4\ Freescale Semiconductor

Application Note

AN2371/D
Rev. 0, 10/2002

Using the Universal
Asynchronous Receiver
Transmitter TPU
Function (UART) with
the MPC500 Family

This TPU Programming Note is intended to provide simple C interface routines to the
Vernon Goler asynchronous receiver transmitter TPU function (UART). 1 The routines are targeted for the
TECD MPC500 family of devices but, they should be easy to use with any device that hasa TPU.

1 Functional Overview

The UART function uses two TPU channels to provide a 3-wire (TxD, RxD and GND)
asynchronous serial interface. One TPU channel is configured to function as the seria
transmitter (TxD), and another TPU channel is configured to function as a serial receiver
(RxD). All standard baud rates and parity checking can be selected.

2 Detailed Description

A UART consists of atransmitter, which can transmit serial dataviaatransmit data (TxD) pin,
and areceiver, which can receive serial dataviaareceive data (RxD) pin. Both transmitter and
receiver contain a single shift register that performs parallel-to-serial and serial-to-parallel
conversion. Although a UART IC normally contains both the transmitter and receiver,
implementing a full-duplex UART with the TPU requires independent receiver and
transmitter channels because each TPU channel controls only one pin (achannel can be either
atransmitter or areceiver, but not both at the same time). While at least two TPU channels
must be used for afully functional UART, it isnot necessary to use both subfunctionstogether,
nor to use the same number of receivers and transmitters. For example, the TPU can be
configured to function as 13 transmitters and 3 receivers. There isaso no restriction on which
channels may be used to receive and transmit - any channel can be used to transmit or receive
data. Since baud rate for each channel is specified independently, a transmitter can have a
different rate than areceiver

The UART protocol allows selection of a parity bit to detect simple transmission errors. Parity
can be generated and checked in three different ways: odd, even and no parity. All parity types
are supported with the UART function.

The UART protocol is not fixed to a specific number of bits for one dataword. Although 8-bit
words are normally used, some applications use 7-bit or 9-bit words. The UART function can

The information in this Programming Note is based on TPUPNO7. It is intended to
compliment the information found in that Programming Note.

© Freescale Semiconductor, Inc., 2004. All rights reserved. freescalew

For More Information On This Product, semiconductor
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

h -

Freescale Semiconductor, Inc.
JART C Level API

use word lengths from one to 14 bits. The number of transmitter stop bitsis fixed at one. The receiver can
also handle fractional stop bits correctly, but the transmitter cannot generate fractional stop bits.

The UART function is double buffered. Both transmitter and receiver contain a shift register aswell as a
dataregister. The host CPU can write new datato the transmit data register while datais being transmitted,
and can read data from the receive data register while datais being received.

The UART transmitter sets the channel interrupt status flag to indicate when all the data has been
transmitted. The status flag should be cleared before new datais written to the transmitter if the interrupt
status flag will be used in a polling environment. Likewise the UART receiver sets the channel interrupt
status flag to indicate the arrival of new data. The status flag should be cleared after reading the received
dataif the interrupt status flag will be used in a polling environment. The detection of new received data,
reading the data, and clearing the status flag must compl ete before new data is received to avoid missing
data, or possibly reading the same data twice.

The UART function can do back-to-back transfers. If data is available in time, the transmitter does not
generate anidle line signal, but transmits exactly one stop bit followed by the start bit for the next data. An
idle line condition only occurs if the transmit data register is empty after transferring data. The length of a
transmit idle line condition is aways divisible by the baud_rate parameter. The receiver can handle any
length of idleline.

Every data word begins with one start bit, which is always alogic zero. Following the start bit, a specified
number of data bits are transmitted least significant bit first, then a parity bit is generated and transmitted if
parity is enabled. The end of the data word is marked by one stop bit, which is always alogic one. Anidle
line consists of successive stop bits, which means that the lineis at logic level one whileidle. For example
the ASCI|I character “A” isalwaystransmitted as %0(start bit) 0100 0001(“A") (parity bit if enabled) 1(stop
bit).

This note uses the term “bit time” to refer to the time required to transmit or receive one bit. Bit time is
determined by baud rate, using the formula:

Bit Time = 1/Baud Rate

Thereceiver detects adataword by sensing the falling edge of the start bit. Since the UART function always
treats the first faling edge after the initialization service request as a valid start bit, a receiver must be
enabled only when thelineisidle. A received bit is sampled only once, approximately halfway through the
bit time.

