4\ Freescale Semiconductor

Application Note

AN2373/D
Rev. 0, 10/2002

Using the Pulse Width
Modulation TPU
Function (PWM) with the
MPC500 Family

This TPU Programming Note is intended to provide simple C interface routines to the pulse
Randy Dees width modulation TPU function (PWM). Theroutines are targeted for the MPC500 family of
TECD Applications devices, but they should be easy to use with any device that hasa TPU.

1 Functional Overview

This output function generates a pul se-width-modul ated waveform in which the period and/or
the high time can be changed at any time by the CPU. PWM uses two modes of operation:
level and normal. In level mode, a 0% or a 100% duty-cycle waveform can be generated. In
normal mode, waveforms with duty-cycles between 0% and 100% can be generated.

In general, any changed period or high time is used in subsequent waveform synthesis, after a
low-to-high transition. An immediate update is possible in either mode. After an immediate
update, the new period and/or high time is reflected in the output waveform during the
immediate host-service state, instead of waiting for a subsegquent low-to-high transition.

2 Description

To start a PWM waveform, the CPU configures or updates parameters PWMPER (period
desired) and PWMHI (high time desired), then issues an HSR 0b10 for initialization. After
CPU initidization (refer to Figurel), the TPU generates a low-to-high transition and
calculates the pulse timing (next fall time, next rise time). The time of the most recent rising
edge is moved from parameter PWMRI'S to parameter OLDRIS, where it can be read at any
time by the CPU. Calculation of the fall time is made by adding OLDRIS to PWMHI. The
next risetimeis calculated by adding the period desired from PWMPER to the rise time, now
in OLDRISS, and then placing the projected new rise time into PWMRIS.

The information in this Programming Note is based on TPUPN17. It is intended to
compliment the information found in that Programming Note.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale"

For More Information On This Product, samicanductor

Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

——— PWMPER ———» NEW PWMPER AND
NEW PWhHI USED
o PN H| =

—

A

PWMPER AND
PWMHI CHANGED

| LOW TOHIGH TRANSITION = OLDRIS + PWMPER
HIGH TO LOW TRANSITION = OLDRIS + PWMHI

— INITIALIZATION:
LOW TO HIGH TRANSITION = SELECTED TCR + PWMPER
HIGH TO LOW TRANSITION = SELECTED TCR + PWMHI

Figure 1. 50% Duty Cycle PWM Waveform

In level made, where the high time in PWMHI is zero (indicating 0% duty cycle) or is equal to or greater
than the period (indicating 100% duty cycle), amatch without apin transitionis set up for thetime (OLDRIS
+ PWMPER). In normal mode, a match and fall timeis set up for the time (OLDRIS + PWMHI), and an
interrupt request signal is asserted on each match event if the interrupt enable bit is set. To change the PWM
parameters, the CPU coherently writes new 16-bit values to either PWMPER or PWMH. If both PWMPER
and PWMH are to be changed, a coherent 32-hit write is required.

In both normal and level modes the new parameters are referenced to the next low-to-high transition. An
immediate update of either or both parameters may be selected by the CPU by issuing an HSR 0b01. The
immediate result to the waveform depends upon the point at which the immediate update is taken. For
further information, see Section 10, “ Performance and Use of the PWM Function.”

An optional CPU interrupt request can be made at the beginning of each pulse in any mode or after an
immediate update. This allows the CPU to schedule parameter changes in relationship to aknown point in
the waveform.

3 FOM C Level API

* Initialization Function:

— void tpu_pwm_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, UINT16 period,
UINT16 hightime, UINTS8 timer)

e Change Operation Functions:

— void tpu_pwm_update(struct TPU3_tag *tpu, UINT8 channel, UINT16 period, UINT16
hightime, UINT8 immediate)

— void tpu_pwm_force(struct TPU3_tag *tpu, UINT8 channel, UINT8 state)
* Vaue Return Functions:

— UINT16 tpu_get pwm_period(struct TPU3_tag *tpu, UINT8 channdl)

— UINT16 tpu_get pwm_hightime(struct TPU3_tag *tpu, UINT8 channel)

2 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Initialization Function (tpu_pwm_init)

» General TPU Functions (defined in mpc500_util.h):

— void tpu_enable(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority)
— void tpu_disable(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority)
— voidtpu_interrupt_enable(struct TPU3_tag *tpu, UINT8 channel)

— void tpu_interrupt_disable(struct TPU3_tag *tpu, UINT8 channel)

— voidtpu_clear_interrupt(struct TPU3 tag *tpu, UINT8 channel)

— UINT8 tpu_check_interrupt(struct TPU3_tag *tpu, UINT8 channel)

3.1 Initialization Function (tpu_pwm_init)

void tpu_pwm_init

This function initializes the PWM function and sets the initia period and duty. To change the operating
mode, this function can be called again. This function has the following parameters:

* *tpu(struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It isof type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINT8) - Thisisthe channel number that has the FQM function assigned to it.

e priority (UINT8) - Thisisthe priority to assign to the FQM function. The TPU priority definitions
are defined in mpc500_utils.h. See Table 1 for values that are defined for the channel priority.

