
Application Note

AN2371/D
Rev. 0, 10/2002

Using the Universal
Asynchronous Receiver
Transmitter TPU
Function (UART) with
the MPC500 Family

Vernon Goler

TECD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

This TPU Programming Note is intended to provide simple C interface routines to the
asynchronous receiver transmitter TPU function (UART). 1 The routines are targeted for the
MPC500 family of devices but, they should be easy to use with any device that has a TPU.

1 Functional Overview
The UART function uses two TPU channels to provide a 3-wire (TxD, RxD and GND)
asynchronous serial interface. One TPU channel is configured to function as the serial
transmitter (TxD), and another TPU channel is configured to function as a serial receiver
(RxD). All standard baud rates and parity checking can be selected.

2 Detailed Description
A UART consists of a transmitter, which can transmit serial data via a transmit data (TxD) pin,
and a receiver, which can receive serial data via a receive data (RxD) pin. Both transmitter and
receiver contain a single shift register that performs parallel-to-serial and serial-to-parallel
conversion. Although a UART IC normally contains both the transmitter and receiver,
implementing a full-duplex UART with the TPU requires independent receiver and
transmitter channels because each TPU channel controls only one pin (a channel can be either
a transmitter or a receiver, but not both at the same time). While at least two TPU channels
must be used for a fully functional UART, it is not necessary to use both subfunctions together,
nor to use the same number of receivers and transmitters. For example, the TPU can be
configured to function as 13 transmitters and 3 receivers. There is also no restriction on which
channels may be used to receive and transmit - any channel can be used to transmit or receive
data. Since baud rate for each channel is specified independently, a transmitter can have a
different rate than a receiver

The UART protocol allows selection of a parity bit to detect simple transmission errors. Parity
can be generated and checked in three different ways: odd, even and no parity. All parity types
are supported with the UART function.

The UART protocol is not fixed to a specific number of bits for one data word. Although 8-bit
words are normally used, some applications use 7-bit or 9-bit words. The UART function can

1The information in this Programming Note is based on TPUPN07. It is intended to
compliment the information found in that Programming Note.

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

UART C Level API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

use word lengths from one to 14 bits. The number of transmitter stop bits is fixed at one. The receiver can
also handle fractional stop bits correctly, but the transmitter cannot generate fractional stop bits.

The UART function is double buffered. Both transmitter and receiver contain a shift register as well as a
data register. The host CPU can write new data to the transmit data register while data is being transmitted,
and can read data from the receive data register while data is being received.

The UART transmitter sets the channel interrupt status flag to indicate when all the data has been
transmitted. The status flag should be cleared before new data is written to the transmitter if the interrupt
status flag will be used in a polling environment. Likewise the UART receiver sets the channel interrupt
status flag to indicate the arrival of new data. The status flag should be cleared after reading the received
data if the interrupt status flag will be used in a polling environment. The detection of new received data,
reading the data, and clearing the status flag must complete before new data is received to avoid missing
data, or possibly reading the same data twice.

The UART function can do back-to-back transfers. If data is available in time, the transmitter does not
generate an idle line signal, but transmits exactly one stop bit followed by the start bit for the next data. An
idle line condition only occurs if the transmit data register is empty after transferring data. The length of a
transmit idle line condition is always divisible by the baud_rate parameter. The receiver can handle any
length of idle line.

Every data word begins with one start bit, which is always a logic zero. Following the start bit, a specified
number of data bits are transmitted least significant bit first, then a parity bit is generated and transmitted if
parity is enabled. The end of the data word is marked by one stop bit, which is always a logic one. An idle
line consists of successive stop bits, which means that the line is at logic level one while idle. For example
the ASCII character “A” is always transmitted as %0(start bit) 0100 0001(“A”) (parity bit if enabled) 1(stop
bit).

This note uses the term “bit time” to refer to the time required to transmit or receive one bit. Bit time is
determined by baud rate, using the formula:

Bit Time = 1/Baud Rate

The receiver detects a data word by sensing the falling edge of the start bit. Since the UART function always
treats the first falling edge after the initialization service request as a valid start bit, a receiver must be
enabled only when the line is idle. A received bit is sampled only once, approximately halfway through the
bit time.

