IFU). After the missed address is fetched into the ICache, the IFU 
continues to fetch the sequential instruction fetch-sets until one of the following events occurs:

• End of the cache line 

• A different ICache miss

• A transaction with higher-priority bus use

Most misses occur at the beginning of a cache line, so even if program flow is sequential (no branches) there can 
still be misses in the ICache. Aligning a function with the beginning address of a cache line decreases the total 
number of cache lines in which the function occurs, thereby reducing the miss count. In Figure 15, the function 
occupies one cache line less after the alignment.

Figure 15.   Function Alignment

However, function alignment increases code size because empty spaces are created, thus counteracting the benefits 
of aligning the functions and sometimes can even degrading application performance.  
Figure 16 shows a flow chart of the iterative method needed to archive the best results.

Assembly functions are aligned by adding the phrase .align 256 at the start of each function to be aligned. The 
following example shows the way to align a C code function using the pragma directive supported in Code Warrior 
2.5.

void foo() 
{ 

#pragma align foo 256 
printf("Hello!\n"); 

}

Without Alignment With Alignment of 256

Function Start Function Start

Function End Function End
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Optimizing Code Performance
Figure 16.   Function Alignment Method

Table 1 shows the test results for running the EFR vocoder encoder/decoder application on ETSI test vector 5 to 
rank non-aligned functions according to the number of stalls in their start addresses and evaluate the use of aligning 
to decrease the number of different lines the functions inhabit. Using these rankings, several non-aligned functions 
were aligned. The total impact of the ICache on performance was 5 percent. The results indicate that aligning 
yields only a mild performance improvement and sometimes even harms performance (as when aligning 30 
functions). However, implementing this method requires little programming effort, so it may be worthwhile in 
certain applications.

Start

Run project on CodeWarrior IDE
to produce input file for 

ICache performance tool.

Choose candidate function for
alignment by code size

and miss count according to 
ICache performance tool.

Align the chosen functions.

Run project on CodeWarrior IDE
to produce input file for 

ICache performance tool and to
check improvement from

function alignment.

Is the improvement
satisfying/

maximized?

End

Yes

No
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3.4.2   Function Inlining 
When there is a change of flow, such as BRA and JSR, and the called function/code section is not in the cache, a 
miss occurs. To minimize the number of misses, function inlining is performed. When a function is inlined, its code 
is prefetched with the caller function code so that misses at the start of the called function are reduced. 

Figure 17.   Function Inlining

However, if the inlined function is called from many different places and is inlined in all these places, the code size 
increases, counteracting the benefit of inlining. It is advisable to inline only functions with the following 
properties: 

• They are called from very few places (up to three places).

• Their code size is very small.

• They get more stalls at their starting addresses than other candidate functions. 

The EFR vocoder application ran a test script to rank functions according to the number of stalls occurring in their 
start addresses. The function code size and number of times called were also considered in order to minimize the 
change in code size. Table 18 shows a flow chart of the iterative method used to achieve the best results.

Table 1.   Function Aligning

Test 
Number

Description
Total 

Program 
Miss Count

Total 
Program 

Stall 
Count

Stall Count 
Improvement

Code Size
(Bytes)

Code Size 
Increase 
(Bytes)

1 No alignment 6084 78187 0 67536 0

2 Alignment of 
5 functions

6065 76554 2% 67690 154

3 Alignment of 
16 functions

5901 75634 3.3% 68096 560

4 Alignment of 
30 functions

6159 79944 –2.2% 69306 1808

Cache Miss

Cache Miss

No Cache Miss

Without Inline, A Cache Miss

With Inline, No Cache Miss
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Figure 18.   Function Inlining Method

A function can be inlined only when global optimization is applied to a library from CodeWarrior or when the 
inlined function implementation is the same file as the caller function. A pragma placed in the caller function 
before the function call instructs the compiler to inline the function in that specific function call. This option allows 
you to inline the functions only for code that executes a great many times, such as inside loops, to increase function 
inlining efficiency. The pragma can also be used immediately after the statement where function_name is called. If 
this statement contains several calls to function_name, they are all inlined. If only certain calls should be inlined, 
set a pragma noinline in the function to be called (as shown in Example 1). Otherwise, an automatic inline might 
interfere with it so that the designated call is inlined but other calls where inlining is not desired are inlined as well.

