
Freescale Semiconductor
Application Note

Document Number: AN2470
Rev. 1, 01/2007

Contents

Introduction . 1
The Robot . 2
Messaging . 4
Hardware . 5
Software . 6
References . 9
Software listing . 10

ppendix AInclude File
register definitions for the MC68HC908EY16) 15
ppendix BVector.c . 16
ppendix CSlave.cfg (LIN configuration file) 18
ppendix DSlave.id (LIN message ID file). 18

MC68HC908EY16 Controlled
Robot Using the LIN Bus
by Peter Topping

East Kilbride
1 Introduction
The LIN (Local Interconnect Network, reference [1])
protocol was specified for automotive applications, but
there is no reason why it cannot be used for other
applications. Its single data line facilitates a three wire
serial control and power bus that can reduce the wiring to
a minimum in many applications. This application note
describes the use of the LIN bus to control a small robot
powered by the type of servo used in radio-controlled
models. The robot has five degrees of freedom and could
easily be controlled by a single microcontroller but, as a
demonstration of LIN, each servo is a separate slave
node and thus five MCUs are employed.

Each of these nodes is a simple LIN slave so the
complete system requires a master node and a method of
sending position information for the various nodes. A
master based on an HCS12 was used. A LIN slave cannot
initiate communications. This is the responsibility of the
master which on a regular basis, every 100ms in this
case, issues header frames that contain the required

1
2
3
4
5
6
7
A
(
A
A
A

© Freescale Semiconductor, Inc., 2006. All rights reserved.

The Robot
message IDs. These messages either include data or invite a slave node to respond with its data. Both of
these methods of controlling the robot are incorporated.

The first method involves direct control from the master by sending co-ordinates via a LIN message with
an ID of $30 (master to slave communication). The second method utilizes the car door keypad described
in application note AN2205 (Car door keypad Using LIN, reference [2]). This LIN slave application has
four window keys with fast and slow positions for up and down which are ideal for controlling four of the
five servos. It also includes a mirror position adjustment control used to control the fifth servo which
operates the robot’s grabber. Keypad control demonstrates slave to slave communication (using a message
with an ID of $20). The keypad also incorporates a child-lock switch is used in this application to enable
and disable direct control from the master.

Figure 1 shows the resultant LIN network. It includes a VCT (Volcano Communications Technologies)
LIN spector which, in this arrangement, is not essential for functionality, but can monitor the LIN bus
activity. It could alternatively include the functionality of the master thus obviating the need for the HCS12
node. The five slave nodes distinguish themselves by giving different hardware addresses using three I/O
pins. This method allows the MCU software to be identical in all five slave nodes. An alternative approach
would keep the hardware identical and modify the code so that each node has an address in FLASH or
responds only to a message ID unique to that particular node.

Figure 1. The LIN Network Used for the Robot

2 The Robot
The Robot is a standard kit from Lynxmotion, the only modification being that the supplied controller
board is not used. Control is achieved by connecting the control wire for each servo to its LIN node. The
robot has five degrees of freedom as shown in Figure 2. The movements are rotation, three arm joints, and
the opening and closing of the grabber.

Node 1
(rotator)

Node 2
(arm)

Node 3
(elbow)

Node 4
(wrist)

Node 5
(grabber)

LINspector monitor
(optional)

Keypad
module

LIN master
(HCS12)

B0
B1
B2

B0
B1
B2

+

+

+

B0
B1
B2

B0
B1
B2

B0
B1
B2

+

MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor2

http://www.lynxmotion.com
http://www.lynxmotion.com

The Robot
Figure 2. The Robot’s Servo Controlled Axes

To control the servos, a pulse is sent with proportional width to the desired position. They have internal
feedback to help them achieve a guaranteed position over a range of 90×. With the central position
corresponding to a pulse width of 1.5ms, ±45× is achieved by varying the width between 1.0ms and 2.0ms.
In practice, the servos can operate over nearly 180× and a larger range is used for the rotation servo. 90×
proved just about right for the three arm joints although the grabber requires less. A need arises to use a
different gain when converting the 1-byte position information into the pulse width for each servo. Using
the same gain (7) for the three arm servos gives the advantage that operating two of the servos in opposite
directions at the same rate facilitates movement without any change of the angle of the grabber relative to
the surface the robot stands on. This gives it a more co-ordinated appearance and makes it generally easier
to control. Because the elbow is driven by a servo that is on the far side of its node, the polarity of its
control is reversed so that values above $80 correspond to negative rather than positive angles. Table 1
shows the parameters chosen for each servo along with their initial values.