2.1 UART C Level API

Rather then controlling the TPU registers directly, the UART routinesin this TPU Programming Note may
be used to provide a simple and easy interface. There are 4 routines for controlling the UART function in 2
files (tpu_uart.h and tpu_uart.c). The tpu_uart.h file should be included in any files that use the routines.
This files contains the function prototypes and useful #defines. Each of the routines in tpu_uart.c will be
described in detail. The routines are:

e [|nitialization Functions;

— voidtpu_uart_transmit_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16
baud rate, INT16 bits per _data word, UINT8 parity, UINT8 nointerrupt_interrupt);

— voidtpu_uart_receive_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16
baud rate, INT16 bits per _data word, UINT8 parity, UINT8 nointerrupt_interrupt);

e Functions to write data to transmit and read received data:

2 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
UART C Level API

— void tpu_uart_write_transmit_data(struct TPU3_tag *tpu, UINT8 channel, INT16
transmit_data);

— void tpu_uart_read_receive_data(struct TPU3_tag *tpu, UINT8 channel, INT16
*receive_data, UINT8 *parity_error, UINT8 *framing_error);

2.1.1 void tpu_uart_transmit_init

This function is used to initiadlize a channel to run the transmit UART function. This function has 7
parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channel - Thisisthe TPU channel number of the UART channel. This parameter should be
assigned avalue of 0 to 15.

» priority- Thisisthepriority toassigntothechannel. Thisparameter shoul d beassigned aval ueof
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

» baud_rate —Baud rate is ameasure of the number of times per second asignal ina
communications channel varies, or makes a transition between states (states being frequencies,
voltage levels, or phase angles). One baud is one such change. Thus, a 300-baud modem's signal
changes state 300 times each second, while a 600- baud modem's signal changes state 600 times
per second. The baud_rate value is the number of TCR1 counts per bit time, and is calculated by
the following equation:

Timer Count Register (TCR1) counts/second
number of transitions baud/second

» bits per_data word — Thisisthe number of bits to be transmitted in one data word. This
bits per_data word commonly has avalue of eight, because most serial protocols use 8-bit words.

e parity — Thisisthe desired parity. This parameter should be assigned a val ue of
TPU_UART_NOPARITY, TPU_UART_EVEN_PARITY, or TPU_UART__ODD_PARITY. The
TPU parity for the UART function is defined in tpu_uart.h.

* nointerrupt_interrupt — This parameter determineswhether an interrupt is generated after each data
word is transmitted.

2.1.2 void tpu_uart_receive_init
This function is used to initialize a channd to run the receive UART function. This function has 7
parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channel - Thisisthe TPU channel number of the UART channel. This parameter should be
assigned avalue of 0to 15.

e priority- Thisisthepriority toassigntothechannel. Thisparameter shoul d beassignedaval ueof
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

Using the Universal Asynchronous Receiver Transmitter TPU Function 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

JART C Level API

baud_rate — Baud rate is a measure of the number of times per second asignal ina
communications channel varies, or makes a transition between states (states being frequencies,
voltage levels, or phase angles). One baud is one such change. Thus, a 300-baud modem's signal
changes state 300 times each second, while a 600- baud modem's signal changes state 600 times
per second. The baud_rate value is the number of TCR1 counts per bit time, and is cal culated by
the following equation:

Timer Count Register (TCR1) counts/second
number of transitions baud/second

bits per_data word — Thisisthe number of bits to be received in one data word. This
bits per_data word commonly has avalue of eight, because most serial protocols use 8-bit words.

parity — Thisisthe desired parity. This parameter should be assigned a value of
TPU_UART_NOPARITY, TPU_UART__ EVEN_PARITY, or TPU_UART_ODD_PARITY. The
TPU parity for the UART function is defined in tpu_uart.h.

nointerrupt_interrupt — This parameter determines whether an interrupt is generated when each
dataword is received.

NOTE

Care should betaken wheninitializing TPU channels. The TPU’s behavior
may become unpredictable if achannel isreinitialized while it is running.
This unpredictability can occur because there is no way to stop a TPU
channel that is executing code. Therefore, the channel must complete the
execution of code before it is reinitialized. To ensure that the channdl is
stopped before it is configured, the channel’s priority should be set to
disabled. If the channel is currently being serviced when the priority is set
to disabled, it will continue to service the channel until the state ends. To
ensure that the channel is not being serviced, the user should wait for the
longest state execution time after disabling the channel. All channels are
disabled out of reset so that they can be configured immediately from reset.

