

AN2346/D
Rev. 0, 9/2002

EEPROM Emulation Using
FLASH in
MC68HC908QY/QT MCUs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 by Peter Topping
Applications Engineering
Freescale, East Kilbride

Introduction

As versatile, low pin-count and low cost variants of the MC68HC(9)08 range of
MCUs, the MC68HC908QY1, QY4, QT1 and QT4 have many potential
applications. They incorporate easily and quickly programmable FLASH
memory for their program code. Their cost is minimised by not adding any byte
programmable EEPROM (Electrically Erasable Programmable Read Only
Memory) as this functionality can be facilitated using a small portion of the
FLASH memory.

There are many types of application which are enhanced by the inclusion of
non-volatile data storage. External serial EEPROMs are thus sometimes added
to systems using low-cost MCUs with no on-chip EEPROM. If, however, the
chip has FLASH memory for its application software then a portion of it can be
used to emulate EEPROM thus obviating the additional cost and complexity
incurred by an extra chip. Using less than a hundred bytes of code, this
application note presents a method of doing this. It allows the FLASH to behave
like EEPROM and, at the same time, enhances its endurance in terms of the
available number of write cycles.

The FLASH memory in the MC68HC908QY/QT family is organised in pages of
64 bytes. Although individual bytes can be programmed, an erase operation
necessarily applies to a whole page. By using different bytes within a page
each time a block of data is saved, the number of write cycles can be extended
beyond its specification of 10,000. The improvement factor is the number of
times the data block fits into a page. A 6-byte data block, for example, would fit
in 10 times and thus guarantee 100,000 writes. Only once a page is full, and
another data save is required, is the page erased and the cycle started again.

To use the EEPROM emulation code, the data to be saved is put into a RAM
buffer of user-defined length. This unit will be referred to as a data “block” and
can be any size from 1 byte to a full page (64 bytes) according to the
© Mot

For More Information On This Product,
 Go to: www.freescale.com

© Freescale Semiconductor, Inc., 2004. All rights reserved.

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

requirements of the application. Any number of block types consistent with the
number of FLASH memory pages available can be used. Each block can be the
most appropriate size for its particular data.

The method described here is just one of many different strategies which can
be adopted to facilitate non-volatile data storage using FLASH rather than
EEPROM. These vary greatly from using the FLASH to “shadow” a block of
data held in RAM to setting up a file system which allows different types of
tagged data to be saved cumulatively in an arbitrary order. In the latter method
the tagging would allow a request for any data type to return its most recent
value. Once the FLASH block was full, all the most recent data would be
transferred to a second block and the process continued using the two blocks
alternately. The method described here provides a combination of versatility
and simplicity that is particularly appropriate for the MC68HC08 family and
other low-end and mid-range MCU/MPU applications.

Emulated EPROM interface

EEPROM can be used for data-logging or the storing of equipment status
during power-down, node addresses, calibration data, cryptographic keys,
radio or television frequencies or channel numbers and for numerous other
types of data. For this reason a versatile interface is required. The method
adopted here is similar to that presented for the MC68HC908GP32 in
Application Note AN2183. This allows a page of FLASH to be used for each
data type using the block size most appropriate for that data. Figure 1 shows
a typical example of the use of the write routine presented here. It is assumed
that the data to be saved is in RAM starting at address $8C (see below).

ldhx #$F040 ;FLASH page address used for this data
lda #7 ;data block size
jsr WrtBlock ;write the block of data from RAM to FLASH

Figure 1. Example use of the write routine

The block size can be as small as a single byte and as large as a full page of
64 bytes. However, as the FLASH programming routine attempts to save the
data in a different place in the page each time it is called, there is no benefit if
the block size is over 32 bytes. This is because there would be room for only a
single block in the page which would be erased, and the same FLASH bytes
written to, every time data was saved.

Often the different bytes of data will serve different purposes when a particular
block is read so the reading routine does not actually read the whole block.
Instead it returns the start address of the most recently saved data block in the
16-bit index register (H:X) and the first byte of the data in the accumulator.
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Emulated EPROM interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2 shows the code required. Once the address is available the user can
use indexed addressing to access the required bytes. This method has the
advantage of not forcing the use of a RAM buffer while still allowing the
retrieved data to be used as required for the particular application.

ldhx #$F040 ;FLASH page for this data
lda #7 ;data block size
jsr RdBlock ;get pointer to latest data block (1st byte in A)

Figure 2. Basic use of the read routine

In a radio, for example, each station could have two bytes of frequency
information and eight bytes of ASCII data for the station name. The frequency
bytes would need to be latched into a PLL and the station name data sent
serially to a display module. There could be a further byte to specify waveband
etc., which should be put onto an I/O port. In this type of application, the
designer may wish this data to be saved as a single 11-byte data block or split
up into 2 or 3 separate blocks. The method presented here allows either
strategy.