Table 1. Servo Ranges and Initial Positions

Function Gain
Pulse range

(0x80 = 1.5 ms)
Angle
range

Initial value
(0x80 = 0°)

Initial
position

Servo 1 Rotation 10 1.5 ± 0.71ms ± 64° 0x80 0°

Servo 2 Arm 7 1.5 ± 0.50ms ± 45° 0xD0 28°

Servo 3 Elbow 7 1.5 ± 0.50ms ± 45° 0xF0 –39°

Servo 4 Wrist 7 1.5 ± 0.50ms ± 45° 0xA0 11°

Servo 5 Grabber 3 1.5 ± 0.21ms ± 19° 0x80 0°

Rotator

Arm

Elbow

Wrist

Grabber
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 3

Messaging
3 Messaging
The format of the LIN message data sent by the master is shown in Table 2. As the standard LIN message
lengths incorporate 2, 4, or 8 bytes of data, an 8-byte message was chosen although only 5 are actually
used. The data simply incorporates 1 byte of positional data per servo. The software is written so that the
50% value (0x80) corresponds to the central (0×) position.

The keypad used is described in detail in application note AN2205 [2]. It facilitates the control of four
windows and two mirrors. Table 3 shows the re-allocation of the original bits for use with the robot, but
the keypad was not modified, its hardware and software exactly as described in AN2205.

The manual up and down keys are used to move the various servos slowly while faster movement is
facilitated by the express keys. The mirror joystick controls the fifth (grabber) servo. The duplicate
allocation of the grabber bits is a result of the keypad having eight mirror control bits (up/down/left/right
for two mirrors). Bit 7 in the otherwise unused control byte is controlled by the child lock switch on the
keypad to tell the master whether or not to output its automatic sequence by sending messages with ID30
complete with their response data as shown in Table 2.

Table 2. Format of the ID 30 LIN Message

ID
$30

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

bit 0 Servo 1
(rotator)
absolute
position

Servo 2
(arm)

absolute
position

Servo 3
(elbow)
absolute
position

Servo 4
(wrist)

absolute
position

Servo 5
(grabber)
absolute
position

not used

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

Table 3. Format of the ID 20 LIN Message

ID
$20

Byte 0
(servos 1 & 2)

Byte 1
(servos 3 & 4)

Byte 2
(servo 5)

Byte 3
(control)

bit 0 Rotate right, fast Elbow up, fast Close grabber not used

bit 1 Rotate left, fast Elbow down, fast Open grabber not used

bit 2 Rotate right, slow Elbow up, slow Close grabber not used

bit 3 Rotate left, slow Elbow down, slow Open grabber not used
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor4

Hardware
4 Hardware
The LIN evaluation board described in AN2343 (HC908EY16 LIN Monitor, reference [4]) and AN2432
(LIN sample application for the MC68HC908EY16 Evaluation Board, reference [5]) controls the robot.
Five boards, identical except for a hardwired address, are used. Each board constitutes a LIN node and
controls a single robot servo. The application is a demonstration of a LIN network and not intended as a
practical method of controlling a robot. An optimised solution would control all five servos using a single
MCU. The MCU used on the LIN evaluation board is the MC68HC908EY16 [3].

The full layout of the LIN evaluation board is shown in application notes AN2343 and AN2432 but the
complete circuit diagram of the LIN node used in the robot application is shown here in Figure 3. Apart
from the MCU itself, two chips are required to implement a simple LIN node. These are the LIN interface,
in this case the Freescale MC33399 (or MC33661) and a 5 volt regulator. A single chip, the MC33689
(LIN SBC), can replace these chips. The voltage regulator used is an MC7805. The MC33399 (or
MC33661) includes the 30kohm LIN pull-up so this does not need to be included on the PCB.

The only other components required are an 8MHz crystal with its associated passive components, two
LEDs with their current limiting resistors, and a few pull-up resistors and decoupling capacitors (not
shown). The servos are controlled by pulse width modulation using a single timer pin. To control the robot,
this pin and its ground reference are the only connections to the board apart from the 3-wire LIN bus itself.

