Freescale Semiconductor

Application Note

AN2362/D
Rev. 0, 10/2002

Using the Fast
Quadrature Decode
TPU Function (FQD)
with the MPC500 Family

_ This TPU Programming Note is intended to provide simple C interface routines to the fast
Jeff Loeliger quadrature decode TPU function (FQD). 1 The routines are targeted for the M PC500 family of
TECD devices, but they should be easy to use with any device that hasa TPU.

1 Functional Overview

Thefast quadrature decode function (FQD) isa TPU input function that uses two channelsto
decode apair of out of phase signalsin order to increment or decrement a (position) counter.
Itisparticularly useful for decoding position and direction information from a slotted encoder
in motion control systems, thus replacing expensive external solutions (see Figure 1).

The information in this Programming Note is based on TPUPNOQ2. It is intended to
compliment the information found in that Programming Note.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale”

semiconductor
For More Information On This Product,

Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

CASE A — CHANMEL X LEADING CHANMNEL X+1

SLOTTED ENCODER

TR CHAMNEL X

>

- e e

INTERFALE

-

TPU CHAMKNEL X+1

CASE B — CHANKEL X LAGGIMG CHANNEL X+1

SLOTTED ENCODER
TPU CHANNEL X
=

%

INTERFALE

R

TPU CHAMNNEL X41

Figure 1. Lead/Lag Timing

2 Detailed Description

The FQD function uses a pair of adjacent TPU channels to decode quadrature signals into a 16 bit counter
in parameter RAM that is updated when avalid transition is detected on either one of the two inputsi.e. full
'4x" every edge resolution is derived from the encoder signals. The counter is incremented or decremented
depending on the lead/lag relationship of the two signals at the time of servicing the transition. The user can
read or write the counter at any time using the tpu_fqd_position and tpu_fgd write position functions. The
counter is free running, overflowing to 0x0000 or under flowing to OxFFFF depending on direction.

In systems where the counter may over or under flow, the user should ensure that the CPU reads the counter
periodically, with the maximum period between reads being equivalent to 0x8000 counts at maximum signal
frequency. Two’s complement arithmetic can then be used by the CPU to maintain position and direction
information.

When initialized the FQD function is automatically configured so that the first edge on either channel will
result in a counter update.

The FQD function differsfrom QDEC in having two modes of operation: ‘'Normal' and 'Fast'. Since the two
FQD channels (which must always be adjacent) operate differently, the one with the lower channel number
shall be referred to as the ‘primary' channel and the other the 'secondary' channel.

2 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Normal Mode

In operation, the CPU dynamically switches the FQD function between modes depending on the current
encoder speed; this is shown in example listing 2. The following sections describe how the two modes
operate.

2.1 Normal Mode

In normal mode, both quadrature signals are decoded by the TPU and the counter updated by 1 for each valid
transition on either channel - see Figure 2. The counter is incremented or decremented depending on the
'lead/lag' relationship of the two signals at the time of transition service.

EMNCODER MRECTION CHAMNEE —h-l

CHANMELX ! !
(PAMARYY ! I
e |

|

| |
| ' | (I
CHAMMEL X+1 1 : : \ i i
(SECOMDARYY | " I I
,I 1 . : , | 1 ! 1 1 :
POSITION_COUNT: §00r0 [0012 [£0014 s0016 | [S0014 ! E0012 0010 ! SOOOE
S0011 §0013 £0015 'Ens 0013 £0011 SO00F

Figure 2. Normal Mode Timing

2.2 Fast Mode

In fast mode, only one of the two quadrature signals (the primary channel) is serviced and the counter is
updated by 4 for each rising transition (all falling transitions are ignored) - see Figure 3. The effect of this
isto more than quadruple the maximum count rate that the TPU can reliably decode compared with normal
mode. No direction decoding is donein fast mode, the counter being updated in the same direction as when
thelast transition was serviced in normal mode. Thisis not an issue because when running quickly the signal
isnot likely to change direction. When the signal starts slowing down to change direction the FQD function
should be put back into normal mode.

Using the Fast Quadrature Decode TPU Function 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
QD C Level API

CHAMMEL ¥ :
[PRINARY) ,
i
|

CHARNEL Ml
GECONDARY|

1 1
POSITION COLMT VALLIE ' . S
. IHP-.CHLKLF:‘E':JE W o1 o2 13 ¥ 15 18 17 16 19 20 2
1 1 1
1 1
1 1

Vi

I T
| I
1 I
] [}
I I
; I I 1 I
. &m0
I I 1 I
I I 1 1
I I 1 I
1d 34 15 (A51105) [15) 1= {199 {15p {10y £ 24 25 28 2F 2 &2 A

[|

I] I

&m0

|
|
|
I
i
i
2 X M 25 W I
|
|
i

1
EXAMPLE A - PRMARY CHARNELHSO1 | | +
RESLILTANT POSITION COUNT: 10 11 1

T
EXAMPLE B — BRERMARY CHAKMEL H30H Lo fl |+ |+! Lo : : +:

d

|

|
FESULTANT POSITION_COUNT W o1 42 13 %8 15 (85 (05 (15 19 (1% (% 08 23 @3 23 2% 27
HOTE: Humber in paronitoss indicates 1hat ransiion s nol sersdoed and position_oount valuo Pomaing oonstant

Figure 3. Fast Mode Timing

The mode of operation of the FQD can be changed at any time by the CPU by using the tpu_fgd_mode
function. Any requested change in operating mode will take effect when the next rising transition on the
primary channel is serviced.