Table 1. TPU Priorities

TPU Priorities Definition
TPU_PRIORITY_DISABLE 0b00
TPU_PRIORITY_LOW 0b01
TPU_PRIORITY_MEDIUM 0b10
TPU_PRIORITY_HIGH Ob11

e period (UINT16) - This parameter sets the period of the PWM waveform.
* hightime (UINT16) - This parameter sets high time of the PWM waveform.

o timer (UINT8) - This parameter sets whether the TPU3 TCR1 or TCR2 clock should be used for
measuring the incoming frequency.

3.2 Change Operation Function (tpu_pwm_update,
tpu_pwm_force)
void tpu_pwm_update

This function allows the PWM parameters to be updated. The parameters are changed on the next rising
edge of the PWM, unless the immediate parameter is set. void tpu_pwm_update(struct TPU3_tag *tpu,
UINT8 channel, UINT16 period, UINT16 hightime, UINT8 immediate)

* *tpu(struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINT8) - Thisisthe channel number that has the FQM function assigned to it.
e period (UINT16) - This parameter sets the period of the PWM waveform.

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
/alue Return Value Functions (tpu_pwm_get_period, tpu_pwm_get_hightime)

* hightime (UINT16) - This parameter sets high time of the PWM waveform.

* immediate (UINT8) - This parameter determines whether the updated parameters are effective
immediately or at the beginning of the next PWM cycle.

Table 2. TPU PWM Update Immediate Definitions

Value' Definition
TPU_PWM_NORMAL 0x0
TPU_PWM_IMMED ox1

void tpu_pwm_force
This function forces the state of the PWM channel to 0% (always low) and 100% (always high).

e *tpu (struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINTB8) - Thisis the channel number that has the FQM function assigned to it.
e state (UINT16) - This parameter sets the period of the PWM waveform.

Table 3. TPU PWM Update Immediate Definitions

Value' Definition
TPU_PWM_LOW 0x0
TPU_PWM_HIGH 0Ox1

3.3 Value Return Value Functions
(tpu_pwm_get_period, tpu_pwm_get_hightime)
UINT16 tpu_pwm_get_period

This function returns the current period of the PWM waveform.

* *tpu (struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It isof type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINT8) - Thisisthe channel number that has the FQM function assigned to it.
UINT16 tpu_pwm_get_hightime
This function returns the current hightime of the PWM waveform.

* *tpu (struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINT8) - Thisisthe channel number that has the FQM function assigned to it.

3.4 General TPU Functions

The following routines are generic and are useful for all TPU functions.

4 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
General TPU Functions

void tpu_enable

This function enables the TPU channel and can be used to change the channel priority.

e *tpu (struct TPU3_tag) - Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINTB8) - Thisis the channel number that has the FQM function assigned to it.
e priority (UINTS8) - Thisisthe new channel priority.

void tpu_disable

This function disables the TPU channel. It sets the priority to O to disable the channel.

* *tpu (struct TPU3_tag) - Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINTB8) - Thisis the channel number that has the FQM function assigned to it.
e priority (UINTS8) - Thisisthe new channel priority.

void tpu_interrupt_enable

This function enables the interrupt bit for the specified channel.

e *tpu(struct TPU3 tag) - Thisisapointer to the TPU3 moduleto use. Itisof type TPU3 tag which
isdefined in m_tpu3.h.

e channdl - Thisisthe channd number that has the FQM function assigned to it.
void tpu_interrupt_disable
This function disables the interrupt bit for the specified channel.

e *tpu(struct TPU3 tag) - Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINTB8) - Thisis the channel number that has the FQM function assigned to it.
void tpu_clear_interrupt
Thisfunction clears the interrupt bit for the specified channel.

* *tpu(struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It isof type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINT8) - Thisisthe channel number that has the FQM function assigned to it.
UINT8tpu_check_interrupt

Thisfunction checksthe interrupt bit for the specified channel to seeif it isset. Thisfunction returns TRUE
if this channel caused the interrupt, FAL SE otherwise.

* *tpu (struct TPU3_tag) - Thisisa pointer to the TPU3 moduleto use. It is of type TPU3_tag which
isdefined in m_tpu3.h.

e channel (UINTB8) - Thisis the channel number that has the FQM function assigned to it.

4 Configuration of PWM Function

The CPU configures the PWM function as follows:

1. The appropriate channel priority bits are cleared, disabling the channel.
2. The PWM function number iswritten to the channel function select bits.