The LIN evaluation board includes a socket for a 9.8304MHz oscillator module as an alternative clock
source and an RS232 interface. These components and the pull-ups and pull-downs required to enter
monitor mode are, for clarity, not shown in Figure 3 but they allow the board to be used to develop code
without the requirement for a sophisticated development system like the Metrowerks MMDS/MMEVS.
The board also incorporates a 16-pin header to interface with P&E Cyclone or Multilink hardware
(http://www.pemicro.com). This allows even easier debugging as the power and reset control required for
FLASH programming can be handled by the PC running P&E WINIde or Metrowerks Codewarrior
software (http://www.metrowerks.com).

bit 4 Arm up, fast Wrist up, fast Close grabber not used

bit 5 Arm down, fast Wrist down, fast Open grabber not used

bit 6 Arm up, slow Wrist up, slow Close grabber not used

bit 7 Arm down, slow Wrist down, slow Open grabber Mode select

Table 3. Format of the ID 20 LIN Message (continued)

ID
$20

Byte 0
(servos 1 & 2)

Byte 1
(servos 3 & 4)

Byte 2
(servo 5)

Byte 3
(control)
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 5

http://www.pemicro.com
http://www.pemicro.com
http://www.pemicro.com
http://www.pemicro.com
http://www.pemicro.com
http://www.pemicro.com
http://www.metrowerks.com
http://www.pemicro.com

Software
Figure 3. LIN Slave Node Circuit Diagram

5 Software
The software was written and debugged on the prototype PCB using the Mertowerks’ Code warrior
development environment. Debug was carried out using the serial monitor mode interface included on the
LIN evaluation board. As CodeWarrior is available free for code sizes up to 4K, this type of application
can be developed without requiring any investment in development software or hardware. The robot slave
node uses 2.2K of code.

The free version of CodeWarrior actually comes with a 1K limit but this can be increased to 4K by
requesting a free license from Metrowerks. The extension is valid for the Motosil (MMDS/MMEVS) and
the P&E target interface. It is not valid for the MON08 interface. For this reason, the P&E target interface
should be selected for the simple monitor mode development environment described above.

One disadvantage of this simple development environment is that it requires a 9.8304MHz clock. The LIN
evaluation board facilitates this option but as the application was targeted to use an 8MHz crystal, the
software had to be modified slightly to function at 8MHz once debugging was complete. This required a
change in the SCI set-up to obtain 9600 baud for the different clocks and also different offsets and gains
for the pulse width calculations. The values for 9.8304MHz are shown as comments in the relevant places
in the code. This inconvenience can be avoided by using a P&E Cyclone or Multilink interface as they
have an auto-baud capability that allows the use of an oscillator module that employs the target frequency.
This can sometimes be done using the simple monitor mode interface at a non-standard baud rate but
reliable operation is not guaranteed as the versatility PC COM ports varies.

The slave node module uses the Metrowerks LIN driver software to handle the LIN protocol without the
application code. It only has to use “LIN_GetMsg()” calls (after an initial “LIN_Init()”) to obtain the data

MC7805

MC33399

HC908EY16

Vbat

LIN LIN

Wake

Vsup INH

EN

Rx

Tx

Gnd

IRQ

(ESCI)

5 volts

A4

D0

B5

Vss
Vssa
Vrefl

Vdd
Vdda
Vrefh

Reset

E0
E1

Gnd

Servo
B2B1B0

B6
(PWM)

100k

47k

1k 1k

100nF

22pF

10M8MHz

22pF

100k

~12 volts

Osc1

Osc2

28
29
30

17

27
26
25

18 14 12

9

24

23

13

31

15

6

7

5

7

6

3

8

2

1

4

5

1

2

3

B0, B1 & B2 connections are
shown for node 1 (see fig. 1)

MC33399
MC33661
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor6

Software
required to determine the position of the servos. The use of the LIN drivers leaves the programmer free to
concentrate on the application without having to get too involved with the communications protocol.

The servos respond very quickly to a pulse width change and initially moved the robot too fast. That meant
the software would have to control the rate to prevent movements being too jerky and also provide the two
speeds made possible by the design of the keypad module.

The main software flow chart is shown in Figure 4. After the CONFIG and Port registers have been
initialised, the MCU clock is switched from the default (ICG) to use the external crystal. As this setting is
also suitable when using an external clock source, no change was required to suit the development method
used. The time base module (TBM) is then set up to provide the repetition rate of 244Hz that is used to
control the timing of the main software loop.

Figure 4. . Flow Chart of Main Software Loop

The timer’s modulo divide registers are initialised to provide the nominal 60Hz pulse repetition rate
required by the servos on the PWM output. This frequency is not critical so no change was required while
using the slightly higher clock rate during debug. In order to prevent the transient generation of any

Timebase
flag set ?