No counts are lost when switching in and out of fast mode, although there is a +/- 2 Isb uncertainty in the
counter while in fast mode due to the 'by 4' update.

If the application performance requiresthat the fast mode be used then the CPU should start FQD in normal
mode and switch into fast mode when the desired speed (from periodic reads of the position counter) is
above a certain threshold an example of thisis shown in example listing 2. The function should then be run
in fast mode until the speed falls below the threshold when the CPU should switch the function back into
normal mode. The speed threshold at which the function should switch in and out of fast mode is dependent
on overall TPU system activity and must be evaluated for each application.

2.2.1 Time Stamp

The FQD function also provides atime stamp in normal mode referenced to TCR1 for every valid signa
edge and the ability for the host CPU to obtain a current TCR1 value. These features allow position and
speed interpolation by the host CPU between quadrature edges at very slow count rates.

2.2.2 Discrete Input / Transition Counter

A single channel programmed to run FQD could be used as adigital input pin with a transition counter.

2.3 FQD C Level API

Rather than controlling the TPU registersdirectly, the FQD routinesin this TPU Programming Note may be
used to provide asimple and easy interface. There are 6 routines for controlling the FQD function in 2 files
(tpu_fgd.h and tpu_fqd.c). The tpu_fgd.h file should be included in any files that use the routines. Thisfile
contains the function prototypes and useful # defines. The tpu_fqd.c file contains of the following routines,
which are described in detail in the sections below:

4 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FQD C Level API

* General TPU Functions (defined in mpc500_util.h)
— void tpu_enable(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority);
— void tpu_disable (struct TPU3_tag *tpu, UINT8 channel);
* Initidization Functions
— void tpu_fqgd init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16
init_position);
— void tpu_fqgd init_trans _count(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority);
» Change Operation Mode Function
— voidtpu_fgd _mode(struct TPU3_tag *tpu, UINT8 channel, UINT8 mode);
* Return Vaue Functions
— UINT8 tpu_fqgd_current_mode(struct TPU3_tag *tpu, UINT8 channel);
— INT16 tpu_fqd position(struct TPU3_tag *tpu, UINT8 channel);

— void tpu_fgd_data(struct TPU3_tag *tpu, UINT8 channel, INT16 *tcrl, INT16 *edge, INT16
*primary_pin, INT16 * secondary_pin)

2.3.1 void tpu_enable

This can also be used to change the priority. Both FQD channels must have the same priority. Both channels
should be disabled before changing priority.

2.3.2 void tpu_disable
Both FQD channels must be disabled together.

2.3.3 void tpu_fqgd_init
Thisfunctionisused toinitialize apair of channelsto run the FQD function. Thisfunction has 4 parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h

e channel - Thisisthe channel number of the primary FQD channel. The next channd is used as the
secondary.

e priority - Thisisthe priority to assign to both channels. This parameter should be assigned a value
of TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY _LOW. The TPU
priorities are defined in mpc500_utils.h.

* init_position - Thisisthe starting position count.

Care should be taken when initializing TPU channels. The TPU’s behavior may be unpredictable if a
channel isreconfigured whileit isrunning. The channels should be stopped before they are configured. This
is done by setting the channel’s priority to disabled. If the channel is currently being serviced when the
priority is set to disable it will continue to service the channel until the state ends. To make sure the channel
is not being service you need to wait for the longest state execution time after disabling the channel. All
channels are disabled out of reset so the channels can be configured immediately from reset.

Thetpu_fqd init function attemptsto wait between the disabling of the channels before it starts configuring
them, however the actual execution speed of the code will be depend on the specific system. If you are not

Using the Fast Quadrature Decode TPU Function 5

For More Information On This Product,
Go to: www.freescale.com

h -

Freescale Semiconductor, Inc.
QD C Level API

configuring the channels from reset, then idedlly it is best to have the functions disabled before calling this
function. TPU channels can be disabled by using the tpu_disable function in the mpc500_utils.c file. For
example, disabling channels 5 & 6 isdone like this:

tpu_disable(tpu, 5);

tpu_disable(tpu,6);

2.3.4 void tpu_fgd_init_trans_count

Thisfunctionisused toinitialize asingle channel to run in discrete input/transition count feature of the FQD
function. When configured in this mode, the pin state will be updated when each transition is serviced to
contain avalue representing the latest pin level and the position count will count the number of transitions
on the pin (positive and negative). The tpu_fqd_data function can be used to get the pin state. This function
has 3 parameters:
e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h
e channel - Thisisthe channel number of the primary FQD channel.
e priority - Thisisthe priority to assign to both channels. This parameter should be assighed a value
of: TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

As described in tpu_fqd_init, it is best if the channel is disabled and not running before this initialization
routine is called. When using a channel in this mode only the tpu_fqd_position, tpu_fqd_get_position and
tpu_fgd_data functions should be used. The tpu_fqd data function will return the current state of both of
pins, however because only one channel is used in this mode, the state of the second channel will not return
useful data.