Thetpu_uart_init function attemptsto wait between the disabling of the channelsbeforeit starts configuring
them, however the actual execution speed of the code will be depend on the specific system. If you are not
configuring the channels from reset, then idedlly it is best to have the functions disabled before calling this
function. TPU channels can be disabled by using the tpu_disable function in the mpc500_utils.c file. For
example, disabling channel 0 is donelikethis: tpu_disable(tpu, 0);

2.1.3 void tpu_uart_write_transmit_data

Thisfunction is used to send the data that isto be serially transmitted. This function has 3 parameters:

*tpu — Thisis a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h

channel — Thisisthe TPU channel number of the UART channel. This parameter should be
assigned avalue of 0 to 15.

transmit_data— Thisthe actual dataword to be transmitted. Up to 14 bits of data per data word
can be transmitted.

Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example 1

2.1.4 void tpu_uart _read receive _data

This function is used to get the serially received data. In addition, parity can be checked if enabled. Any
framing errors can also be checked. Both parity and framing errors are only valid for each received data
word. Each new word received will update both parity and framing error information, overwriting previous
values. Thisfunction has 5 parameters:

* *tpu-—Thisisapointer to the TPU3 module to use. It is of type TPU3_tag which isdefined in
m_tpu3.h

e channel — Thisisthe TPU channel number of the UART channel. This parameter should be
assigned avalue of 0 to 15.

» *receive _data— Thisisa pointer to the received data. The calling routine of this function should
pass the address of where the received dataisto be stored in the receive_data parameter. Up to 14
bits of data per data word can be received.

e *parity_error —If parity isenabled, this parameter is set to either one or zero depending on whether
even or odd parity is enabled. For even parity thisbit is set to aone if the number of onesin the
received dataword is odd, else the bit is set to zero. For odd parity this bit is set to aone if the
number of onesin the received dataword is even, else the bit is set to zero. The calling routine of
this function should pass the address of where the parity error parameter is to be stored in
*parity_error. The parity isonly valid for each received data word.

» *framing_error — The framing_error parameter is set to aoneif aframing error is detected. A
framing error occurs when the UART function determines that a stop bit is low instead of high.
The calling routine of thisfunction should pass the address of where the framing error parameter is
to be stored in *framing_error. The framing error indication is only valid for each received data
word.

3 Asynchronous Serial Interface Example

Thefollowing exampl e shows configuration of a TPU channel as atransmitter, and another TPU channel as
areceiver. Test datais seria transmitted out of the TPU transmitter channel, and if the two channels are
connected together serial datais received into the TPU receiver channel. This example isa C program that
shows how to configure and use the UART interface routines.

3.1 Examplel

3.1.1 Description

This sample program show a simple UART example in which channel 0 is configured as a transmitter and
channel 1 is configured as areceiver. When the two channels are physically connected together, each data
word transmitted by channel 0 will be received by channel 1. The received dataisthen stored in an array to
allow checking of the received data. The baud rate is set to approximately 9600 baud. The actual baud rate
depends on the clock frequency of the MCU, and the prescaler value chosen.

Using the Universal Asynchronous Receiver Transmitter TPU Function 5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
xample 1

3.1.2 Program

AR EEEEEEEEEEREEREREEEEEEEEEEEREREEEEEEEEAEEEEREEEEEEEEEEEEEREEEEREEEEEEEERELY]

/* FILE NAME: tpu_uart_exl.c COPYRIGHT (c) 2002 */
/* VERSION: 1.0 Al Rights Reserved */
/* */
/* DESCRIPTION: This routine is used to initialize TPU channel 0 to */
/* run the UART transmit function and to send out a test stream of data. */
/* Channel 1 is initialized to run the UART receive function and to receive the */
/* test streamof data if channel 0 and 1 are physically connected together. */
/* The received data is stored in array store_receive_data_pointer [] */
/* */
/* */
/* */
/* H STORY ORI G NAL AUTHOR: Vernon Col er */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
Ix ool el */
/* 1.0 V. GOLER 15/ SEP/ 02 Initial Version of Function */

AR R EEEEEEEEREEREREEEEEEEEEEEEEREEEEEEEEAEEEEREEEEEEEEEEEEEEEEEEREEEEEEEERELY]