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

h -

Freescale Semiconductor, Inc.
Zode Listing

CHANNEL_CONTROL, HIGHTIME and PERIOD are written to channel parameter RAM.
The host sequence bits are written, selecting the desired action edge and mode of operation.
An HSR isissued to initialize the function.

The channel priority bits are written to enable the function and assign channel priority.

7. The TPU executesthe initialization state.

o 0k~ w

All of these steps are included in the C level tpu_pwm_init() function. See Section 3.1, “Initialization
Function (tpu_pwm_init).”

5 Example Code

The following code shows an example program that initializes the TPU PWM ROM function using the C
level API (see Section 5.1, “Code Listing”). This example initializes the PWM function on channel 0 and
channel 1. A PIT interrupt isinitialized to update the high time every 1 second. Thefirst channel is updated
normally (at the end of the current PWM cycle) and the second channel updates the hightime immediately.
The period of the PWM is approximately 1.220 KHz with the MPC555 system clock running at 40 MHz.
The

5.1 Code Listing

#i ncl ude "npc555. h"
#i ncl ude "t pu_pwm h"

#i ncl ude "npc500_util.h"

/* Initialization paraneters */

U NT32 | oopctr = 0 ;// Loop counter for nmain | oop

U NT32 pitctr = 0; // Counter for nunber of PIT tinmeouts

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

/* Exanpl e specific values */

U NT8 chan_a = 0;

U NT8 chan_b = 1;

U NT16 init_period = 0x2000; /* This generates a 1.2 KHz square wave initially. */
U NT16 init_hightime = 0x1000;

U NT16 step_size = 0x100;

void init555(int freq)
{
USI U. SYPCR R = Oxffffff03; /* Disable watchdog timer. *
* WARNING this is a WRITE ONLY register. */
USI U. PLPRCRK. R = 0x55ccaa33; /*Unlock PLPRC with special key */
if (freq == 56){
USI U. PLPRCR. R = 0x00d3d000; /* 14x PLL operation on normal power node */

}el se

6 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

USI U. PLPRCR. R = 0x0093d000; /* 10x PLL operation on normal power node */

U MB. UMCR. B. HSPEED = 0;// Make I MB cl ock = System C ock

}
void initPlIT(void)

/] STEP 1: MODULE SPECI FI C I NI TI ALI ZATI ON
USIU. PITC. B. PITC = 15624;// Setup count value - 1 second.
USIU. PISCR B.PITF = 1;// Freeze enabled to stop PIT
USI U. PISCR B. PTE = 1;// PIT enabled to start counting

/1 STEP 2: LEVEL ASSI GNMENT
USI U. PI SCR. B. PIRQ = 0x80; // Level O PIT interrupt

/1 STEP 3: ENABLE | NTERRUPT
USIU.PISCRB.PIE =1 ;// Enable PIT interrupt

/1 STEP 4: SET APPROPRI ATE SI MASK BI TS
USI U. SI MASK. R = 0x40000000; // Enable lIevel 0; others disabled

voi d pit_handler (void)
{
U NT16 ol d_hi ghtinme, new_hightinme, period;

/* Toggle the mos PIO bits 11/12 for activity */
M OS1. MPI OSM32DR. B. D11 = ! M OS1. MPI OSM32DR. B. D11;

/* do second nmios pin at end to showthe tinme difference in the interrupt. */

pitctr++; /* Increment PIT counter */

USIU. PISCR B.PS = 1;/* Negate PIT flag by witing "1" to it */

/* get current hightinme and period - assunes both channels are the same */
ol d_hi ghtine = tpu_pwm get_hi ghti me(tpua, 0);

period = tpu_pwm get_period(tpua,0);

if (old_hightime > (period - step_size))
{

new_hi ghtime = step_size;
Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Code Listing

Freescale Semiconductor, Inc.
Zode Listing

el se

new_hightinme = ol d_hightinme + step_size;
}
/* do first channel with nornmal update */
t pu_pwm updat e(t pua, chan_a, peri od, new_hi ghtime, TPU_PWJ NORMAL);
/* do second channel with i medi ate update */

t pu_pwm updat e(t pua, chan_b, peri od, new_hi ghti ne, TPU_PWM | MVED) ;

/* Now toggle the other MGCS pin */
M OS1. MPI OSM32DR. B. D12 = ! M OS1. MPI OSM32DR. B. D12;

[RExx KKk Rk xx KKk x N OS P| Q *HEEX KKKk Kk xk kK [

/* Set up the MCS Parallel port */

/* set bits 11 and 12 to Qutputs and initialize to 11 high, 12 |low */
void Init_MOS _PIO (void)