Start

Run project on CodeWarrior IDE
to produce input file for 

ICache performance tool.

Choose candidate functions for
inlining by code size, number of
calls, and miss count according 

to ICache performance tool.

Inline the chosen functions.

Run project on CodeWarrior IDE
to produce input file for 

ICache performance tool and to
check improvement from

function inlining.

Is the improvement
satisfying/

maximized?

End

Yes

No
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Example 1.   Pragma noinline

int foo1(int x, int y)
{ 

#pragma noinline 
return (x+y); 

} 
int foo2(int X, int Y) 

{ 
int Acc; 
Acc = foo1(X, Y); // This one is not inlined 
Acc = Acc + foo1(X, Y);// This one is inlined 
#pragma inline_call foo1 
Acc = Acc + foo1(X, Y);// This one is not inlined 
return Acc; 

}

Table 2 presents the test results of running the EFR encoder/decoder application on test vector 5. These results 
show that inlining yields only a small improvement in performance. Implementing this method requires little 
programming effort, so it may be worthwhile in certain applications.

Note: If both inlining and alignment are performed, inlining should implemented first because inlining yields 
better results, and each method influences the results of the other. In both cases, (alignment and inlining), 
the changes can sometimes harm application performance, so each change should be examined.

3.5   Algorithmic-Level Optimizations
This section discusses how to avoid ICache capacity misses and conflict misses.

3.5.1   Instruction Cache Capacity Misses
If the ICache is not big enough to hold all the functions of a loop, the loop may need to be split up to achieve code 
reuse without evictions. Splitting the loop may increase the memory requirements for temporary buffers to hold 
output data. Assume that the combined code size of function_1 and function_2, as shown in Example 2, is larger 
than the size of the ICache. The code loop has been split to allow both functions to execute from the ICache 
repeatedly, considerably reducing misses. However, the temporary buffer tmp[] now has to hold all intermediate 
results from each call to function_1. 

Table 2.   Function Inlining

Test 
Number

Description
Total Program 

Miss Count

Total 
Program 

Stall Count

Stall Count 
Improvement

Code Size
(Bytes)

Code Size 
Increase 
(Bytes)

1 No inlining 6084 78187 67536

2 Inlining of 6 
functions

5800 74550 4.5% 67696 198
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Example 2.   Combined Code Size is Larger than ICache

for (i=0; i<N; i++) 
{ 

function_1(in[i], tmp); 
function_2(tmp, out[i]); 

}

Example 3.   Code Split to Execute from ICache

for (i=0; i<N; i++) 
{ 

function_1(in[i], tmp[i]); 
} 
for (i=0; i<N; i++) 
{ 

function_2(tmp[i], out[i]);
}

These examples are used in a multi-channel GSM EFR vocoder encoder/decoder application. There are two 
projects. The first executes the whole frame (encode and decode) and then switches to the next channel. In the 
second project, the encoder and decoder are broken into five subprocesses, each called sequentially, to process the 
entire frame. Every frame of an N channel EFR vocoder is processed in the following order:

{ 
Decoder (sub-process 1) * N channels. 
Encoder (sub-process 1) * N channels. 
Encoder (sub-process 2) * N channels. 
Decoder (sub-process 2) * N channels. 
Encoder (sub-process 3) * N channels. 
Decoder (sub-process 3) * N channels. 
Encoder (sub-process 4) * N channels. 
Decoder (sub-process 4) * N channels. 

}

These two projects prevent many ICache capacity and conflict misses. Simulations of these projects were run on an 
8-channel EFR vocoder encoder/decoder. Using the sub-frame encode/decode method reduced the total miss 
counts by 30 percent. In addition, the miss ratio was comparable to the miss ratio using the whole frame 
encode/decode method. 