Y (244Hz)

N

Clear timebase flag and drive LEDs

Has required position changed ?
N

Y

Read servo number from Port B

Calculate new pulse width

Read LIN buffers (IDs $20 & $30)

Servo 1
(figure 5)

Servo 2
(figure 5)

Servo 3
(figure 5)

Servo 4
(figure 5)

Servo 5
(figure 5)

CONFIG, I/O, clock source, timer and LIN initialisation
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 7

Software
inappropriate pulse widths, the buffered mode of the timer’s PWM output is selected. Interrupts are then
enabled prior to the LIN drivers being initialised with the function call “LIN_Init()”.

The main loop is then entered and executed under TBM control at 244Hz with an 8MHz clock. The LED
connected to port pin D0 is flashed with a 50% duty cycle at this tick rate divided by 256. This provides
an indication that the code is running correctly. A second LED connected to port pin A4 is used to indicate
that the position of the servo is changing. The variable “position” is used together with the flags “led_flag”
and “move_flag” to flash this LED at a rate proportional to the speed of movement of the servo and to
ensure that it is not left illuminated when the movement ceases. The LIN buffers for ID20 and ID30
messages are then read and a case statement with code specific to each servo is entered. The switch
statement “switch (PTB & 0x07)” reads the three port B input lines that are used in each node to determine
its address.

The flowchart for the code within the case statement, which is specific to each particular node, is shown
in Figure 5. The relevant byte from the ID30 message is transferred to the variable “abs_pos” from the LIN
information in the array “Servo_data[x]”. This is followed by the interpretation of the ID20 message
keyboard data in the array “Kpm_data”. This is more complicated as the four keypad bits relevant to the
particular servo have to be treated separately. There are two increment bits corresponding to fast and slow
incrementing. If a bit is set, the rate of incrementing is determined by using the value in the tick counter.
This results in fast incrementing of the variable “position” at 122Hz (244/2) and slow incrementing at
15.25Hz (244/16). The decrementing bits are treated similarly. Note the interchange of “position + +” and
“position - -” in the code for the third (elbow) server which is required to enable it to behave intuitively as
described above. If no move bits are set for this servo, then the move LED is switched off and its toggling
disabled.
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor8

References
Figure 5. . Flow Chart of Servo Specific Code

The function “Width(x)” is then executed. If “move_flag” is set, the variable “position” is modified in the
direction indicated by the absolute position derived from message ID30. If “move_flag” is clear, the
absolute position information is ignored. This use of “move_flag” allows an ID30 message to be ignored
once its position has been achieved. This allows the node to respond to keypad information even if an ID30
message is being continually sent with constant data. This might be the case if a LINspector was being
used as a master. The value of “x” is the gain for that particular servo and is used in “Width(x)” along with
the fixed offset, to calculate the PWM pulse width. This value is transferred to the timer registers in the
interrupt routine “TimerB()”.

At the end of the case statement, the code in the main loop is again common to all servos. The variable
“old_pos” is used to free up the lockout of ID30 messages if its absolute position data has changed. This
is accomplished by setting “move_flag”. If, however, this flag is set and the desired position has been
achieved, it is cleared and the move LED switched off.

6 References
1. LIN Protocol Specification, Version 1.2, 17 November 2000.

Maximum
position ?

N

N

Y

Y

Increment position if
count = xxxx 1111

Slow inc.
key active ?

(ID20)

Y

Fast and slow decrement
(as above)

244Hz

NFast inc.
key active ?

(ID20)

Increment position if
count = xxxx xxx1

Minimum
position ?

N

Y

Get absolute position (ID30 message data)
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 9

Software listing
2. AN2205/D, Car Door Keypad Using LIN.

3. MC68HC908EY16 Technical Data.

4. AN2343, HC908EY16 LIN Monitor.

5. AN2432, LIN sample application for the MC68HC908EY16 Evaluation Board.

7 Software listing
/**
* Copyright (c) Motorola 2002
*
* 908EY16 LIN servo controller for Robot project
* ==
*
* Originator: P. Topping
* Date: 22nd August 2002
* Revision: 1.0
* Function: Demonstration of LIN functionality using five EY16 LIN
* evaluation boards to control a Lynxmotion 5-axis robot.
* This robot employs pulsewidth controlled Hitec HS-422
* servos specified at +/- 45deg for 1ms +/- 0.5ms.
*
**/

/**

Motorola reserves the right to make changes without further notice to any
product herein to improve reliability, function or design. Motorola does not
assume any liability arising out of the application or use of any product,
circuit, or software described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support
life, or for any other application in which the failure of the Motorola product
could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and the Motorola logo are registered trademarks of Motorola Ltd.