2.1 UART C Level API
Rather then controlling the TPU registers directly, the UART routines in this TPU Programming Note may
be used to provide a simple and easy interface. There are 4 routines for controlling the UART function in 2
files (tpu_uart.h and tpu_uart.c). The tpu_uart.h file should be included in any files that use the routines.
This files contains the function prototypes and useful #defines. Each of the routines in tpu_uart.c will be
described in detail. The routines are:

• Initialization Functions:

— void tpu_uart_transmit_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16
baud_rate, INT16 bits_per_data_word, UINT8 parity, UINT8 nointerrupt_interrupt);

— void tpu_uart_receive_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16
baud_rate, INT16 bits_per_data_word, UINT8 parity, UINT8 nointerrupt_interrupt);

• Functions to write data to transmit and read received data:
2 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
 Go to: www.freescale.com

UART C Level API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

— void tpu_uart_write_transmit_data(struct TPU3_tag *tpu, UINT8 channel, INT16
transmit_data);

— void tpu_uart_read_receive_data(struct TPU3_tag *tpu, UINT8 channel, INT16
*receive_data, UINT8 *parity_error, UINT8 *framing_error);

2.1.1 void tpu_uart_transmit_init
This function is used to initialize a channel to run the transmit UART function. This function has 7
parameters:

• *tpu - This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h.

• channel - This is the TPU channel number of the UART channel. This parameter should be
assigned a value of 0 to 15.

• priority - This is the priority to assign to the channel. This parameter should be assigned a value of
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

• baud_rate – Baud rate is a measure of the number of times per second a signal in a
communications channel varies, or makes a transition between states (states being frequencies,
voltage levels, or phase angles). One baud is one such change. Thus, a 300-baud modem's signal
changes state 300 times each second, while a 600- baud modem's signal changes state 600 times
per second. The baud_rate value is the number of TCR1 counts per bit time, and is calculated by
the following equation:

• bits_per_data_word – This is the number of bits to be transmitted in one data word. This
bits_per_data_word commonly has a value of eight, because most serial protocols use 8-bit words.

• parity – This is the desired parity. This parameter should be assigned a value of
TPU_UART_NOPARITY, TPU_UART__EVEN_PARITY, or TPU_UART__ODD_PARITY. The
TPU parity for the UART function is defined in tpu_uart.h.

• nointerrupt_interrupt – This parameter determines whether an interrupt is generated after each data
word is transmitted.

2.1.2 void tpu_uart_receive_init
This function is used to initialize a channel to run the receive UART function. This function has 7
parameters:

• *tpu - This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h.

• channel - This is the TPU channel number of the UART channel. This parameter should be
assigned a value of 0 to 15.

• priority - This is the priority to assign to the channel. This parameter should be assigned a value of
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

Timer Count Register (TCR1) counts/second
number of transitions baud/second

--
Using the Universal Asynchronous Receiver Transmitter TPU Function 3

For More Information On This Product,
 Go to: www.freescale.com

UART C Level API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• baud_rate – Baud rate is a measure of the number of times per second a signal in a
communications channel varies, or makes a transition between states (states being frequencies,
voltage levels, or phase angles). One baud is one such change. Thus, a 300-baud modem's signal
changes state 300 times each second, while a 600- baud modem's signal changes state 600 times
per second. The baud_rate value is the number of TCR1 counts per bit time, and is calculated by
the following equation:

• bits_per_data_word – This is the number of bits to be received in one data word. This
bits_per_data_word commonly has a value of eight, because most serial protocols use 8-bit words.

• parity – This is the desired parity. This parameter should be assigned a value of
TPU_UART_NOPARITY, TPU_UART__EVEN_PARITY, or TPU_UART__ODD_PARITY. The
TPU parity for the UART function is defined in tpu_uart.h.

• nointerrupt_interrupt – This parameter determines whether an interrupt is generated when each
data word is received.

NOTE
Care should be taken when initializing TPU channels. The TPU’s behavior
may become unpredictable if a channel is reinitialized while it is running.
This unpredictability can occur because there is no way to stop a TPU
channel that is executing code. Therefore, the channel must complete the
execution of code before it is reinitialized. To ensure that the channel is
stopped before it is configured, the channel’s priority should be set to
disabled. If the channel is currently being serviced when the priority is set
to disabled, it will continue to service the channel until the state ends. To
ensure that the channel is not being serviced, the user should wait for the
longest state execution time after disabling the channel. All channels are
disabled out of reset so that they can be configured immediately from reset.