#i ncl ude "npc555. h"
#i ncl ude "npc500_util.h"

#i nclude "tpu_uart.h"

#def i ne UART_BAUD RATE 0x01b2 /* set the baud rate, ~9600 baud */
#defi ne UART_DATA SI ZE 0x0008 /* set data size of transmit and receive data*/

voi d main()

{

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */
U NT8 parity_error; /* parity error flag */
U NT8 fram ng_error; /* framng error flag */
I NT16 receive_data; /* received data */
char test_nessage[] ="1 23456789 Thisis atest of the TPU transmtter function";
char store_receive_data_pointer[100]; /* place to store received data */
int i; /* index variable */
6 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example 1

/* initialize channel 0 to act as a transnitter */
tpu_vuart_transmt_init(tpua, 0, TPU PRI ORI TY_H GH UART_BAUD RATE, UART_DATA SIZE, \
TPU_UART_NOPARI TY, TPU_UART_NO NTERRUPT) ;

/* initialize channel 1 to act as a receiver */
tpu_uart _receive_init(tpua, 1, TPU PRIORI TY_H GH, UART_BAUD RATE, UART_DATA SIZE, \
TPU_UART_NOPARI TY, TPU_UART_NO NTERRUPT) ;

for(i=0; test_nessage[i] != EOF; i++) {
tpu_uart_wite_transmt_data(tpua, 0, test_nessage[i]); /* send data to be
transmtted */

whil e((tpu_check_interrupt(tpua, 0)) !=1) /* wait for data to be transmtted*/
{

}

whi l e((tpu_check_interrupt(tpua, 1)) != 1)/* check for received data available */

{
}

/* read received data, check for parity and franing error */

tpu_vuart_read_receive_data(tpua, 1, & eceive_data, &parity_error, & ramng_error);

tpu_clear_interrupt(tpua, 1); /* clear receive interrupt status channel 1*/

/* save received data read in nenory, mask to eight bit data */

store_receive_data_pointer[i] = receive_data;

whi | e(1)

} /* wait after nessage transmtted*/

Using the Universal Asynchronous Receiver Transmitter TPU Function 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
xample 1

4 Function State Timing

When calculating the worst case latency for the TPU, the execution time of each state of the TPU is needed.
The state timings for each of the six modes of the UART function are shown below in Table 1. The states
used by the C interface functions are shown in Table 2.

Table 1. UART Function State Timing

State Number and Name Max. CPU Clock Cycles RA“@??I_(;EUSSGS
SO INIT_RECEIVER 4 0
S1 INIT_TRANSMITTER 4 1
S2 POLLING_TDRE 7
(Transmitter only)
TDRE=1 16
TDRE =0 22
S3 SENDING_DATA (transmitter only) 8
Transmit stop bit with parity 12
Transmit stop bit no parity 20
Transmit parity 32
Transmit one data bit 28
S4 RECEIVING_START_BIT (receiver only) ‘ | 2
No parity selected 16
Parity selected 18
S5 RECEIVING_START_BIT (receiver only) ‘ | 8
Receive stop bhit 44 + (2 * (16 — data_size))
Receive one data bit 20

NOTE: Execution times do not include the time slot transition time (TST= 10 or 14 CPU clocks)
Table 2. UART API Function State Usage

UART API Function State Uses
tpu_uart_transmit_init SO
tpu_uart_receive_init S1
tpu_uart_write_transmit_data S2,S3
tpu_uart_read_receive_data S4, S5

5 Function Code Size

Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation DPTRAM memory microcode space. UART function code sizeis:

59 W ingtructions + 8 entries = 67 long words

8 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Performance

6 Notes on Use and Performance
of the UART Function

6.1 Performance

Like all TPU functions, the performance limit of the UART function in a given application is dependent to
some extent on the service time (latency) associated with activity on other TPU channels. Thisis dueto the
operational nature of the scheduler. In the case of the UART function, this limits the maximum frequency
and minimum pulse widths of the signal that can be properly measured.

Since the scheduler assures that the worst case latencies in any TPU application can be calculated, it is
recommended that the guidedlines given in the TPU reference manual are used along with the information
giveninthe UART function state timing table to perform an analysis on any proposed TPU application that
appears to approach the performance limits of the TPU.