**/

/**
*
* Header file includes, function prototypes and defines
*
**/

#include "HC08EY16.h"
#include <linapi.h>

void Width (unsigned char);

//#define offset 3686 /* offset for 9.8304 MHz */
#define offset 3000 /* offset for 8.0000 MHz */

/**
*
* Globals
*
**/

unsigned char Kpm_data[4];
unsigned char Servo_data[8] = {0x80, 0xD0, 0xF0, 0xA0, 0x80};
unsigned char count = 0;
unsigned char msb;
unsigned char lsb;
unsigned char position = 0x80;
unsigned char old_pos = 0x00;
unsigned char abs_pos;
unsigned char toggle;
unsigned char move_flag;
unsigned char led_flag;
int result;
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor10

Software listing
/**
*
* Function name: Main
* Originator: P. Topping
* Date: 22nd August 2002
*
**/

void main (void)
{

CONFIG1 = 0x01; /* disable COP */
CONFIG2 = 0x29; /* ext.clk, fast timebase */

DDRA = 0x10; /* enable A4 out for LED */
DDRB = 0x20; /* enable B5 out for 33399 */
DDRC = 0x80; /* enable MCLK (C2) */
DDRD = 0x01; /* enable D0 out for LED */

PTB = 0x20; /* MC33399 enable high */

while (ICGCR != 0x13) /* switch to ext. clock */
{ ICGCR = 0x12; } /* and wait for switch */

TBCR = 0x00; /* TBM divide by 32768 */
TBCR = 0x02; /* and switch it on */

TBSC = 0x70; /* stop, clear, /64, INTs */
TBMODH = 0x82; /* 60Hz at 8.0 MHz */
TBMODL = 0xFF;
TBSC0 = 0x2A; /* Timer B buffered PWM */
TBSC &= ~(0x20); /* start timer */

asm CLI; /* enable interrupts */

LIN_Init(); /* initialise LIN drivers */

while (1)
{
 if (TBCR & 0x80) /* is TBM flag set? */
 {
 TBCR |= 0x08; /* yes, clear it */

 count ++; /* increment tick counter */

 if (count & 0x80) /* check MS bit of count */
 {
 PTD |= 0x01; /* tick LED off */
 }
 else
 {
 PTD &= ~(0x01); /* tick LED on */
 }

 if (position & 0x08) /* position dependant LED */
 {
 PTA |= 0x10; /* moving LED off */
 }
 else if (led_flag)
 {
 PTA &= ~(0x10); /* moving LED on */
 }

 LIN_GetMsg (0x30, Servo_data); /* get absolute position */

 LIN_GetMsg (0x20, Kpm_data); /* get Keypad data */

 switch (PTB & 0x07) /* select servo */
 {
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 11

Software listing
/**
* *
* Servo 1 - Address 0x00 on bits 0-2 of port B - Rotator *
* - Uses front passenger window keys *
* *
**/

 case 0: /* Servo 1, Rotator */

 abs_pos = Servo_data[0];

 if ((position < 255) && /* increment allowed ? */
 (((Kpm_data[0] & 0x04) && !(count & 0x0F)) ||
 ((Kpm_data[0] & 0x01) && !(count & 0x01))))
 {
 position ++; /* increment */
 led_flag = 1; /* enable move LED */
 }

 if ((position > 0) && /* decrement allowed ? */
 (((Kpm_data[0] & 0x08) && !(count & 0x0F)) ||
 ((Kpm_data[0] & 0x02) && !(count & 0x01))))
 {
 position --; /* decrement */
 led_flag = 1; /* enable move LED */
 }

 if (((Kpm_data[0] & 0x0F) == 0) && (move_flag == 0))
 {
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */
 }

 Width(10); /* calculate 8.0MHz pulse */
 break; /* width(13) for 9.8304MHz */

/**
* *
* Servo 2 - Address 0x01 on bits 0-2 of port B - Arm *
* - Uses driver window keys *
* *
**/

 case 1: /* Servo 2, Arm */

 abs_pos = Servo_data[1];

 if ((position < 255) && /* increment allowed ? */
 (((Kpm_data[0] & 0x40) && !(count & 0x0F)) ||
 ((Kpm_data[0] & 0x10) && !(count & 0x01))))
 {
 position ++; /* increment */
 led_flag = 1; /* enable move LED */
 }

 if ((position > 0) && /* decrement allowed ? */
 (((Kpm_data[0] & 0x80) && !(count & 0x0F)) ||
 ((Kpm_data[0] & 0x20) && !(count & 0x01))))
 {
 position --; /* decrement */
 led_flag = 1; /* enable move LED */
 }

 if (((Kpm_data[0] & 0xF0) == 0) && (move_flag == 0))
 {
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */

 }

 Width(7); /* calculate 8.0MHz pulse */
 break; /* width(9) for 9.8304MHz */
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor12

Software listing
/**
* *
* Servo 3 - Address 0x02 on bits 0-2 of port B - Elbow *
* - Uses nearside rear window keys *
* *
**/

 case 2: /* Servo 3, Elbow */

 abs_pos = Servo_data[2];

 if ((position > 0) && /* decrement allowed ? */
 (((Kpm_data[1] & 0x04) && !(count & 0x0F)) ||
 ((Kpm_data[1] & 0x01) && !(count & 0x01))))
 {
 position --; /* decrement */
 led_flag = 1; /* enable move LED */
 }

 if ((position < 255) && /* increment allowed ? */
 (((Kpm_data[1] & 0x08) && !(count & 0x0F)) ||
 ((Kpm_data[1] & 0x02) && !(count & 0x01))))
 {
 position ++; /* increment */
 led_flag = 1; /* enable move LED */
 }

 if (((Kpm_data[1] & 0x0F) == 0) && (move_flag == 0))
 {
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */
 }

 Width(7); /* calculate 8.0MHz pulse */
 break; /* width(9) for 9.8304MHz */

/**
* *
* Servo 4 - Address 0x03 on bits 0-2 of port B - Wrist *
* - Uses offside rear window keys *
* *
**/

 case 3: /* Servo 4, Wrist */

 abs_pos = Servo_data[3];

 if ((position < 255) && /* increment allowed ? */
 (((Kpm_data[1] & 0x40) && !(count & 0x0F)) ||
 ((Kpm_data[1] & 0x10) && !(count & 0x01))))
 {
 position ++; /* increment */
 led_flag = 1; /* enable move LED */
 }

 if ((position > 0) && /* decrement allowed ? */
 (((Kpm_data[1] & 0x80) && !(count & 0x0F)) ||
 ((Kpm_data[1] & 0x20) && !(count & 0x01))))
 {
 position --; /* decrement */
 led_flag = 1; /* enable move LED */
 }

 if (((Kpm_data[1] & 0xF0) == 0) && (move_flag == 0))
 {
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */
 }

 Width(7); /* calculate 8.0MHz pulse */
 break; /* width(9) for 9.8304MHz */
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 13

Software listing
/**
* *
* Servo 5 - Address 0x04 on bits 0-2 of port B - Grabber *
* - Uses mirror joystick *
* *
**/

 case 4: /* Servo 5, Grabber */

 abs_pos = Servo_data[4];

 if ((position < 255) && /* increment allowed ? */
 (Kpm_data[2] & 0x55))
 {
 position ++; /* increment */
 led_flag = 1; /* enable move LED */
 }

 if ((position > 0) && /* decrement allowed ? */
 (Kpm_data[2] & 0xAA))
 {
 position --; /* decrement */
 led_flag = 1; /* enable move LED */
 }

 if ((Kpm_data[2] == 0) && (move_flag == 0))
 {
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */
 }

 Width(3); /* calculate 8.0MHz pulse */
 break; /* width(4) for 9.8403MHz */

 default: /* will only happen with */
 break; /* an address of 5, 6 or 7 */
 }

/**
* *
* All servos *
* *
**/

 if (abs_pos != old_pos) /* new absolute position ? */
 {
 move_flag = 1; /* yes, enable seek */
 old_pos = abs_pos; /* disable restart */
 led_flag = 1; /* and enable flashing LED */
 }

 if ((position == abs_pos) && (move_flag != 0)) /* got there ? */
 {
 move_flag = 0; /* yes, clear flag */
 PTA |= 0x10; /* switch move LED off */
 led_flag = 0; /* and keep it off */
 }

 }
}
}

MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor14

Software listing
/**
*
* Function name: Width - New absolute position and pulse width calculation
* Originator: P. Topping
* Date: 6th September
*
**/

void Width (unsigned char gain)
{
 if (move_flag) /* && !(count & 0x0X)) */
 { /* to control speed */
 if (abs_pos > position)
 {
 position ++; /* increment */
 }
 else if (abs_pos < position)
 {
 position --; /* decrement */
 }
 }

 result = gain*(position - 0x80) + offset;
 msb = result/256;
 lsb = result%256;
}