The tpu_uart_init function attempts to wait between the disabling of the channels before it starts configuring
them, however the actual execution speed of the code will be depend on the specific system. If you are not
configuring the channels from reset, then ideally it is best to have the functions disabled before calling this
function. TPU channels can be disabled by using the tpu_disable function in the mpc500_utils.c file. For
example, disabling channel 0 is done like this: tpu_disable(tpu, 0);

2.1.3 void tpu_uart_write_transmit_data
This function is used to send the data that is to be serially transmitted. This function has 3 parameters:

• *tpu – This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h

• channel – This is the TPU channel number of the UART channel. This parameter should be
assigned a value of 0 to 15.

• transmit_data – This the actual data word to be transmitted. Up to 14 bits of data per data word
can be transmitted.

Timer Count Register (TCR1) counts/second
number of transitions baud/second

--
4 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.1.4 void tpu_uart_read_receive_data
This function is used to get the serially received data. In addition, parity can be checked if enabled. Any
framing errors can also be checked. Both parity and framing errors are only valid for each received data
word. Each new word received will update both parity and framing error information, overwriting previous
values. This function has 5 parameters:

• *tpu – This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h

• channel – This is the TPU channel number of the UART channel. This parameter should be
assigned a value of 0 to 15.

• *receive_data – This is a pointer to the received data. The calling routine of this function should
pass the address of where the received data is to be stored in the receive_data parameter. Up to 14
bits of data per data word can be received.

• *parity_error – If parity is enabled, this parameter is set to either one or zero depending on whether
even or odd parity is enabled. For even parity this bit is set to a one if the number of ones in the
received data word is odd, else the bit is set to zero. For odd parity this bit is set to a one if the
number of ones in the received data word is even, else the bit is set to zero. The calling routine of
this function should pass the address of where the parity error parameter is to be stored in
*parity_error. The parity is only valid for each received data word.

• *framing_error – The framing_error parameter is set to a one if a framing error is detected. A
framing error occurs when the UART function determines that a stop bit is low instead of high.
The calling routine of this function should pass the address of where the framing error parameter is
to be stored in *framing_error. The framing error indication is only valid for each received data
word.

3 Asynchronous Serial Interface Example
The following example shows configuration of a TPU channel as a transmitter, and another TPU channel as
a receiver. Test data is serial transmitted out of the TPU transmitter channel, and if the two channels are
connected together serial data is received into the TPU receiver channel. This example is a C program that
shows how to configure and use the UART interface routines.

3.1 Example 1

3.1.1 Description
This sample program show a simple UART example in which channel 0 is configured as a transmitter and
channel 1 is configured as a receiver. When the two channels are physically connected together, each data
word transmitted by channel 0 will be received by channel 1. The received data is then stored in an array to
allow checking of the received data. The baud rate is set to approximately 9600 baud. The actual baud rate
depends on the clock frequency of the MCU, and the prescaler value chosen.
Using the Universal Asynchronous Receiver Transmitter TPU Function 5

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.1.2 Program
/**/

/* FILE NAME: tpu_uart_ex1.c COPYRIGHT (c) 2002 */

/* VERSION: 1.0 All Rights Reserved */

/* */

/* DESCRIPTION: This routine is used to initialize TPU channel 0 to */

/* run the UART transmit function and to send out a test stream of data. */

/* Channel 1 is initialized to run the UART receive function and to receive the */

/* test stream of data if channel 0 and 1 are physically connected together. */

/* The received data is stored in array store_receive_data_pointer [] */

/* */

/* */

/*=== */

/* HISTORY ORIGINAL AUTHOR: Vernon Goler */

/* REV AUTHOR DATE DESCRIPTION OF CHANGE */

/* --- ------ ---- --------------------- */

/* 1.0 V. GOLER 15/SEP/02 Initial Version of Function */

/**/

#include "mpc555.h"

#include "mpc500_util.h"

#include "tpu_uart.h"

#define UART_BAUD_RATE 0x01b2 /* set the baud rate, ~9600 baud */

#define UART_DATA_SIZE 0x0008 /* set data size of transmit and receive data*/

void main()

