
This application note describes the steps and code changes needed to support the Linux kernel
on a new PowerPC™ processor with a newly assigned processor version register (PVR).
Similarly, code changes to support a new bridge chip are provided.

The following topics are addressed:

Topic Page

Section 1, “Introduction” 2

Section 2, “Terminology” 2

Section 3, “Building the Kernel” 2

Section 4, “Changing the Source Code Files for a New Processor” 3

Section 5, “Changing the Source Code Files for a New Bridge Chip” 5

Section 6, “Building the New Kernel” 6

Section 7, “Loading and Booting the New Kernel” 6

Section 8, “References” 6

Section 9, “Documentation Revision History” 6

Rev. 0.1, 03/2004

Adding New PowerPC™
Processors and Bridge Chips
to Linux

Maurie Ommerman

risc10@email.sps.
mot.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Introduction Introduction

1 Introduction
The Linux kernel must recognize a PowerPC processor and its associated bridge chip before it can boot
itself. This is done by searching the cpu_spec table in cputable.h for the processor’s PVR. In addition, two
files, cpu_setup_6xx.S and cputable.c, must be changed to recognize the new PowerPC processor. The files,
include/asm-ppc/mpc10x.h and arch/ppc/kernel/mpc10x_common.c, must be changed to accomodate a new
bridge chip. If the Linux kernel does not recognize the new PowerPC processor PVR, the boot sequence will
hang after the message “Now booting the kernel”.

This application note outlines the changes and steps to perform when adding a new PowerPC processor and
its bridge chip to Linux. A PowerPC MPC7447A processor is added to the Linux kernel, kernel 2.4.21-rc1,
as an illustrative example. This kernel is available from the Freescale DINK32 web site.

2 Terminology
The following terms are used in this document:

PVR—Processor version register, a hardware register that is hardwired to identify each processor and bridge
chip

3 Building the Kernel
It may seem strange to build the kernel before making any changes, but it is important to ensure that the
current source tree builds without errors first. This is also a good time to ensure that the configuration is
correct. Only the options that may not be set by default are described here; most other options are standard.
Ensure that IDE hard drive support and Ethernet support are available.

1. Configure the kernel.
make menuconfig
Choose the following configuration items:

— Platform support --->
(6xx/7xx/74xx/8260) Processor type
Sandpoint X3
AltiVec support (if the processor supports it, the MPC7447A supports it)

— General setup ---->
Default bootloader kernel arguments
Initial kernel command string: ‘root=/dev/hda3’

— Network device support --->
Ethernet (10 or 100 Mbit) --->
Choose a driver for the Ethernet card.

2. Build the dependency files.
make dep

3. Make the original kernel image.
make zImage

4. Ensure that the build was successful. Ensure that the zImage.sandpoint executable was built in the
arch/ppc/boot/images directory.

5. If there are any fatal errors or zImage.sandpoint was not built, fix the errors and build again.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Changing the Source Code Files for a New Processor

4 Changing the Source Code Files for a New
Processor

All the source file changes are in the directory, arch/pcc/kernel.

The structure, cpu_spec, is defined in the header file, cputable.h, in the directory, include/asm-ppc. No
changes are required in cputable.h.

The file, cputable.c, contains the instantiation of the structure, cpu_spec.

On or near line 19 of cputable.c is a set of extern lines defining __setup_cpu_<type>. Find one that is similar
to the new processor being added. In the example case, __setup_cpu_745x is the most similar to the
MPC7447A. Duplicate the following line and change it to the new processor name:

extern void __setup_cpu_7447A(unsigned long offset, int cpu_nr, struct cpu_spec*
spec);

On or near line 54 are a series of definitions for the structure, cpu_spec cpu_specs[]. Again choose a
definition that is close to the processor being added (the 7457 in the example). Duplicate this entry and
modify it to describe the new processor. In the example, the only changes are the name, the PVR, and the
removal of the L3 cache, which does not exist in the MPC7447A. Note that the PVR for MPC7447A is
0x80030000, which was not previously defined.

{ /* 7447A */

 0xffff0000, 0x80030000, "7447A",

 CPU_FTR_SPLIT_ID_CACHE | CPU_FTR_USE_TB | CPU_FTR_CAN_NAP |

 CPU_FTR_L2CR | CPU_FTR_ALTIVEC_COMP |

 CPU_FTR_HPTE_TABLE | CPU_FTR_SPEC7450 | CPU_FTR_NAP_DISABLE_L2_PR |

 CPU_FTR_HAS_HIGH_BATS,

 COMMON_PPC | PPC_FEATURE_HAS_ALTIVEC,

 32, 32,

 __setup_cpu_7447A

 },

__setup_cpu_7447A is defined in the next file, cpu_setup_6xx.S, which contains the functions,
__setup_cpu_<processor> and setup_<processor>_specifics.

On or near line 21 of cpu_setup_6xx.S are the global definitions for all the cpu_setup entry points. Again,
choose one that is similar to the processor being added. The 745x was chosen for this example.