{

/* set MCS Parallel Port bits 11 and 12 to be outputs */
M OS1. VPl OSM32DDR. B. DDR11 = 1; /* setup M OS Parallel Port bit 11 output */
M OS1. VPl OSM32DDR. B. DDR12 = 1; /* setup M OS Parallel Port bit 12 output */

/* set initial condition of the GPIO bits (LEDs) */

M OS1. VPl OSM32DR. B. D11 = 1;
M OS1. VPl OSM32DR. B. D12 = O;

[*xxxxxkxxxxkk% TPU Set up KKK KKk Kk Kk Kk k[

/* Set up the TPU.... */

void setup_tpu(struct TPU3_tag *tpu)

{
t pu- >TPUMCR. R = 0x2020; /* TCR1l prescal er divide by 2, supervisor and user access.
t pu- >TPUMCR3. R = 0x0040; /* enabl e enhanced prescaler - divide by 2 */
tpu->TICRB.CIRL = 5; /* set interrupt level to 5.... */
tpu->TICR B.ILBS = 0; /* (but this exanple will not use TPU Interrupt) */

}

8 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

*/

Freescale Semiconductor, Inc.
Example Description

voi d main()

{
i ni t555(40); /* Performa sinple 555 initialization */
Init_MOS_PlI(();
initPIT(); /* Init PIT to generate interrupts */
setup_tpu(tpua); /* Do general TPU set up. */
tpu_pwminit(tpua, chan_a, TPU PRIORITY_ H GH, init_period, init_hightine, TPU PWM TCR1)
tpu_pwm.init(tpua, chan_b, TPU PRIORITY_H GH, init_period, init_hightime, TPU PWM TCR1);

#i fndef __ MAERKS
asm(" nmtspr EIE, r3");/* FINAL STEP. SET MSR[EE], MSR[RI] BITS */
#endi f

#ifdef _ MAERKS _

asn{
ntspr EIE, r3

#endi f

whi | e(1)
{

| oopctr ++; /'l Increment |oopctr for sonmething to do

}

5.2 Example Description

This example sets the Enhanced prescaler to divide by 2 and it sets the TCR1 prescaler to 2. This gives a
TCRA1 clock frequency of 10 MHz (divide by 4 of the 40 MHz system clock). Thisyields aresolution of 100
ns. This example sets the period to 0x2000 (8192) TCR1 clock periods which equals 819 microseconds or
1220 Hetrz.The high pulse width starts at 409.6 microseconds and is incremented by 25.6 microseconds
until it reaches 640 microseconds at which timeit isreset to 25.6 microseconds.

_ 1
PWMFrequency = +=R1 period x PERIOD
_ 1
PWMFrequency = 156ns x 32768
_ 1
PWMFrequency = s icros

PWMFrequency = 1220.7Hz

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

=xample Exception Code

5.3 Example Exception Code

. name "exceptions.s"

.section

.section

. text

b _start

. abs. 00000100

System reset exception, per crtO file

. abs. 00000500

b external _interrupt_exception

external _interrupt_exception:

10

. equ

stwu
stw
nfsrr0
stw
nfsrrl

stw

nt spr

nflr
stw
nf xer
stw
nf spr
stw
nfcr
stw
stw
stw
stw

stw

SI VEC,

0x2f c01lc ; Register addresses

STEP 1: SAVE "MACHI NE CONTEXT"

sp, -80 (sp); Create stack franme and store back chain

r3

r3

EID, r3

r3

r3

r3, CIR

r3

r3, 36 (sp); Save worKking register
Cet SRRO
r3, 12 (sp); and save SRRO
; Get SRR1
r3, 16 (sp); and save SRRl

STEP 2: MAKE MSR[RI] RECOVERABLE
; Set recoverable bit

; Now debugger breakpoints can be set

; STEP 3: SAVE OTHER APPROPRI ATE CONTEXT
CGet LR
r3, 8 (sp); and save LR
; Get XER
r3, 20 (sp); and save XER
; CGet CTIR
r3, 24 (sp); and save CIR
CGet CR
r3, 28 (sp); and save CR
ro, 32 (sp); Save RO
r4, 40 (sp); Save R4 to R12
r5, 44 (sp)
re, 48 (sp)

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example Exception Code

stw r7, 52 (sp)
stw r8, 56 (sp)
stw r9, 60 (sp)
stw r10, 64 (sp)
stw rll, 68 (sp)
stw rl2, 72 (sp)

; STEP 4: DETERM NE | NTERRUPT SOURCE
lis r3, SIVEC@a ; Load higher 16 bits of SIVEC address
I bz r3, SIVEC@ (r3) ; Load Interrupt Code byte from S| VEC