{

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

UINT8 parity_error; /* parity error flag */

UINT8 framing_error; /* framing error flag */

INT16 receive_data; /* received data */

char test_message[] = "1 2 3 4 5 6 7 8 9 This is a test of the TPU transmitter function";

char store_receive_data_pointer[100]; /* place to store received data */

int i; /* index variable */
6 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* initialize channel 0 to act as a transmitter */

tpu_uart_transmit_init(tpua, 0, TPU_PRIORITY_HIGH, UART_BAUD_RATE, UART_DATA_SIZE, \

TPU_UART_NOPARITY, TPU_UART_NOINTERRUPT);

/* initialize channel 1 to act as a receiver */

tpu_uart_receive_init(tpua, 1, TPU_PRIORITY_HIGH, UART_BAUD_RATE, UART_DATA_SIZE, \

TPU_UART_NOPARITY, TPU_UART_NOINTERRUPT);

for(i=0; test_message[i] != EOF; i++) {

 tpu_uart_write_transmit_data(tpua, 0, test_message[i]); /* send data to be
transmitted */

 while((tpu_check_interrupt(tpua, 0)) != 1) /* wait for data to be transmitted*/

 {

 }

 while((tpu_check_interrupt(tpua, 1)) != 1)/* check for received data available */

 {

 }

/* read received data, check for parity and framing error */

 tpu_uart_read_receive_data(tpua, 1, &receive_data, &parity_error, &framing_error);

 tpu_clear_interrupt(tpua, 1); /* clear receive interrupt status channel 1*/

/* save received data read in memory, mask to eight bit data */

 store_receive_data_pointer[i] = receive_data;

}

while(1)

{

} /* wait after message transmitted*/

}

Using the Universal Asynchronous Receiver Transmitter TPU Function 7

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4 Function State Timing
When calculating the worst case latency for the TPU, the execution time of each state of the TPU is needed.
The state timings for each of the six modes of the UART function are shown below in Table 1. The states
used by the C interface functions are shown in Table 2.

NOTE: Execution times do not include the time slot transition time (TST= 10 or 14 CPU clocks)

5 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation DPTRAM memory microcode space. UART function code size is:

59 µ instructions + 8 entries = 67 long words

Table 1. UART Function State Timing

State Number and Name Max. CPU Clock Cycles
RAM Accesses

by TPU

S0 INIT_RECEIVER 4 0

S1 INIT_TRANSMITTER 4 1

S2 POLLING_TDRE 7

 (Transmitter only)

 TDRE = 1 16

 TDRE = 0 22

S3 SENDING_DATA (transmitter only) 8

 Transmit stop bit with parity 12

 Transmit stop bit no parity 20

 Transmit parity 32

 Transmit one data bit 28

S4 RECEIVING_START_BIT (receiver only) 2

 No parity selected 16

 Parity selected 18

S5 RECEIVING_START_BIT (receiver only) 8

 Receive stop bit 44 + (2 * (16 – data_size))

 Receive one data bit 20

Table 2. UART API Function State Usage

UART API Function State Uses

tpu_uart_transmit_init S0

tpu_uart_receive_init S1

tpu_uart_write_transmit_data S2, S3

tpu_uart_read_receive_data S4, S5
8 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Performance

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6 Notes on Use and Performance
of the UART Function

6.1 Performance
Like all TPU functions, the performance limit of the UART function in a given application is dependent to
some extent on the service time (latency) associated with activity on other TPU channels. This is due to the
operational nature of the scheduler. In the case of the UART function, this limits the maximum frequency
and minimum pulse widths of the signal that can be properly measured.

Since the scheduler assures that the worst case latencies in any TPU application can be calculated, it is
recommended that the guidelines given in the TPU reference manual are used along with the information
given in the UART function state timing table to perform an analysis on any proposed TPU application that
appears to approach the performance limits of the TPU.

To calculate the maximum performance of the function, the user must know the execution time for the
different states of the functions running at the same time. In general, the maximum service latency for every
mode of the UART function must be less than one bit time, which depends on the baud rate. The function
must be allowed this amount of time by the other running functions.