2.3.5 void tpu_fgd_mode
This function is used to switch between normal and fast mode on the FQD channels. This function has 3
parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h

e channel - Thisisthe channel number of the primary FQD channel.

* mode - This defines which mode to use; the value should be: TPU_FQD_NORMAL_MODE or
TPU_FQD_FAST_MODE. The TPU modes are defined in tpu_fqd.h.

Normally aprogram will switch between the normal and fast modes as the speed of theinput signal changes.
An example of using this feature is shown in example program 2.

2.3.6 UINT8 tpu_fgd current_mode

This function returns the current mode of the FQD channels. This function has 2 parameters:
e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in

m_tpu3.h
e channel - Thisisthe channel number of the primary FQD channel. The next channd is used as the
secondary.
6 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FQD C Level API

Thereturned value will be: TPU_FQD_NORMAL_MODE or TPU_FQD_FAST_MODE. The TPU modes
aredefined in tpu_fqd.h.

2.3.7 INT16 tpu_fgd_position

This function returns the current position count of the FQD channels. This is the 16 bit counter that is the
primary output of the FQD function. This function has 2 parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h

e channel - Thisisthe channel number of the primary FQD channel.

The return value is the current position count value.

2.3.8 void tpu_fgd_data

This function returns the data parameters associated with the FQD channels. Thisisfunction can be used to
get the current state of the pins or the data could be used to interpolate the position on very slow input
signals.This function has 6 parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h

e channel - Thisisthe channd number of the primary FQD channel.
* *tcrl - Thecurrent value of the TCR1 timebase.
» *edge- Thelast edgetime.

e *primary_pin - The current state of the primary channel, thiswill be TPU_FQD_PIN_HIGH or
TPU_FQD_PIN_LOW.

e *spcondary_pin - The current state of the primary channel, thiswill be TPU_FQD_PIN_HIGH or
TPU_FQD_PIN_LOW.
WARNING

In order for this function to return the current TCR1 value, it must request
a TPU host service and wait for the service to be completed. If the TPU
channel was accidentally disabled or the TPU is stuck in an endless loop
then this function WILL NEVER RETURN.

The value 0x8000 is used to represent a pin high level, and 0x0000 to represent a pin low level.

3 Fast Quadrature Decode Examples

The following examples show configuration of the fast quadrature decode function for both quadrature
decode and as an input pin with transition counter. Each exampleisaC program that shows how to configure
and use the FQD interface routines.

Using the Fast Quadrature Decode TPU Function 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

xample 1

3.1 Examplel

3.1.1 Description

Thisisasimple program to get a basic quadrature input signa system running. It configure channels 0 and
1onTPU A to run FQD. The initial position should be 0x0000. The channel should be scheduled as high

priority.

The program then runsin an infinite loop reading back the current position based on the quadrature signal

on TPU A channels0 and 1.

3.1.2 Program

/**/

/* FILE NAMVE: tpu_fqd_exmaplel.c COPYRI GHT (c) 2002 */

/* VERSION: 1.0 All R ghts Reserved */
/* */
/* DESCRI PTION: This sanple program show a sinple exanple of a program */
/* that updates of the global "position" variable froman external */
/* quadrature input signal. The signal is connected to TPU A on channels */
/* 0 and 1. */
/* The programis targeted for the MPC555 but shoul d work on any MPC500 */
/* device with a TPU. For other devices the setup routines will also need */
/* to be changed. */
/* */
/* H STORY ORI G NAL AUTHOR: Jeff Loeliger */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll . oy
/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */

IR R EEEEEEEEREREEEEEEEEEEEEEEREEEEEEEE SRR EEEEEEEEEEERE SRR EEEEEY

#i ncl ude "npc555. h" /* Define all of the MPC555 registers, this needs to */

/* changed if other MPC500 devices are used.

#i ncl ude "npc500. c" /* Configuration routines for MPC555 EVB, will need
/* to be changed if other hardware is used.

#i ncl ude "npc500_util.h" /* Utility routines for using MPC500 devices */

#indlue "tpu_fqgd.h" /* TPU FQD functions */

#define ENCODERL tpua,0 /* ENCODERL is connected to TPU A channels 0 & 1 */

I NT16 position; /* gl obal position value for quadrature input signal
void main ()

{

8 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

*/

*/
*/
*/

Freescale Semiconductor, Inc.
Example 2

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

set up_npc5xx(40); /*Setup device and programm PLL to 40MHz*/
/* Initialize quadrature input function wth: */
/* -Input signal on TPU A channel 0 and 1 */
I * -Initial count value of 0x0000 */
/* -Schedul e as high priority in the TPU */

tpu_fqd_init(ENCODERL, TPU_PRI ORI TY_HI GH 0x0000);

while (1) {
position = tpu_fqd_position(ENCODER1) ;

3.2 Example 2

3.2.1 Description

The example program uses the mode feature to shift in and out of fast mode depending on the speed of the
input signal. If the function is in normal mode and the number of counts exceeds
FQD_MAX_ DELTA_COUNT thenthefunction shiftsinto fast mode. If thefunctionisin fast mode and the
number of countsislessthan FQD_MIN_DELTA COUNT then the function shifts into normal mode.