3.5.2   Instruction Cache Conflict Misses
The SC140 instruction cache is a highly associative cache (16 ways), so the miss scenario described in this section 
has a very low probability of occurrence. All code of the working set fits into the cache so that there are no capacity 
misses by definition, but conflict misses occur. This section first explains how instruction cache conflict misses are 
caused and then describes how allocating the code contiguously in memory can eliminate the conflict misses.

On the SC140 extended core, 17 different memory addresses are mapped to the same line so that the seventeenth 
memory access evicts the first one. The chances that this will actually occur are very small. However, if the cache 
was direct mapped, only two memory addresses mapped to the same line are sufficient to cause eviction. Direct-
mapped caches have a much higher conflict miss rate than a 16-way set associative cache.

The compiler and linker do not consider cache conflicts, and an inappropriate memory layout may cause conflict 
misses during execution. Most evictions can be avoided by altering the order in which functions are linked in 
memory; that is, by allocating code that is accessed within some local time window contiguously in memory.
Optimizing the Instruction Cache of StarCore™-Based Processors, Rev. 1
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Consider the code in Example 4. Assume that the linker has placed function_1 to function_17 so that they overlap 
in the instruction cache. When function_1 to function_16 are called the first time, they are allocated in the ICache, 
causing misses. A following call to function_17 causes its code to be allocated in the ICache and to evict parts of 
the code of function_1, since these lines overlap. When function_1 is called again in the next iteration, its lines 
must be brought back into instruction cache, only to be evicted again by function_2. Function_2 is then evicted by 
function_3 and so forth. For all following iterations, each time the functions evict one another and thereby cause 
cache misses. These are conflict misses. They can be completely avoided by allocating the code of any two 
functions from the 17 functions into non-conflicting sets. The most straightforward way is to place the code of the 
two functions contiguously in memory.

It also would be possible to move function_17 to a place where none of its sets conflicts with the other functions. 
Although this would prevent eviction, the first method has the advantage that you need not worry about absolute 
address placement and can simply change the order in which the functions are allocated in memory.

Example 4.   Instruction Cache Conflict

for (i=0; i<N; i++) 
{ 

function_1(); 
function_2(); 
. 
. 
. 
function_16(); 
function_17(); 

}

4 Conclusions 
The performance impact of the ICache was measured on many applications. Figure 19 shows the performance 
impact of running an application using the ICache compared to running the application from unlimited zero wait 
state memory. The complete application was simulated in a multi-core environment. Each application executed 
simultaneously on all the four cores of the SC140 extended core. A shift was added to each core to make the cores 
nonsynchronous so one core would not cause the other cores always to get hit on the ICache. The research results 
make it very clear that use of the ICache has almost no impact on an application’s performance. These results 
strongly indicate that in most cases there is no need for cache optimizations. 

Because of its high associativity level (16 way set associative) and powerful prefetch mechanism, the SC140 
extended core has a high cache rate and requires almost no optimization. However, small changes that can be easily 
implemented—such as enabling prefetch—may result in massive improvements in application performance. It is 
good programming practice to be aware of ICache impact on application performance and so direct a design to be 
“cache-friendly”.
Optimizing the Instruction Cache of StarCore™-Based Processors, Rev. 1
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Conclusions
Figure 19.   ICache Performance Impact Running with Prefetch On
(see footnote1 for definition of SRRTIS)

1. SRRTIS refers to 3 GPP symbol rate module library (SRML), version 3.1, running on ENEA OSE RTOS version 
P3.0.0.3.
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5 References
In addition to the reference manual for your StarCore-based DSP device, you should also consult the following 
documents, all of which are available through the web site listed on the back cover of this document:

[1] CodeWarrior Development Tools: Metrowerks Enterprise C Compiler User’s Manual (available on the 
Metrowerks web site, which is accessible under “Related Links” at the web site listed on the back cover of this 
document. On the Metrowerks web site, the manual is available in the Developer Resources section under the 
“Support” tab.

[2] CodeWarrior Development Tools for StarCore DSP: Targeting Manual. Also available on the Metrowerks web 
site.

[3] SC140 DSP Core Reference Manual (MNSC140CORE/D)
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