Sometimes, for example when fetching a cryptographic key, there may be a
requirement to transfer some or all of the data block into a contiguous area of
RAM. The example code shown below illustrates the use of the read routine to
perform this function. It transfers a complete block of data into RAM starting at
the address defined by DATA. If DATA is $8C then this code exactly
complements the write routine which transfers a block in the other direction.
Although the write routine must use $8C, this data reading software could use
any available RAM locations.

ldhx #$F040 ;example FLASH page for data
lda #7 ;example data block size
psha ;save initial byte count (block size)
jsr RdBlock ;get pointer to latest data block
txa ;get address LS byte
add 1,sp ;add block size
deca ;and decrement
tax ;H:X now point to last byte in block

again: pshx
pshh ;save H:X
lda ,x ;get a byte of data
clrh
ldx 3,sp ;byte count now in H:X
sta DATA-1,x ;put byte into RAM
pulh
pulx ;retrieve FLASH data pointer
decx ;and point to next (previous) byte
dec 1,sp ;decrement byte count
bne again ;finished ?

pula ;fix stack

Figure 3. Example use of the read routine
to retrieve a complete block of data
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The data saving method presented here necessarily includes some history of
the saved data. In some applications this may be of value. The number of old
blocks available will of course depend on the current position in the page and
there will sometimes be none. If historical data is always required then it is
possible to use two pages for the same block of data thus guaranteeing that at
least one page of historical data will always be available. This capability is not
included in this application note but it could be added to the application
software prior to calling the read and write routines. Clearly the most important
aspect would be to keep track of which of the two pages holds the most recent
data. This approach would also increase further the number of write cycles
available for this block of data.

One disadvantage of the simple method presented here is that it necessarily
assumes that the block writing process will not be interrupted by a power-fail or
any other unexpected event that stops the application. If this occurs during the
data saving procedure the page being written to (or erased) may be left in an
intermediate state from which valid data is not available. It is up to the system
designer to minimise the possibility of this happening and/or facilitate
acceptable recovery or default behaviour if the data is corrupted. In this
respect, however, the emulated EEPROM is superior to most serial EEPROM
implementations due to the much shorter writing time.

FLASH memory

The FLASH memory used in the MC68HC908 family of devices allows very fast
programming. Including software overhead, programming can be carried out at
over 10 bytes per millisecond which is a factor of a hundred faster than most
EEPROMs. An additional consideration is the page erase time of 4ms but this
doesn’t occur prior to every write. Careful management in the application
software can thus avoid always having to allow for the possibility of this
happening prior to saving data if this potential delay is unacceptable.

In the case of the MC68HC908QY/QT devices, a page of FLASH consists of
two rows of 32 bytes each for a total of 64 bytes. FLASH memory is
programmed a row (or part of a row) at a time but erased in pages. Although
some data sheets discourage writing to a particular row more than once without
erasing it in between, there is no technical reason why this should not be done.
It is also allowable to write to only part of a row at a time, there being in practice
no minimum number of bytes which must be programmed each time a row is
written to.

The only restriction is that the total write time between erases should not
exceed tHV (4ms) per row. This is ensured by the software: each of the 32 bytes
is only written once between erases so the maximum time is 32 x 35µs i.e.
1.12ms. In this application the number of bytes in a block is not restricted so
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
On-chip ROM routine

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

there will sometimes be some unused bytes at the end of the page. Clearly
block sizes of 1, 2, 4 etc. (any power of 2) will use all 64 bytes in their page.

The code section of any FLASH based application should always be protected
against accidental erasure using, in the case of MC68HC908 MCUs, the
FLASH block protection register, FLBPR1. As it works by protecting all FLASH
above a particular memory address, the area of FLASH used as EEPROM
should be at the start (lowest address) of the FLASH memory. This allows it to
be enabled for erasure and programming while the program code, starting at a
higher address, is fully protected. (see references 1 and 4).