; Interrupt Code will be junp table index

lis rd4, IRQ table@ ; Load interrupt junp table base address
ori rd, r4, IRQtable@

add r4, r3, r4 ; Add index to table base address

mir ra ; Load result address to link register

; STEP 5: BRANCH TO | NTERRUPT HANDLER
blrl ; Junp to Execution Routine (subroutine)

(After returning here, restore context)

STEP 6: RESTORE CONTEXT

| wz ro, 32 (sp); Restore gprs except R3

| wz rd, 40 (sp)

| wz r5, 44 (sp)

| wz r6, 48 (sp)

| wz r7, 52 (sp)

| wz r8, 56 (sp)

| wz ro, 60 (sp)

| wz r10, 64 (sp)

| wz rll1, 68 (sp)

| wz ri2, 72 (sp)

| wz r3, 20 (sp); Get XER

nt xer r3 ; and restore XER
| wz r3, 24 (sp); Get CIR

ntctr r3 ; and restore CIR
| wz r3, 28 (sp); Get CR

ntcrf oxff, r3 ; and restore CR

| wz r3, 8 (sp); CGet LR

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
=xample Exception Code

nilr r3 ; and restore LR
nm spr NRI, r3 ; Clear recoverable bit, MSRRI]
Not e: breakpoi nts CANNOT be set

; fromnow thru the rfi instruction

| wz r3, 12 (sp); Get SRRO from stack
ntsrr0 r3 ; and restore SRRO
| wz r3, 16 (sp); Get SRRL from stack
ntsrrl r3 ; and restore SRR1
| wz r3, 36 (sp); Restore R3

addi sp, sp, 80; Cean up stack

; STEP 7: Return to Program

rfi ; End of Interrupt

; Branch tablefor the different SIVEC Interrupt Code val ues

| RQ_t abl e: ; Branch forever if routine is not witten
irg_O: b irg_0

level _0: b pit_handler; Branch to PIT C routine

irg_1: b irq_1

level _1: b level _1

irq_2: b irq_2

level _2: b | evel _2

irq_3: b irg_3

level _3: b | evel _3

irg_4: b irg_4

level _4: b | evel _4

irqg_5: b irq_5

level _5: b | evel _5

irq_6: b irg_6

level _6: b | evel _6

irq_7: b irq_7

level _7: b |l evel _7

12 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
WM Initialization Function

6 FQM C Level API Code

6.1 PWM Initialization Function

Thetpu_pwm init initialization routine initiali zes the channel to run the PWM function.
void tpu_pwminit(struct TPU3_tag *tpu, U NT8 channel,
U NT8 priority, U NT16 period, U NT16 hightime, U NT8 timer)

{

U NT16 channel _control;
Ul NT16 t bs;

Ul NT8 hsq;

/* di sabl e channel s so they can be configured safely */

t pu_di sabl e(tpu, channel);

/* PWMis function 0x3 */
tpu_func(tpu, channel, TPU_FUNCTI ON_PWM) ;

/* disable interrupts on channels so they can be configured safely */

tpu_interrupt_disable(tpu, channel);
/* mask off illegal values */
ths = (tiner & TPU_PWM TBS_MASK) << b5;

/* Initialize Paraneter RAM */

channel _control = (tbs | TPU_PWM PAC | TPU_PWM PSC);

t pu- >PARM R[channel] [TPU_PWM_CHANEL_CONTRCL] = channel _control ;
t pu- >PARM R[channel] [TPU_PWM PWWHI] = hi ghti ne;
t pu- >PARM R[channel] [TPU_PWM PWWPER] = peri od;

IR R EE AR R R EEEEEEEEEEEEEEEEEEEE SRR LY

/* Configure the Channels. */

IR R EE AR R RS EEEEEE SRR EEEEE SRRy

tpu_hsr(tpu, channel, TPU PWM INIT);

/* Enabl e channel by assigning a priority to them */

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
WM Update Function

t pu_enabl e(tpu, channel, priority);

} /* End tpu_pwminit */

6.2 PWM Update Function

The tpu_pwm_update routine should be called to change either the high time and the period of the sample
window.

voi d tpu_pwm update(struct TPU3_tag *tpu, U NT8 channel,
U NT16 period, U NT16 hightime, U NT8 imedi ate)

{
Ul NT32 updat e_val 32;

update_val 32 = ((hightine << 16) | (period));

t pu- >PARM L[channel] [TPU_PWM HI PER32] = updat e_val 32;
if (inmediate)

{

tpu_hsr(tpu, channel, TPU PWM | MVED_UPDATE) ;

}
} /* End tpu_pwmupdate */

6.3 PWM Get Value Return Functions

Thefunctiontpu_pwm_get_hightime returnsthe number of TCR clocksof the current high time of the PWM
channel.