6.1.1 Latency Example
The example assume that only the UART function is executing on a MPC555 running with a 40MHz system
clock. The example is for an absolute worst case, e.g. all transmitters are transmitting parity bits for all bits
transmitted.

When only transmitters are running, maximum baud rate for all channels combined is:

(time to switch channels – 10 clocks) + (time to transmit parity bit – 32 clocks) = 42 clocks/ bit

Forty-two clocks/bit rounds to 11 TCR1 counts, assuming that the resolution of each TCR1 count is 4
system clocks. There are 10,000,000 TCR1 counts/second for a 40 MHz system clock. 10,000,000 TCR1
counts/ second divided by 11 TCR1 counts/ bit = 909K bits/ second which is approximately 909 Kbaud for
one transmitter. This translates to approximately 90 Kbaud for 10 transmitters.

Similar calculations can be performed for a system running only receivers, or running any combination of
transmitters and receivers.

6.2 Usage Notes and Restrictions

6.2.1 Differences from a Conventional UART
• The UART function does not implement MODEM control signals like RTS, CTS, and CD.

• The receiver does not provide an overrun bit that is set when a received data word is not read by
the CPU before a new data word arrives.

• The transmitter does not provide an underrun bit.

• The status bits are not cleared automatically by reading or writing the data registers.

• The number of stop bits is fixed to one.
Using the Universal Asynchronous Receiver Transmitter TPU Function 9

For More Information On This Product,
 Go to: www.freescale.com

Noise Immunity

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.2.2 Restrictions
To minimize TPU loading, the receiver does single sampling only. Each bit is sampled only once in the
middle of the bit time - any glitch on the receive data line may cause erroneous data. The receiver does not
detect idle line or break conditions, nor does the transmitter generate a break character.

Status bits must be handled by the CPU. These bits are set automatically by the TPU, but cannot be cleared
by the function. The bits must be cleared by the CPU. This may cause a problem when the interrupt status
bit is used to indicate that data has been received.

The interrupt status bit must be cleared by the CPU immediately before and after a read. The problem arises
if the UART function receives new data before both actions are complete.

If the status bit is cleared immediately before reading data, a new data word might arrive before the previous
data is read. In this case, the new word would be read, then the status bit would be set again, causing the
word to be read a second time.

If the status bit is cleared immediately after data is read, a new data word might arrive before the status bit
is cleared. In this case, the new data is not read, because the interrupt status bit is not set again.

To avoid these problems, the read routine must respond to the interrupt status bit quickly. The routine must
execute completely before the function copies the received value from SHIFT_REGISTER to
RECEIVE_DATA_REG.

6.3 Noise Immunity
The UART function is designed to filter out individual pulses which are too short to be measured correctly.
These will not cause anomalous results in any of the measurement modes. However, repetitive noise on
the input signal can cause anomalous results and also increased TPU activity, leading to an overall reduction
in system performance. For this reason, every effort should be made to present the TPU with a noise free
signal. Guaranteed minimum measurable pulse width or period can be determined by calculating worst-case
latency for the UART function. Refer to Section 4, “Function State Timing” for more information.
10 Using the Universal Asynchronous Receiver Transmitter TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Noise Immunity

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

THIS PAGE INTENTIONALLY LEFT BLANK
Using the Universal Asynchronous Receiver Transmitter TPU Function 11

For More Information On This Product,
 Go to: www.freescale.com

AN2371/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Universal Asynchronous Receiver Transmitter TPU Function (UART) with the MPC500 Family
	1 Functional Overview
	2 Detailed Description
	2.1 UART C Level API
	2.1.1 void tpu_uart_transmit_init
	2.1.2 void tpu_uart_receive_init
	2.1.3 void tpu_uart_write_transmit_data
	2.1.4 void tpu_uart_read_receive_data

	3 Asynchronous Serial Interface Example
	3.1 Example 1
	3.1.1 Description
	3.1.2 Program

	4 Function State Timing
	Table�1. UART Function State Timing
	Table�2. UART API Function State Usage

	5 Function Code Size
	6 Notes on Use and Performance of the UART Function
	6.1 Performance
	6.1.1 Latency Example

	6.2 Usage Notes and Restrictions
	6.2.1 Differences from a Conventional UART
	6.2.2 Restrictions

	6.3 Noise Immunity