On-chip ROM routine

Like other small members of the MC68HC908 family, the MC68HC908QY and
QT devices have FLASH program/erase software included in on-chip ROM
code. This code is used during factory test and burn-in. On larger devices like
the GP32 this testing is carried out using code downloaded into RAM but
variants with 256 bytes or less of RAM (128 in the case of the
MC68HC908QY/QT) cannot do this efficiently because of the limited space.

The code included in the MC68HC908GR, KX, JL/JK and JB devices is
described in Application Note AN1831. The code in the MC68HC908QY and
QT devices operates in the same way, the only significant difference being the
entry addresses for the routines. The ROM routines PrgRnge and EraRnge are
used in this application note. Their use requires the equates shown below.

EraRnge equ $2806 ;FLASH erase routine in internal ROM
PgrRnge equ $2809 ;FLASH program routine in internal ROM

Figure 4. Equates required to access the on-chip ROM subroutines

The read routine in ROM is not used in this application. It can read a whole data
block and place it in RAM and is even capable of verifying the contents of
FLASH against RAM. Usually neither of these functions will be required in an
actual application and the much simpler read routine RdBlock is used here.

The programming routine in ROM, PrgRnge, can program over row
boundaries. This greatly simplifies the block search code developed for this

1. The FLASH block protection register, FLBPR, is actually a page protection register as it can
be specified to protect the FLASH in increments of a page. In this application note, the word
“block” refers to the user-defined data block that can be any size from 1 byte to a full page of 64
bytes.
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

application note as there is no requirement to take the row boundary into
account. The whole page is thus available to hold as many blocks as possible.

The programming routine uses RAM location CPUSpd ($89) to determine the
bus speed, LstAddr ($8A and $8B) to save the end address in FLASH and a
data buffer starting at BfrStrt ($8C). The data buffer is the length of a data block.
Before writing a block it is thus necessary to put the data to be stored into RAM
locations from BfrStrt to BfrStrt +blocksize-1 and to leave the 4 locations from
$88 to $8B available for use by the ROM routines. The first FLASH address is
held in the index register and thus does not require to be stored in RAM. The
erase routine in ROM, EraRnge, uses CtrlByt ($88) for control information.

 The use of the 4 bytes is shown in Figure 5 and described in more detail in
Application Note AN1831. It is important that CtrlByt and CPUSpd are
initialised correctly. CtrlByt allows the on-chip erase routine to distinguish
between a page erase and a mass erase (not used in this application). CPUSpd
tells the erase and programming routines what the bus speed is so that the
program and erase delays can be calculated correctly. Correct timing assumes
that there are no interrupts during erasing or programming and they are
automatically disabled during the execution of the ROM subroutines. The
application code should re-enable interrupts if required.

Figure 5. RAM locations used by the on-chip ROM subroutines

The software subroutines in ROM handle the 4 RAM locations and no
intervention is required except to change the data written to CPUSpd in the
“WrtBlock” routine. This is shown as 13 (decimal) assuming that the internal
clock is being used to obtain a 3.2 MHz bus speed. It should be changed if
required to the value of the actual bus speed being used. The number should
be the bus speed in units of 0.25MHz.

The data buffer at BfrStrt is the size of a data block. As multiple data block sizes
are possible, the simplest way to organise an application’s RAM would be to
allocate a data buffer the same length as the largest block used. This is
however not strictly necessary as only the RAM used for a particular block is

Location RAM address Bytes Use

CtrlByt $88 1 Control bits

CPUSpd $89 1 Bus speed in units of 0.25MHz

LstAddr $8A – $8B 2 FLASH block end address

BfrStrt $8C => block size Data buffer
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

required and any unused RAM can be utilised for other purposes. Indeed all of
the RAM used by the EEPROM emulation code can serve other purposes when
it is not actually required for saving data to non-volatile memory. Clearly care
would be required, perhaps by permanently allocating the required RAM, if
saving data could be initiated by an interrupt.

Software

The key to this type of use of FLASH is knowing where the latest block of data
is situated within its page. This is required so that the latest block can be read
and so that, if new data has to be written, it is put into the next available block-
sized space in the page. If there is no room then the whole page is erased and
the data is written at the start of the page. The current location could be held in
RAM but would need to be remembered for each data type. Even more
troublesome would be the requirement to provide non-volatile storage of this
information so the strategy adopted here avoids the need to remember the
current position.