Ul NT16 t pu_pwm get _hi ghtime(struct TPU3_tag *tpu, U NT8 channel)

{
U NT16 hi ghti ne;

hi ghtime = tpu->PARM R[channel][TPU_PWM PWWHI] ;
return (hightine);

} /* End tpu_pwmget_hightine */

6.4 PWM Get Value Return Functions

The function tpu_pwm_get_period returns the number of TCR clocks of the current period of the PWM
channel.

Ul NT16 t pu_pwm get _period(struct TPU3_tag *tpu, U NT8 channel)

14 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.
Zhannel Control

Ul NT16 peri od;

peri od = t pu->PARM R[channel] [TPU_PWM PWWFER] ;
return (period);

} /* End tpu_pwmget_hightine */

7 PWM Function Parameters

This section provides detail ed descriptions of PWM function parameters stored in channel parameter RAM.
Figure 2 shows the parameter RAM assignment used by the PWM function.

PARAMETER RAM
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

0x30YYWO CHANEL_CONTROL
0x30YYW2
0x30YYW4 PWMHI(1,3

0x30YYW6 PWMPER(2,3)
0x30YYWA
0x30YYWC
0x30YYWE
|:|: Written By CPU |:|: Written by CPU and TPU W = Primary Channel Number
YY =0x41 For TPU_A, 0x45 For
-: Written By TPU |:|: Unused Parameters TPU_B and 0x5D For TPU_C

Figure 2. PWM Parameters

7.1 Channel Control

CHANNEL_CONTROL contains the channel latch controls and configures the PSC, PAC, and TBSfields.
The PSC field forces the output level of the pin directly without affecting the PAC latches, or forces the
output level to the state specified by the PAC latches. The PAC field specifiesthe pinlogic response as either
atimer channel input or output. The TBS field configures a channel pin as input or output and configures
the time base for output match/input capture events.

This parameter isused by the function to initialize the channel. It must be written by the CPU prior toissuing
a host service request and assigning priority to the channel. The only legal values for this parameter are
shown in Figure 2. Any other values cause indeterminate operation. Bits 9-15 are not used and areignored.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NOT USED TBS PAC PSC

Figure 3. Channel Control Bit Encoding

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zhannel Control

NOTE:

This channel must be configured as an output because the PWM function
is indeterminate when programmed as an input.

Table 4. Channel Control Bit Definitions

Function TBS PAC PSC

Force Pin as Specified by PAC Latches
Force Pin High
Force Pin Low
Do Not Force Any State
Do Not Change PAC 1 X X
Output Channel
Capture TCR1, Compare TCR1
Capture TCR2, Compare TCR2
Do Not Change TBS

|| Ol O
| Ol k| O

~|l ool o
A
x| | o| x
x| | o| x

7.1.1 PSC

The PSC field determines the setting of the pin after initialization. In normal mode, PSC is set to force the
pin high. In level mode, where a 0% duty cycle is desired, PSC should be set to force the pin low at
initialization. The PAC field specifies the pin logic response as atimer channel output; however, the PWM
function doesnot usethe PAC field, but uses direct control by the microcode. CHANNEL _CONTROL must
be written by the CPU before initialization.

7.1.2 PAC

Since the PWM function is an output function, the PAC bits are not used and are therefore set to the value
of 0x4.

7.1.3 TBS

These bits are used during initialization to select the timebase for the function. Either TCR1 or TCR2 can
be selected.

Table 5. Channel Control TBS Definitions

TBS Setting Value
Capture TCR1, Match TCR1 TPU_FQM_TCR1 0x4
Capture TCR2, Match TCR2 TPU_FQM_TCR2 0x7

7.1.4 OLDRIS

OLDRIS is the time of the previous low-to-high transition. The PWM microcode uses this value when
calculating the next rise time. The TPU updates this parameter and should not be changed by the user.

16 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zhannel Control

7.1.5 PWMRIS

PWMRIS is the current calculated rise time calculated at the beginning of the pulse (on the low-to-high
transition) by adding OLDRIS to PWMPER. The TPU updates this parameter.

7.1.6 PWMHI

PWMHI, which is updated by the CPU, is the current pulse high time that may be updated at any time.
Estimate for best-case minimum value for PWMHI is greater than 32 system clocks, assuming a single
channel operating. When more than one channel is operating, the minimum value for PWMHI depends on
TPU configuration (the variables are described in Section 10, “Performance and Use of the PWM
Function™). The maximum value is 0x8000. The user should calculate case timing to ensure proper
execution of this function.

7.1.7 PWMPER

PWMPER, which is updated by the CPU, is the current PWM period and is used by the TPU to calculate
the next low-to-high transition time. Estimate for best-case minimum value for PWMPER is greater than 32
system clocks, assuming that a single channel is operating. When more than one channel is operating, the
minimum vaue for PWMPER depends on TPU configuration (the variables are described in Section 10,
“Performance and Use of the PWM Function”). The maximum usable value is that which satisfies the
condition: (PWMPER — PWMHI) islessthan or equal to 0x8000. PWMHI and PWM PER must be accessed
coherently. The user should calculate the case timing to ensure proper execution of this function. Normal,
100%, and 0% duty cycles are defined as follows.