/**
*
* Function name: Timer B overflow interrupt routine
* Originator: P. Topping
* Date: 29th August 2002
*
**/

#pragma TRAP_PROC

void TimerB (void)
{
 TBSC &= ~(0x80); /* clear flag */

 if (toggle & 0x01) /* use alternate channels */
 {
 TBCH0H = msb;
 TBCH0L = lsb;
 }
 else
 {
 TBCH1H = msb;
 TBCH1L = lsb;
 }
}

/**
* Function: LIN_Command - User call-back.
*
* Description: Called after successful transmission or reception of the
* Master Request Command Frame (ID Field value '0x3C').
*
* Returns: never returns
*
**/

void LIN_Command()
{
 while(1)
 {
 }
}

Appendix A Include File (register definitions for the
MC68HC908EY16)
/***
 HC08EY16.H
 Register definitions for the 908EY16

 P. Topping 24-01-02
***/
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 15

Software listing
#define PTA *((volatile unsigned char *)0x0000)
#define PTB *((volatile unsigned char *)0x0001)
#define PTC *((volatile unsigned char *)0x0002)
#define PTD *((volatile unsigned char *)0x0003)
#define PTE *((volatile unsigned char *)0x0008)

#define DDRA *((volatile unsigned char *)0x0004)
#define DDRB *((volatile unsigned char *)0x0005)
#define DDRC *((volatile unsigned char *)0x0006)
#define DDRD *((volatile unsigned char *)0x0007)
#define DDRE *((volatile unsigned char *)0x000A)

#define CONFIG1 *((volatile unsigned char *)0x001F)
#define CONFIG2 *((volatile unsigned char *)0x001E)

#define TBCR *((volatile unsigned char *)0x001C)

#define TBSC *((volatile unsigned char *)0x002B)
#define TBCNTH *((volatile unsigned char *)0x002C)
#define TBCNTL *((volatile unsigned char *)0x002D)
#define TBMODH *((volatile unsigned char *)0x002E)
#define TBMODL *((volatile unsigned char *)0x002F)
#define TBSC0 *((volatile unsigned char *)0x0030)
#define TBCH0H *((volatile unsigned char *)0x0031)
#define TBCH0L *((volatile unsigned char *)0x0032)
#define TBSC1 *((volatile unsigned char *)0x0033)
#define TBCH1H *((volatile unsigned char *)0x0034)
#define TBCH1L *((volatile unsigned char *)0x0035)

#define ICGCR *((volatile unsigned char *)0x0036)
#define ICGMR *((volatile unsigned char *)0x0037)
#define ICGTR *((volatile unsigned char *)0x0038)

#define VECTF (void(*const)()) /* Vector table function specifier */

Appendix B Vector.c
#define VECTOR_C
/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: Vectors table for LIN08 Drivers with Motorola API
*
* History: Use the CVS command log to display revision history
* information.
*
* Description: Vector table and node's startup for HC08.
* The users can add their own vectors into the table,
* but they should not replace LIN Drivers vectors.
*
* Notes:
*
**/

#if defined(HC08) /* for HC08 */

#if defined(HC08EY16)

extern void LIN_ISR_SCI_Receive(); /* ESCI receive ISR */
extern void LIN_ISR_SCI_Error(); /* ESCI error ISR */
extern void TimerB(); /* Timer Module B Overflow ISR */

#endif /* defined(HC08EY16) */

/**
 NODE STARTUP
 By default compiler startup routine is called.
 User is able to replace this by any other routine.
**/

#if defined(HICROSS08)

#define Node_Startup _Startup
extern void _Startup(); /* HiCross compiler startup routine declaration */

#endif /* defined(HICROSS08) */
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor16

Software listing
/**
 INTERRUPT VECTORS TABLE
 User is able to add another ISR into this table instead NULL pointer.
**/

#if !defined(NULL)
#define NULL (0)
#endif /* !defined(NULL) */

#undef LIN_VECTF

#if defined(HICROSS08)

#define LIN_VECTF (void (*const) ())
#pragma CONST_SEG VECTORS_DATA /* vectors segment declaration */
void (* const _vectab[])() =

#endif /* defined(HICROSS08) */

#if defined(HC08EY16)

/***/
/* HC08EY16 */
/* */
/* These vectors are appropriate for the following MC68HC908EY16 */
/* mask sets:- 0L38H, 1L38H, 0L31N,and 1L31N */
/* These mask sets had a fault in their interrupt vector table and */
/* hence in the interrupt priorities. */
/* */
/* For the vector address in the corrected mask set (2L31N) see */
/* the MC68HC908EY16 technical data sheet. */
/* */
/***/