It configures channels 4 and 5 on TPU A to run FQD. The initial position should be 0x1000. The channel
should be scheduled as high priority.

3.2.2 Program

IR R R R R EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEERE SRR Ry

/* FILE NAME: tpu_fqd_exanple2.c COPYRI GHT (c) 2002 */
/* VERSION:. 1.0 Al Rights Reserved */
/* */

/* DESCRI PTION: This sanple program show a sinple exanple of a program */
/* that updates of the global "position" variable froman external */

/* quadrature input signal. The signal is connected to TPU A on channels */

/* 4 and 5. */
/* The program swi tches between fast and normal. |If the count during a */
/* certain period is nore than a maxi mum count and the function is in */

/* normal node then it shifts to fast node. If the count during a certain */
/* period is less than a m numum count and the function is in fast node */
/* then it shifts to normal node. */

/* The programis targeted for the MPC555 but should work on any MPC500 */

Using the Fast Quadrature Decode TPU Function 9

For More Information On This Product,
Go to: www.freescale.com

xample 2

Freescale Semiconductor, Inc.

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */
/* */
/* H STORY ORI G NAL AUTHOR: Jeff Loeliger */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll iiiill. oy
/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */

[R KKk ok kR Kk ok ok ok ok Kk ok ok ok ok kK

#i ncl ude "npc555. h"

#i ncl ude "npc500. c"

#i ncl ude "npc500_util.h"
#i nclude "tpu_fqd.h"

LSRR R EEEEE SRR EEEREEEEEEEEEEEEEEE LY

/* Define all of the MPC555 registers, this needs to */

/* changed if other MPC500 devices are used. */

/* Configuration routines for MPC555 EVB, will need */

/* to be changed if other hardware is used. */
/* Utility routines for using MPC500 devices */

/* TPU FQD functions */

#define FQD_I NI T_COUNT 0x1000
#defi ne FQD_M N_DELTA_COUNT 0x0100

#defi ne FQD_MAX DELTA COUNT 0x7000

#defi ne ENCODERL t pua, 4

/* ENCODERL is connected to TPU A channels 0 & 1 */

I NT16 position; /* gl obal position value for quadrature input signal */

void main ()
{
I NT32 delta;
I NT32 new_position;
I NT32 del ay;
U NT8 node;

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

set up_npc500(40);

/*Setup device and program PLL to 40MHz*/

/* Initialize quadrature input function */

tpu_fqd_init(ENCODERL , FQD | NI T_COUNT, TPU PRI ORI TY_H GH);

position = tpu_fqd_position(ENCODER1) ;

while (1) {

10

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example 3

new _position = tpu_fqgd_position(ENCODER1);
delta = new _position - position;

position = new_position;
nmode = tpu_fqd_current _node(ENCODERL) ;

if ((delta>FQD MAX_DELTA COUNT) && (npde==TPU_FQD NORNMAL_MODE))
t pu_fgd_node(ENCODERL , TPU_FQD FAST_MODE) ;

if ((delta<FQD M N _DELTA COUNT) && (node==TPU_FQD FAST_MODE))
t pu_fgd_node(ENCODERL , TPU_FQD_NORMAL_MODE) ;

/* delay to sinulate other tasks or calcul ations */

for(del ay=0; del ay<10000 ; del ay++);

3.3 Example 3

3.3.1 Description

This program shows how to use the FQD function in the discrete input/transition count mode. A single
channel isinitialized and the number of input transition is monitored. The program also shows how to read
back the other information from the FQD function.

Channel 12 is configured for discrete input/transition count mode and scheduled as low priority.

3.3.2 Program

IR R AR R R R EEEEEEEEEEEEEEEEEEREEEEEEEE SRR EEEEEEEEEEERE SRR EEEEEY

/* FILE NAME: tpu_fqd_exanpl e3.c COPYRI GHT (c) 2002 */
/* VERSION: 1.0 All Rights Reserved */
/* */

/* DESCRI PTION: This sanple program show a sinple exanple of a program */
/* that uses the discrete input/transition counter feature of the FQD */
/* function. The signal is connected to channel 12 on TPU B. The nunber of*/
/* transitions and other data is continually read fromthe channel. */
/* The programis targeted for the MPC555 but should work on any MPC500 */

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */
/* x|
/* H STORY ORI G NAL AUTHOR: Jeff Loel i ger x|
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE x|
Using the Fast Quadrature Decode TPU Function 11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
“unction State Timing

/* e e e e e e e e e e e e e e e e e e e */

/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */

/**/

#i ncl ude "npc555. h" /* Define all of the MPC555 registers, this needs to */
/* changed if other MPC500 devices are used. */

#i ncl ude "npc500. c" /* Configuration routines for MPC555 EVB, will need */
/* to be changed if other hardware is used. */

#i ncl ude "npc500_util.h" /* Utility routines for using MPC500 devices */

#i nclude "tpu_fqd.h" /* TPU FQD functions */

I NT16 count; /* global transistion counter */

void main ()