Instead, every time a read or write is requested, the page is scanned to find the
location of the latest data or the first available erased block. This has the
disadvantage that the signature used to signify an unused block ($FF in the first
byte) has to be forbidden as valid data and it is up to the main application
software to ensure that this doesn’t occur. Clearly this signature could be made
less restrictive by modifying the code to require that more bytes (perhaps the
complete block) have to be erased ($FF) to signify an unused block.
Alternatively, a dummy byte could be added at the start of the data block thus
avoiding any restrictions on the data.

The search is performed by the subroutine “FindClear” which is used by both
the read and write procedures to determine the status of the data in the page.
The subroutine requires that the block size is pushed onto the stack before it is
called. It subtracts this size from the page size to obtain the bytes remaining
after the first block and then reads the first byte of the first block. If it is $FF, the
subroutine exits with $FF in the accumulator to indicate that an erased block
was found. The first block will in fact only be erased if data has never been
stored to this page so this is a special case.

Usually the first read will not be $FF and the subroutine uses the number of
bytes remaining after the first block to check if there is room for another. If not
then the subroutine exits with the accumulator clear to indicate that no erased
block is available. If there is room, the code checks the first byte of the next
block for the signature of $FF. This process is repeated until the location of the
first erased block (if there is one) is found. On exit from “FindClear”, the index
register contains the address of the next available block unless their isn’t one
in which case it points to the last complete block.
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. FindClear flow diagram

Get number of remaining bytes and
subtract block size

Negative ? Y

Return with index register pointing to
first erased block (A=$FF)

OR
If no erased block then pointing to last

data block in page (A=$00)

Get first data byte of current block

$FF ?

N

Y

N

Subtract Block size from Page size and
save the number of remaining bytes

Move address to next block

A = $FF

A = $00
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Write routine “WrtBlock” initialises the RAM locations CtrlByt and CPUSpd
and pushes the block size onto the stack before calling “FindClear”. It then
checks the accumulator and, if it is $FF, goes ahead and writes the data block
using the address left in the 16-bit index register (H:X) by “FindClear”. If it isn’t
$FF, there is no room for another block and the page is erased and the address
initialised to the start of the page. The data can then be written. This involves
saving in RAM (at LstAddr) the address of the last byte to be written before
calling the programming subroutine.

Figure 7. WrtBlock flow diagram

Calculate last address and put it in RAM at LstAddr

A=$FF ?
N

Y

Initialise RAM locations CtrlByt & CPUSpd

Call ROM subroutine to write the block of data
into FLASH

Call subroutine FindClear

Erase page

Point to start of page
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The read routine also uses “FindClear” to determine the status of the page but,
as the address of the first erased block is returned, it has to go back a block to
access the data. There are two exceptional cases when going back a block is
not appropriate. If the page is full and no erased block is found, “FindClear”
returns the address of the last complete block of data so the address is already
correct for reading. Also, in the situation where there is no saved data,
“FindClear” will return the address of the first block in the page. If this happens,
going back a block would go into the previous page. The address is therefore
not modified and the data, including the first byte returned in the accumulator,
will be $FF.

Figure 8. RdBlock flow diagram

Get address within page

A=$FF ? N

Y

Go back one data block

Call subroutine FindClear

Return with index register pointing to first
byte of data block (A = first byte of data)

Zero ?

N

Y

Page full

Page empty
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
References

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

References

1. MC68HC908QY4/D, technical data sheet

2. Application Note AN1831, “Using MC68HC908 On-chip FLASH
Programming Routines”

3. Application Note AN2183, “Using FLASH as EEPROM on the
MC68HC908GP32”

4. Engineering Bulletin EB398, “Techniques to Protect MCU Applications
Against Malfunction due to Code Run-away”
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software listing