To calculate the maximum performance of the function, the user must know the execution time for the
different states of the functionsrunning at the sametime. In general, the maximum service latency for every
mode of the UART function must be less than one bit time, which depends on the baud rate. The function
must be allowed this amount of time by the other running functions.

6.1.1 Latency Example

The example assumethat only the UART function is executing on aM PC555 running with a40MHz system
clock. The example isfor an absolute worst case, e.g. al transmitters are transmitting parity bitsfor all bits
transmitted.

When only transmitters are running, maximum baud rate for all channels combined is:
(time to switch channels— 10 clocks) + (time to transmit parity bit — 32 clocks) = 42 clockd bit

Forty-two clockg/bit rounds to 11 TCR1 counts, assuming that the resolution of each TCR1 count is 4
system clocks. There are 10,000,000 TCR1 counts/second for a 40 MHz system clock. 10,000,000 TCR1
counts/ second divided by 11 TCR1 counts bit = 909K bits/ second which is approximately 909 Kbaud for
one transmitter. This translates to approximately 90 Kbaud for 10 transmitters.

Similar calculations can be performed for a system running only receivers, or running any combination of
transmitters and receivers.

6.2 Usage Notes and Restrictions

6.2.1 Differences from a Conventional UART

e The UART function does not implement MODEM control signalslike RTS, CTS, and CD.

* Thereceiver does not provide an overrun bit that is set when a received dataword is not read by
the CPU before a new data word arrives.

» Thetransmitter does not provide an underrun bit.
» Thestatus bits are not cleared automatically by reading or writing the data registers.
* The number of stop bitsisfixed to one.

Using the Universal Asynchronous Receiver Transmitter TPU Function 9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Noise Immunity

6.2.2 Restrictions

To minimize TPU loading, the receiver does single sampling only. Each bit is sampled only once in the
middle of the bit time - any glitch on the receive dataline may cause erroneous data. The receiver does not
detect idle line or break conditions, nor does the transmitter generate a break character.

Status bits must be handled by the CPU. These bits are set automatically by the TPU, but cannot be cleared
by the function. The bits must be cleared by the CPU. This may cause a problem when the interrupt status
bit is used to indicate that data has been received.

Theinterrupt status bit must be cleared by the CPU immediately before and after aread. The problem arises
if the UART function receives new data before both actions are compl ete.

If the status bit is cleared immediately before reading data, anew dataword might arrive before the previous
dataisread. In this case, the new word would be read, then the status bit would be set again, causing the
word to be read a second time.

If the status bit is cleared immediately after datais read, a new data word might arrive before the status bit
is cleared. In this case, the new datais not read, because the interrupt status bit is not set again.

To avoid these problems, the read routine must respond to the interrupt status bit quickly. The routine must
execute completely before the function copies the received value from SHIFT _REGISTER to
RECEIVE_DATA_REG

6.3 Noise Immunity

The UART function is designed to filter out individual pulseswhich are too short to be measured correctly.
These will not cause anomalous results in any of the measurement modes. However, repetitive noise on
theinput signal can cause anomalousresultsand also increased TPU activity, leading to an overall reduction
in system performance. For this reason, every effort should be made to present the TPU with a noise free
signal. Guaranteed minimum measurable pul se width or period can be determined by cal culating worst-case
latency for the UART function. Refer to Section 4, “Function State Timing” for more information.

10 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Noise Immunity

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
Go to: www.freescale.com

11

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “freescale”

semiconductor

AN2371/D

For More Information On This Product,
Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Universal Asynchronous Receiver Transmitter TPU Function (UART) with the MPC500 Family
	1 Functional Overview
	2 Detailed Description
	2.1 UART C Level API
	2.1.1 void tpu_uart_transmit_init
	2.1.2 void tpu_uart_receive_init
	2.1.3 void tpu_uart_write_transmit_data
	2.1.4 void tpu_uart_read_receive_data

	3 Asynchronous Serial Interface Example
	3.1 Example 1
	3.1.1 Description
	3.1.2 Program

	4 Function State Timing
	Table�1. UART Function State Timing
	Table�2. UART API Function State Usage

	5 Function Code Size
	6 Notes on Use and Performance of the UART Function
	6.1 Performance
	6.1.1 Latency Example

	6.2 Usage Notes and Restrictions
	6.2.1 Differences from a Conventional UART
	6.2.2 Restrictions

	6.3 Noise Immunity