{
struct TPU3_tag *tpub = &TPU_B; /* pointer for TPU routines */
INT16 tcrl; /* current TCRl val ue */
I NT16 edge; /* last edge tine */
I NT16 primary_pin; /* current pin state */
I NT16 j unk; /* this variable is not used and will return junk */
set up_npc5xx(40); /*Setup device and program PLL to 40MHz*/
/* Initialize transition count feature with: */
/* -Input signal on TPU B channel 12 */
/* -Schedule as low priority in the TPU */
tpu_fqd_init_trans_count (tpub, 12, TPU PRIORI TY_LOW;
while (1) {
count = tpu_fqd_position (tpub, 12);
tpu_fqgd_data(tpub, 12, &crl, &edge, &prinmary_pin, & unk)
}
}

3.4 Function State Timing

When calculating the worst case latency for the TPU the execution time of each state of the TPU is need.

The state timings for the FQD function are shown in Table 1. The states used by the C interface functions

are shown in Table 2. States S3 and $4 are entered when there is a transition on the input pins.

12 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-unction Code Size

Table 1. Fast Quadrature Decode Function—State Timing

State Number & Name Max CPU Clock Cycles RAM accesses by TPU

S1 INIT_FQD 12 3

S2 READ_TCR1_FQD 2 1

S3 EDGE_NORM_FQD

i) Remain in Normal mode 36 8

if) Switch to Fast mode 40 8

S4 EDGE_FAST_FQD

i) Remain in Fast mode 16 4

i) Switch to Normal mode 26 5

NOTE: Execution times do not include the time slot transition time (TST= 10 or 14 CPU clocks)
Table 2. Fast Quadrature Decode Function—State Uses

FQD Function State Uses
tpu_fqd_init S1
tpu_fqd_init_trans_count S1
tpu_fgd_mode None
tpu_fqd_current_mode None
tpu_fqd_position None
tpu_fqd_write_position None
tpu_fqd_data S2

3.5 Function Code Size

Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation DPTRAM memory microcode space. FQD function code sizeis:

38 p instructions + 8 entries = 46 long words

4 Notes on Performance and Use of
the FQD Function

4.1 Performance

Like al TPU functions, the performance limit of the FQD function in a given application is dependent on
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. Where a pair of FQD channels are being used in normal mode and no other TPU channels are
active, the minimum time between count edges on the two channels is 50 CPU clock cycles. This is
equivalent to acount rate of approximately 780KHz with a system clock speed of 40MHz. In fast mode, the
minimum time between rising edges on the primary channel is 30 CPU clock cycles. Since the counter is
updated by four on each primary rising edge, thisis equivalent to a count rate of approximately 5.2MHz
with a system clock speed of 40MHz.

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

b

Freescale Semiconductor, Inc.
Accuracy

When more TPU channels are active, this performance will be degraded; e.g. if two sets of encoder signals
are decoded using four channels then the maximum count rate in each mode would be limited to
approximately 380KHz and 2.6MHz respectively. Use of other functions such as PWM will aso have a
degrading effect on this performance.

However the schedul er assuresthat the worst case latenciesin any TPU application can be closely estimated,
so it isrecommended that the guidelines given in the TPU reference manual are used along with the figures
given in the Fast Quadrature Decode state timing table to perform an analysis on any proposed TPU
application that appears to approach the performance limits of the TPU.

4.2 Accuracy

Sincethe TPU is essentially a software machine that takes time to respond to an input transition, there will
always be a+/- 1 Isb uncertainty in the value of the position count in norma mode while the input signals
areactive. In fast mode, thisuncertainty isincreased to +/- 4 1sb dueto the 'by 4' update of the position count.

These 'uncertainties only apply while the external system (e.g. amotor) is active, after the system has been
brought to a stop with FQD in normal mode, and the last transition has been serviced, the position count will
be accurate.

4.3 Noise Immunity

Features in the hardware of the TPU and the microcode of the FQD function protect, to a large extent, the
counter from erroneous updates due to noise. All TPU input channels incorporate a digital filter which
rejects pulses of less than a programmable duration.

In addition to this protection, when servicing atransition in normal mode, the FQD function always checks
the new pinstate against the previous pinstate from the last service and if they are equal then no action is
taken. This protects against a noise pulse that is long enough to get through the digital filter, but not long
enough to last from the actual transition time to the time that the TPU services the channd.

In fast mode where only rising edges are serviced, no microcode noise immunity is provided. Despite these
precautions, there may be situations where severe noise will result in erroneous updates of the counter e.g.
noise on both channels simultaneously. Under these conditions it is recommended that additional external
protection is added, such as schmitt trigger buffers and an additional analog or digital filter stage.

4.4 Using FQD with 3-Channel Encoders

Many shaft encoders supply three signals: two quadrature signals plus an index signal that generates a pulse
once per revolution. This pulse usualy has a fixed relationship to other system parameters and is used for
alignment during startup.

These 3 signal encoders can be decoded when FQD is used in conjunction with another TPU function called
“New Input Transition Counter (NITC).” FQD decodes the quadrature signals and the index pulse should
befed tothe NITC channel. NITC allowsany location in parameter RAM to be captured on a specified edge
and the value presented to the CPU. In this case NITC would be configured to 'capture the
POSITION_COUNT parameter of FQD.