{
 LIN_VECTF NULL, /* 0xFFDC Timebase */
 LIN_VECTF NULL, /* 0xFFDE SPI transmit */
 LIN_VECTF NULL, /* 0xFFE0 SPI receive */
 LIN_VECTF NULL, /* 0xFFE2 ADC */
 LIN_VECTF NULL, /* 0xFFE4 Keyboard */
 LIN_VECTF LIN_ISR_SCI_Error, /* 0xFFE6 ESCI error */
#if defined(MASTER) /* (used for Master node only)*/
 LIN_VECTF LIN_ISR_SCI_Transmit, /* 0xFFE8 ESCI transmit */
#endif /* defined(MASTER) */
#if defined(SLAVE)
 LIN_VECTF NULL, /* 0xFFE8 ESCI transmit */
#endif /* defined(SLAVE) */
 LIN_VECTF LIN_ISR_SCI_Receive, /* 0xFFEA ESCI receive */
 TimerB, /* 0xFFEC TIMER B overflow */
 LIN_VECTF NULL, /* 0xFFEE TIMER B channel 1 */
 LIN_VECTF NULL, /* 0xFFF0 TIMER B channel 0 */
 LIN_VECTF NULL, /* 0xFFF2 TIMER A overflow */
 LIN_VECTF NULL, /* 0xFFF4 TIMER A channel 1 */
#if defined(MASTER) /* (used for Master node only)*/
 LIN_VECTF LIN_ISR_Timer0, /* 0xFFF6 TIMER A channel 0 */
#endif /* defined(MASTER) */
#if defined(SLAVE)
 LIN_VECTF NULL, /* 0xFFF6 TIMER A channel 0 */
#endif /* defined(SLAVE) */
 LIN_VECTF NULL, /* 0xFFF8 CMIREQ */
 LIN_VECTF NULL, /* 0xFFFA IRQ */
// LIN_VECTF BREAK_Command, /* 0xFFFC SWI */
 LIN_VECTF NULL, /* 0xFFFC SWI */
 LIN_VECTF Node_Startup /* 0xFFFE RESET */
};

#endif /* defined(HC08EY16) */

#if defined(HICROSS08)
#pragma CONST_SEG DEFAULT
#endif /* defined(HICROSS08) */

#endif /* defined(HC08) */
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 17

Software listing
Appendix C Slave.cfg (LIN configuration file)
#ifndef LINCFG_H
#define LINCFG_H

/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: LIN Driver static configuration file for LIN08 Slave sample
* with Motorola API
*
* Notes:
*
**/

#if defined (HC08)

/*
 This definition configures the LIN bus baud rate.
 This value shall be set according to target MCU
 SCI register usage.
 HC08AZ32: the 8-bit value will be masked by 0x37
 and put into SCBR register.
*/

/* Selects 9600 baud rate if using a 9.8304MHz crystal */
//#define LIN_BAUDRATE 0x04u

/* Selects 9600 baud rate if using a 8MHz crystal */
#define LIN_BAUDRATE 0x30u

/*
 This definition set the number of user-defined time clocks
 (LIN_IdleClock service calls), recognized as "no-bus-activity"
 condition.
 This number shall not be greater than 0xFFFF.
*/
#define LIN_IDLETIMEOUT 400u

#endif /* defined (HC08) */

#endif /* !define (LINCFG_H) */

Appendix D Slave.id (LIN message ID file)
#ifndef LINMSGID_H
#define LINMSGID_H

/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: Message Identifier configuration for LIN08 Slave sample
* with Motorola API
*
*
* Notes:
*
**/

#define LIN_MSG_20 LIN_RECEIVE /* Keypad slave ID */
#define LIN_MSG_30 LIN_RECEIVE /* Master’s slave ID */

/* this string is not necessary - just as an example */

#define LIN_MSG_20_LEN 4 /* standard length */
#define LIN_MSG_30_LEN 8 /* standard length */

#endif /* defined(LINMSGID_H)*/
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor18

THIS PAGE IS INTENTIONALLY BLANK
MC68HC908EY16 Controlled Robot Using the LIN Bus, Rev. 1

Freescale Semiconductor 19

Document Number: AN2470
Rev. 1
01/2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 The Robot
	3 Messaging
	4 Hardware
	5 Software
	6 References
	7 Software listing