0% - PWMHI =0
100% - PWMPER < PWMHI, AND PWMHI z0
Elsenorma - PWMPER > PWMHI, AND PWMHI # 0

8 PWM Header File

The following header file listing provides common definitions for the PWM functions.

#i ncl ude "mtpu3.h"

#i fdef _ cplusplus
extern "C' {

#endi f

IR R R R EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERY]

/* Definition of terms and initial settings */

/***/

/* Define HSQ val ues (node) */

/* HSQ val ues are not used by the PWM function. */
/* Define the I medi ate val ues */

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zhannel Control

#defi ne TPU_PWJM NORMAL 0xO/* Update normally at end of next cycle */
#defi ne TPU_PWM | MMED 0Ox1/* Update val ues i mmedi ately */
#define TPU_PW | MVED MASK Ox1 /* MASK for illegal values */

/* State Definitions */
#def i ne TPU_PWM LOWXO0
#defi ne TPU_PWM HI GHOx1

/* Define HSR val ues */

#defi ne TPU_PWM NO HOST 0x0/* No Host Service (Reset Condition) */
#defi ne TPU_PWM | MVED_UPDATEOx1/* Update PWM paraneters inmediately */
#define TPU_PWLIN T 0x2 /* Initialize */

#defi ne TPU_PWM NOT_USED 30x3/* Not Used */

/* Define test result values */
#define TPU PWM TRUE 1
#def i ne TPU_PWM FALSE 0

/* Define TPU Channel Control. PSC is always 0Obl (start high) */
#defi ne TPU_PWV PSCOx1

#defi ne TPU_PWM PSC_MASK 0x3

/* PSC is always Oblxx (shift by 2 for channel control |ocation */
#defi ne TPU_PWM PAC 0x10

#defi ne TPU_PWM PAC_MASK 0x7

/* Define the Timer val ues */
#defi ne TPU_PWM TCR14/* Capture TCR1, Match TCR1 */
#define TPU_PWM TCR27/* Capture TCR2, Match TCR2 */
#define TPU_PWV TBS_MASK OXF

/* Define paraneter RAM | ocations */

#defi ne TPU_PWM CHANEL_CONTROLO/* Channel Control TCR1 or 2 */

#defi ne TPU_PWVM OLDRI S 1 /* Od Rise time - used by TPU */
#defi ne TPU_PWV_PWVHI 2 /* High time of the period */

#defi ne TPU_PWV PWWPER 3 /* Period */

#def i ne TPU_PWJ PWWRI S 4 /* Next rise time */

#define TPU_PW/ PRM 5 5 /* Not Used */

#defi ne TPU_PWV _PRM 6 6 /* Not Used */

#define TPU_PWM PRM 7 7 /* Not Used */

18 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

P

Freescale Semiconductor, Inc.
Zhannel Function Select Registers

/* define 32-bit paraneter RAM Location for accessing */

#define TPU_PWM H PER321 /* the high tine and period together */
/* Prototype of functions */

void tpu_pwminit(struct TPU3_tag *tpu, U NT8 channel,
U NT8 priority, U NT16 period, U NT16 hightine, U NT8 tinmer);

voi d tpu_pwm update(struct TPU3_tag *tpu, U NT8 channel,
U NT16 period, U NT16 hightime, U NT8 inmedi ate);

voi d tpu_pwm force(struct TPU3_tag *tpu, U NT8 channel, U NT8 state);
U NT16 tpu_pwm get_period(struct TPU3_tag *tpu, U NT8 channel);

Ul NT16 tpu_pwm get_hightime(struct TPU3_tag *tpu, U NT8 channel);
void setup_tpu(struct TPU3_tag *tpu);

#i fdef __ cplusplus

}
#endi f

9 Host Interface to PWM Function

This section provides information concerning the TPU host interface to the PWM function.

9.1 Channel Function Select Registers

Encoded 4-hit fields within the channel function select registers specify one of 16 time functions to be
executed on the corresponding channel. The channel function bits should be set to 0x3 to select the PWM
ROM function.

9.2 Host Sequence Registers
The host sequence register is not used by the PWM function.

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
dost Service Request Registers

9.3 Host Service Request Registers

The host servicerequest field sel ectsthe type of host service request for the time function selected on agiven
channel. The meaning of the host service request bitsis determined by time function microcode. See Table 6
for the Host Service routines defined for the PWM function.