14 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 1

4.5 Listing 1

/**/

/* FILE NAME: tpu_fqd.h COPYRI GHT (c) A 2002 */
/* VERSION:. 1.0 Al Rights Reserved */
/* */

/* DESCRIPTION: This file defines the interface to the TPU FQD functions */

/* and provides useful #defines. */
/* */
/* */
/* H STORY ORI G NAL AUTHOR: Jeff Loeliger */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
2 *
/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */

/**/

#i f ndef _TPU FQD_H
#define _TPU FQD H

#i ncl ude "m_conmon. h"

#i ncl ude "m_tpu3. h"

/* Define HSR val ues */
#define TPU_ FQD_INIT 0x3
#def i ne TPU_FQD_READ TCR1 0x2

/* Define HSQ val ues */

#define TPU_FQD_PRI MARY_CHANNEL 0x0
#defi ne TPU_FQD_SECONDARY_CHANNEL Ox1
#def i ne TPU_FQD_NORMAL_MODE 0x0
#define TPU_FQD _FAST_MODE 0x2

/* Define pin state */
#def i ne TPU_FQD_PI N_HI GH 0x8000

#define TPU_FQD _PIN_LOW 0x0000

/* Define paraneter RAM | ocations */

#def i ne TPU_FQD_EDGE_TI ME 0
#def i ne TPU_FQD_POSI TI ON_COUNT 1
#defi ne TPU_FQD_TCRL_VALUE 2
#def i ne TPU_FQD_CHAN_PI NSTATE 3

#define TPU_FQD CORR Pl NSTATE_ADDR 4

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

-isting 2

#define TPU FQD EDGE TI ME_LSB_ADDR 5

/*

voi

voi

voi

TPU FQD function prototypes */

d tpu_fqd_init(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority,

I NT16 init_position);
d tpu_fqd_init_trans_count(struct TPU3_tag *tpu, U NT8 channel,
U NT8 priority);

d tpu_fqd_node(struct TPU3_tag *tpu, U NT8 channel, U NT8 npde);

U NT8 tpu_fqd_current_node(struct TPU3_tag *tpu, U NT8 channel);

I NT16 tpu_fqd_position(struct TPU3_tag *tpu, U NT8 channel);

voi

d tpu_fqd_data(struct TPU3_tag *tpu, U NT8 channel, INT16 *tcrl,

I NT16 *edge, INT16 *primary_pin, INT16 *secondary_pin);

#endi f /* ifndef _TPU FQD H */

[R R K Kk kR K K ok kK Kk ok kK K ok ok kK K ok ok ok ok kK ok ok ok kR ok ok kR ok Rk kR Rk kR kR Rk Rk Kk

4.

6 Listing 2

IR R EEEEEEEEREEEEEEEEEEEEEEEREEEEEEEE SRR EEEEEEEEEEERE SRR EEEEEY

/* FILE NAME: tpu_fqd.c COPYRI GHT (c) 2002 */

/* VERSION: 1.0 All Rights Reserved */
/* */
/* DESCRIPTION: This file contains the TPU FQD functions. These functions */
/* allow you to conpletely control TPU channels running the FQD function. */
/* They provide a sinple interface requiring the m ni mum anmount of */
/* configuration by the user. */
/* */
/* H STORY ORI G NAL AUTHOR: Jeff Loeliger */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll il oy
/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */

IR R EEE R EEEEEEEEEEEEEE SRR SRR EEEEEE SRR EEEERE SRR EEEEEY]

#i nclude "tpu_fqd. h"

#i ncl ude "npc500_util.h"

16

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

IR R R AR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EEEEEEEREEEEEEEE

FUNCTI ON : tpu_fqgd_init
PURPCOSE : To initialize a pair of channels to run the FQD function.
I NPUTS NOTES : This function has 4 paraneters:
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel. The next channel is used as the secondary.
priority - This is the priority to assign to both channels.
This paraneter should be assigned a val ue of:
TPU PRI ORI TY_HI GH, TPU_PRI ORI TY_M DDLE or
TPU_PRI ORI TY_LOW
init_position - This is the starting position.
RETURNS NOTES : none
WARNI NG : The channel s nust be stopped before it is reconfigured. The
function disables the channels but if they were currently
being serviced it would continue. The delay for assigning the
pram poi nter may to enough but depends on system | oadi ng.
R R R R TSI T T T T oYY
void tpu_fqd_init(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority, \
INT16 init_position)

struct TPU paramtag *pram
Ul NT8 channel 2;

/* if primary channel is 15 then secondary channel should be 0 */

channel 2 = (channel + 1) & OxF;

/* di abl e channel s so they can be configured safely */
t pu_di sabl e(tpu, channel);

t pu_di sabl e(tpu, channel 2);

/* select FQD function for both channels */
tpu_func(tpu, channel, TPU_FUNCTI ON_FQD);
tpu_func(tpu, channel 2, TPU_FUNCTI ON_FQD);