_GLOBAL(__setup_cpu_7447A)

 mflr r4

 bl setup_common_caches

 bl setup_7447A_specifics

 mtlr r4

 blr

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Changing the Source Code Files for a New Processor Changing the Source Code Files for a New Processor

On or near line 199 is the function for setting up the specifics of the various processors, in this case again,
the 745x. Since the MPC7447A does not have an L3 cache, the code for the errata in that processor was
removed and all the references from 745x to 7447A were modified.

/* MPC 7447A

 * Enable Store Gathering (SGE), Branch Folding (FOLD)

 * Branch History Table (BHTE), Branch Target ICache (BTIC)

 * Dynamic Power Management (DPM), Speculative (SPD)

 * Ensure our data cache instructions really operate.

 * Timebase has to be running or we wouldn't have made it here,

 * just ensure we don't disable it.

 * Clear Instruction cache throttling (ICTC)

 * Enable L2 HW prefetch

 */

setup_7447A_specifics:

 mfspr r11,HID0

 /* All of the bits we have to set.....

 */

 ori r11,r11,HID0_SGE | HID0_FOLD | HID0_BHTE | HID0_BTIC | HID0_LRSTK

BEGIN_FTR_SECTION

 oris r11,r11,HID0_DPM@h /* enable dynamic power mgmt */

END_FTR_SECTION_IFCLR(CPU_FTR_NO_DPM)

 /* All of the bits we have to clear....

 */

 li r3,HID0_SPD | HID0_NOPDST | HID0_NOPTI

 andc r11,r11,r3 /* clear SPD: enable speculative */

 li r3,0

 mtspr ICTC,r3 /* Instruction Cache Throttling off */

 isync

 mtspr HID0,r11

 sync

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Changing the Source Code Files for a New Bridge Chip

 isync

 /* Enable L2 HW prefetch

 */

 mfspr r3,SPRN_MSSCR0

 ori r3,r3,3

 sync

 mtspr SPRN_MSSCR0,r3

 sync

 isync

 blr

// end setup_7447A_specifics

5 Changing the Source Code Files for a New Bridge
Chip

Two files, include/asm-ppc/mpc10x.h and arch/ppc/kernel/mpc10x_common.c, must be changed to support
any new bridge chip.

A new definition line for each new bridge chip must be added in the first file, include/asm-ppc/mpc10x.h.
As an example, the MPC8245 was added in January 2002. The code is in this 2.4.21--rc1 kernel, so there is
no need to change this kernel code; it is only being used as an example. Copy the line for the MPC8245 and
substitute the appropriate line for the new bridge chip and its PVR. The following is a list of the current
bridge chips:

#define MPC10X_BRIDGE_106 ((PCI_DEVICE_ID_FREESCALE_MPC106 << 16) | \

 PCI_VENDOR_ID_FREESCALE)

#define MPC10X_BRIDGE_8240 ((0x0003 << 16) | PCI_VENDOR_ID_FREESCALE)

#define MPC10X_BRIDGE_107 ((0x0004 << 16) | PCI_VENDOR_ID_FREESCALE)

#define MPC10X_BRIDGE_8245 ((0x0006 << 16) | PCI_VENDOR_ID_FREESCALE)

Similarly, add a case statement to the second file, arch/ppc/kernel/mpc10x_common.c, to detect the new
bridge chips. The case statements for the existing bridge chips are as follows:

switch (host_bridge) {

case MPC10X_BRIDGE_106:

case MPC10X_BRIDGE_8240:

case MPC10X_BRIDGE_107:

case MPC10X_BRIDGE_8245:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Building the New Kernel Building the New Kernel

break;

default:

}

6 Building the New Kernel
At this point, the kernel has already been configured and built once, so the next step is to simply build the
new kernel.

make zImage

Assuming there are no errors, the new kernel should be in arch/ppc/boot/images/zImage.sandpoint.

7 Loading and Booting the New Kernel
Using any of the techniques described in AN2578, referenced in Section 8, “References,” download this
kernel image to the Sandpoint with the new processor in it and start the kernel. The three techniques are as
follows:

1. Copy the zImage.sandpoint to partition 1.

dd if=zImage.sandpoint of=/dev/hda1

2. Use the Ethernet port through DINK32 to load the zImage from the host machine to the target.

dl -nw

3. Use the serial port through DINK32 to load the zImage from the host machine to the target.

dl

If it does not boot, use debugging techniques, such as printk statements or a cop interface tool.

8 References
Creating a Linux ‘Out of the Box’ Experience on a Sandpoint Platform (AN2578)

Porting Linux to the MPC8245 (AN2222)

9 Documentation Revision History
Table 9-1 provides a revision history for this application note.

Table 9-1. Document Revision History

Revision
Number

Substantive Change(s)

0 Initial release to confidential web

0.1 Removed ‘Confidential Proprietary’ and ‘Preliminary’ footers. Released to public web.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Adding New PowerPC™ Processors and Bridge Chips to Linux

Documentation Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2650

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Adding New PowerPC™ Processors and Bridge Chips to Linux
	1 Introduction
	2 Terminology
	3 Building the Kernel
	4 Changing the Source Code Files for a New Processor
	5 Changing the Source Code Files for a New Bridge Chip
	6 Building the New Kernel
	7 Loading and Booting the New Kernel
	8 References
	9 Documentation Revision History