Table 6. Host Service Bit Definitions

Bit Setting Definition
0b00 No Host Service (Reset Condition
0b01 Immediate Update
0b10 Initialize
Ob11 Not Used

9.4 Channel Priority Registers

The channel priority registers (CPR1, CPR2) assign one of three priority levels to a channel or disable the
channel.

10 Performance and Use of the PWM Function

10.1 Performance

Like all TPU functions, the PWM function performance in an application isto some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. When asingle PWM channel isin use and no other TPU channels are active, the minimum time
between any two pulse edges is greater than 32 CPU clocks. When more TPU channels are active,
performance decreases. However, worst-case latency in any TPU application can be closely estimated. To
analyze the performance of an application that appearsto approach the limits of the TPU, use the guidelines
given in the TPU reference manua and the information in the PWM state timing table below.

10.2 Changing Duty Cycle

The CPU can change the duty cycle at any time once the TPU has completed the initialization state
(indicated by HSR 0b00 or a CPU interrupt request). Changes are made by writing a new high time value
to PWMHI in the channel's parameter RAM.

The minimum duty cycle (and the maximum non-100% duty cycle) is dependent on the number of active
TPU channels and the maximum channel latency as discussed above. A 0% duty cycle is generated by
setting PWMHI = 0. A 100% duty cycle is scheduled by setting PWMPER less than or equal to PWMHI
when PWMHI is not equal to zero.

Duty cycle changes take effect at the completion of the current period unless an immediate update (HSR
0b01) is also requested. Immediate updates may be requested for any duty cycle including 0% and 100%.
A new PWMHI value with an immediate update HSR causes the TPU to change the currently scheduled
high-to-low time. This can cause the undesired side effect of an improper duty cycle for one period.

20 Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zhanging Period

10.3 Changing Period

Once the TPU has completed the initialization state the CPU may at any time specify a new period by
writing to the PWM PER parameter. Unless the CPU also generates an immediate update service request the
new period takes effect at the beginning of the next period, as shownin Figure 1. That is, anew risetimeis
calculated at the next low-to-high transition. Thus, the current period is allowed to compl ete before the new

one begins.

10.4 Counting Periods

The TPU generates a CPU interrupt service request during the channel service at the beginning of each
period. The CPU can respond to these requests to keep track of how many periods have elapsed. In thisway,
new pulse widths can be scheduled at a known position in time.

10.5 Stopping the Function

Once PWM operation isinitialized on a channdl, it runs without CPU intervention until areset occurs. If it
is necessary to turn off a PWM channel, the CPU can write zeros to the channel function select bits in
registers CFSR[0:3]. This disables the function on the channel. Another way to disable output is to select
0% or 100% duty cycle in the channel parameter RAM. In this case the PWM continues to run and receive
channel service but no transitions are seen on the pin.

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Stopping the Function

22

Freescale Semiconductor, Inc.

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Stopping the Function

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Pulse Width Modulation TPU Function (PWM)

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “freescale”

semiconductor

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Pulse Width Modulation TPU Function (PWM) with the MPC500 Family
	1 Functional Overview
	2 Description
	Figure�1. 50% Duty Cycle PWM Waveform

	3 FQM C Level API
	3.1 Initialization Function (tpu_pwm_init)
	Table�1. TPU Priorities

	3.2 Change Operation Function (tpu_pwm_update, tpu_pwm_force)
	Table�2. TPU PWM Update Immediate Definitions
	Table�3. TPU PWM Update Immediate Definitions

	3.3 Value Return Value Functions (tpu_pwm_get_period, tpu_pwm_get_hightime)
	3.4 General TPU Functions

	4 Configuration of PWM Function
	5 Example Code
	5.1 Code Listing
	5.2 Example Description
	5.3 Example Exception Code

	6 FQM C Level API Code
	6.1 PWM Initialization Function
	6.2 PWM Update Function
	6.3 PWM Get Value Return Functions
	6.4 PWM Get Value Return Functions

	7 PWM Function Parameters
	Figure�2. PWM Parameters
	7.1 Channel Control
	Figure�3. Channel Control Bit Encoding
	Table�4. Channel Control Bit Definitions
	7.1.1 PSC
	7.1.2 PAC
	7.1.3 TBS
	Table�5. Channel Control TBS Definitions

	7.1.4 OLDRIS
	7.1.5 PWMRIS
	7.1.6 PWMHI
	7.1.7 PWMPER

	8 PWM Header File
	9 Host Interface to PWM Function
	9.1 Channel Function Select Registers
	9.2 Host Sequence Registers
	9.3 Host Service Request Registers
	Table�6. Host Service Bit Definitions

	9.4 Channel Priority Registers

	10 Performance and Use of the PWM Function
	10.1 Performance
	10.2 Changing Duty Cycle
	10.3 Changing Period
	10.4 Counting Periods
	10.5 Stopping the Function