/* Initialize parameter RAM */

/* -setup initial count in POSITI ON_COUNT */

/* -initialize CORR_PINSTATE_ADDR and EDGE_TI ME_LSB_ADDR i n both channel s*/

t pu- >PARM R[channel] [TPU_FQD_PCSI TI ON_COUNT] = init_position;

t pu- >PARM R[channel] [TPU_FQD_CORR _PI NSTATE_ADDR] = (I NT16) (((channel2) << 4) + 6);

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

t pu- >PARM R[channel] [TPU_FQD_EDGE_TI ME_LSB _ADDR] = (I NT16) ((channel << 4) + 1)
t pu- >PARM R[channel 2] [TPU_FQD_CORR_PI NSTATE_ADDR]

(I'NT16) ((channel << 4) + 6)
t pu- >PARM R[channel 2] [TPU_FQD_EDGE_TI ME_LSB_ADDR] = (I NT16) ((channel << 4) + 1)

/* Configure the first channel as the primary channel and the follow ng */
/* channel as the secondary channel . */
tpu_hsq(tpu, channel, TPU_FQD PRI MARY_CHANNEL | TPU_FQD NORVAL_MCDE)
tpu_hsq(tpu, channel 2, TPU_FQD SECONDARY_CHANNEL | TPU_FQD_NORMAL_MODE)

/* Initialize both channels */
tpu_hsr(tpu, channel, TPU FQD_INT)
tpu_hsr(tpu, channel2, TPU FQD INT);

/* Enabl e channels by assigning a priority to them */
/* Both channel s MUST have the sane priority. */
t pu_enabl e(tpu, channel, priority);

t pu_enabl e(tpu, channel 2, priority);

IR R EEEEEEEEEEEEEREEREEEEE R

FUNCTI ON : tpu_fqgd_init_trans_count
PURPCSE . To initialize one channel as a discrete input/transition
counter.

INPUTS NOTES : This function has 3 paraneters
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel . The next channel is used as the secondary.
priority - This is the priority to assign to both channels
Thi s parameter should be assigned a val ue of
TPU PRI ORI TY_HI GH, TPU_PRI ORI TY_M DDLE or
TPU_PRI ORI TY_LOW
RETURNS NOTES : none
WARNI NG . The channel nust be stopped before it is reconfigured. The
function disables the channel but if it is currently
being serviced it would continue. The delay for assigning the
pram poi nter may to enough but depends on system | oadi ng
R R R R R TSI T T s Yy
void tpu_fqgd_init_trans_count(struct TPU3_tag *tpu, U NT8 channel, \
U NT8 priority)

18 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

struct TPU paramtag *pram

/* diable channel so it can be configured safely */

t pu_di sabl e(tpu, channel);

/* select FQD function for both channels */

tpu_func(tpu, channel, TPU_FUNCTI ON_FQD);

/* Initialize parameter RAM */
/* -clear POSITION_COUNT to count transitions */
/* -initialize CORR_PI NSTATE_ADDR and EDGE_TI ME_LSB_ADDR */
t pu- >PARM R[channel] [TPU_FQD_POSI TI ON_COUNT] = O;

t pu- >PARM R[channel] [TPU_FQD_CORR_PI NSTATE_ADDR] (I'NT16) ((channel << 4) + 6)

t pu- >PARM R[channel] [TPU_FQD_EDGE_TI ME_LSB _ADDR] = (I NT16) ((channel << 4) + 1)

/* Configure the channel as a primary channel */

tpu_hsq(tpu, channel, TPU_FQD PRI MARY_CHANNEL | TPU_FQD_ NORVAL_MCDE)

/* Initialize the channel */

tpu_hsr(tpu, channel, TPU FQD_INT)

/* Enabl e the channel by assigning a priority to it. */

t pu_enabl e(tpu, channel, priority);

JREE R KA KRR KKK KA KRR AR KRR KRR KKK R AR R R KRR R KK R AR R A IR A KRR R AR FH R KK F R A KR KKK
FUNCTI ON : tpu_fqd_node
PURPCSE . To change between fast and normal nodes
I NPUTS NOTES : This function has 3 paraneters
*tpu - This is a pointer to the TPU3 npdule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel . The next channel is used as the secondary
node - The defines which node to use, the value should be
TPU_FQD_NORMAL_MODE or TPU_FQD FAST_MODE.
RETURNS NOTES : none
Kok R kR kR R Rk R kKRR kR kR kR kKK kK Rk kK kK kK kK kK kK kK Rk Rk Rk Rk KAk kk
void tpu_fqd_node(struct TPU3_tag *tpu, U NT8 channel, Ul NT8 node)

{
t pu_hsq(tpu, channel, TPU FQD PRI MARY_CHANNEL | nopde);

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

IR R R R EEEEEEEEEREEREEEEEEEE

FUNCTI ON : tpu_fqgd_current _node
PURPCSE . To determine the current operating node of the FQD function
I NPUTS NOTES : This function has 2 paraneters

*tpu - This is a pointer to the TPU3 npdule to use. It is of

type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel . The next channel is used as the secondary
RETURNS NOTES : The operating node which will be TPU_FQD_NORMAL_MODE or
TPU_FQD_FAST_MODE.

Kok R kR kR kR kR kR kR kR kR kR kR kK kK kK kK kK kK kK kK kK kK Rk Rk Rk Rk k k|
U NT8 tpu_fqd_current_node(struct TPU3 tag *tpu, U NT8 channel)

{
return(tpu_get_hsq(tpu, channel));

J Rk R kR kR kR ko kR ko kR kR kR kR Rk kR kR kR ko kR ko kR kR kR R R R Kk
FUNCTI ON : tpu_fqgd_position
PURPCSE : This function returns the current postion count for the
quqdrature input signal
I NPUTS NOTES : This function has 2 paraneters
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel . The next channel is used as the secondary.
RETURNS NOTES : The current position count.

LEEEA R EEEREEEEEEE R EEEREEEREERY

INT16 tpu_fqgd_position(struct TPU3_tag *tpu, U NT8 channel)

{
return (tpu->PARM R[channel] [TPU_FQD_PGCSI TI ON_COUNT])
}
J Rk R kR kR R Rk kR Kk kR ko kR kR kR Rk kR Rk kR kR kR ko kK ko kR kR kR R R R Rk
FUNCTI ON : tpu_fgd_data
PURPCSE : To get the current TCR1 value and the tinme of the |ast edge

INPUTS NOTES : This function has 6 paraneters
*tpu - This is a pointer to the TPU3 npdule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary FQD
channel . The next channel is used as the secondary.

*tcrl - The current Value of the TCRL tinebase

20 Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

*edge - The | ast edge tine.
*primary_pin - The current state of the primary channel, this
will be TPU FQD PIN HI GH or TPU FQD PI N _LOW
*secondary_pin - The current state of the primary channel, this
will be TPU FQD PIN H GH or TPU FQD PI N_LOW
RETURNS NOTES : none
** WARNI NG* * : If the channel is disabled or the TPU is not responding this
function will NEVER EXIT!
Rk R kR kR kR kR kR kR kR kR kR kR kR kK kK kK kK kK kK kK kK Rk Rk Rk Rk Rk kk
void tpu_fqd_data(struct TPU3 tag *tpu, U NT8 channel, |INT16 *tcr1, \

I NT16 *edge, INT16 *primary_pin, |INT16 *secondary_pin)

{

Ul NT8 channel 2;

/* if primary channel is 15 then secondary channel should be 0 */

channel 2 = (channel + 1) & OxF;
/* wait until the TPU channel has no pending HSRs */
/* WARNING i f the TPU does on service this request then this loop will */
/* NEVER EXIT! */
tpu_ready(tpu, channel);
/* issue request to update TCR1l val ue */
tpu_hsr(tpu, channel, TPU FQD READ TCR1);
/* read paraneters */
*edge = tpu->PARM R[channel] [TPU_FQD_EDGE_TI ME] ;
*primary_pi n=t pu- >PARM R[channel] [TPU_FQD_CHAN_PI NSTATE] ;
*secondary_pi n=t pu- >PARM R[channel 2] [TPU_FQD_CHAN_PI NSTATE] ;
/* wait until TCR1l val ue has been updated */
/* WARNING i f the TPU does on service this request then this |loop will */
/* NEVER EXIT! */
t pu_ready(tpu, channel);
*tcrl = tpu->PARM R[channel] [TPU_FQD _TCR1_VALUE] ;

}

[KRR Kk kK K K ok kK Kk ok kK K ok ok ok kK K ok ok o kK K ok ok o ek kK ok ok ok kK Rk ok ok kK Kk ok kK Rk Rk kK

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

-isting 2

22

Freescale Semiconductor, Inc.

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
-isting 2

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Fast Quadrature Decode TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Z " freescale"

semiconductor

AN2362/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Fast Quadrature Decode TPU Function (FQD) with the MPC500 Family
	1 Functional Overview
	Figure�1. Lead/Lag Timing

	2 Detailed Description
	2.1 Normal Mode
	Figure�2. Normal Mode Timing

	2.2 Fast Mode
	Figure�3. Fast Mode Timing
	2.2.1 Time Stamp
	2.2.2 Discrete Input / Transition Counter

	2.3 FQD C Level API
	2.3.1 void tpu_enable
	2.3.2 void tpu_disable
	2.3.3 void tpu_fqd_init
	2.3.4 void tpu_fqd_init_trans_count
	2.3.5 void tpu_fqd_mode
	2.3.6 UINT8 tpu_fqd_current_mode
	2.3.7 INT16 tpu_fqd_position
	2.3.8 void tpu_fqd_data

	3 Fast Quadrature Decode Examples
	3.1 Example 1
	3.1.1 Description
	3.1.2 Program

	3.2 Example 2
	3.2.1 Description
	3.2.2 Program

	3.3 Example 3
	3.3.1 Description
	3.3.2 Program

	3.4 Function State Timing
	Table�1. Fast Quadrature Decode Function—State Timing
	Table�2. Fast Quadrature Decode Function—State Uses

	3.5 Function Code Size

	4 Notes on Performance and Use of the FQD Function
	4.1 Performance
	4.2 Accuracy
	4.3 Noise Immunity
	4.4 Using FQD with 3-Channel Encoders
	4.5 Listing 1
	4.6 Listing 2