 1
 2 ;***
 3 ;* *
 4 ;* EEPROM Emulation using FLASH in MC68HC908QT/QY MCUs *
 5 ;* *
 6 ;* QTEEApp.asm Copyright (c) 2002 *
 7 ;* *
 8 ;***
 9 ;* *
 10 ;* Description: Read and Write subroutines which facilitate the *
 11 ;* saving and retrieval of blocks of data of user-defined size *
 12 ;* in non-volatile FLASH memory in such a way that the write-erase *
 13 ;* cycling capability of the FLASH is extended up to 64 times its *
 14 ;* specification of 10,000 cycles. *
 15 ;* *
 16 ;* Include files: none *
 17 ;* *
 18 ;* Documentation: MC68HC908QY4/D Technical Data Sheet. *
 19 ;* Application Note AN2346 - "EEPROM Emulation using FLASH in *
 20 ;* MC68HC908QT/QY MCUs". *
 21 ;* *
 22 ;* This software is classified as Engineering Sample Software. *
 23 ;* *
 24 ;***
 25 ;* *
 26 ;* Author: Peter Topping - TSPG Applications - East Kilbride *
 27 ;* *
 28 ;* Update History: *
 29 ;* *
 30 ;* Rev Date Author Description of Change *
 31 ;* ------ --------- ------ ------------------------------------- *
 32 ;* ES 0.1 22-Aug-02 PT Initial release *
 33 ;* *
 34 ;* *
 35 ;* *
 36 ;* *
 37 ;***
 38 ;* *
 39 ;* Freescale reserves the right to make changes without further notice*
 40 ;* to any product herein to improve reliability, function, or design.*
 41 ;* Freescale does not assume any liability arising out of the *
 42 ;* application or use of any product, circuit, or software described *
 43 ;* herein; neither does it convey any license under its patent rights*
 44 ;* nor the rights of others. Freescale products are not designed, *
 45 ;* intended, or authorized for use as components in systems intended *
 46 ;* for surgical implant into the body, or other applications intended*
 47 ;* to support life, or for any other application in which the failure*
 48 ;* of the Freescale product could create a situation where personal *
 49 ;* injury or death may occur. Should Buyer purchase or use Freescale *
 50 ;* products for any such intended or unauthorized application, Buyer *
 51 ;* shall indemnify and hold Freescale and its officers, employees, *
 52 ;* subsidiaries, affiliates, and distributors harmless against all *
 53 ;* claims, costs, damages, and expenses, and reasonable attorney *
 54 ;* fees arising out of, directly or indirectly, any claim of personal*
 55 ;* injury or death associated with such unintended or unauthorized *
 56 ;* use, even if such claim alleges that Freescale was negligent *
 57 ;* regarding the design or manufacture of the part. *
 58 ;* *
 59 ;* Freescale is a registered trademark of Freescale Semiconductor, Inc. *
 60 ;* *
 61 ;***
 62
 63 ;* Equates for ROM Subroutines and start of RAM
 64
 0000 65 EraRnge equ $2806 ;FLASH erase routine in ROM
 0000 66 PgrRnge equ $2809 ;FLASH programming routine in ROM
 0000 67 CtrlByt equ $88 ;control byte for ROM subroutines
 0000 68 CPUSpd equ $89 ;CPU speed in units of 0.25MHz
 0000 69 LstAddr equ $8A ;last FLASH address to be programmed
 70
 71
 FC00 72 org $FC00
 73
 74
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Software listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 75
 76 ;***
 77 ;* *
 78 ;* RdBlock - Reads a block of data from FLASH and puts it in RAM *
 79 ;* *
 80 ;* Calling convention: ldhx #Blk1page *
 81 ;* lda #Blk1Size *
 82 ;* jsr RdBlock *
 83 ;* *
 84 ;* Inputs: H:X - pointing to start of FLASH page used for data *
 85 ;* A - block size *
 86 ;* *
 87 ;* Returns: H:X - pointing to start of FLASH block containing data *
 88 ;* A - data from first byte of block *
 89 ;* *
 90 ;* Uses: FindClear *
 91 ;* *
 92 ;***
 93
 FC00 [02] 87 94 RdBlock: psha ;save block size
 FC01 [04] AD32 95 bsr FindClear ;find first erased block
 96
 FC03 [02] A1FF 97 cmp #$FF ;was an erased block found ?
 FC05 [03] 260A 98 bne skipdec ;if not then don’t go back a block
 FC07 [01] 9F 99 txa ;get LS byte of address
 FC08 [02] A43F 100 and #$3F ;only look at address within page
 FC0A [03] 2705 101 beq skipdec ;if 0 then no data so don’t go back
 FC0C [01] 9F 102 txa ;if not get LS byte of address again
 FC0D [04] 9EE001 103 sub 1,sp ;and subtract block size to point
 FC10 [01] 97 104 tax ;to start of valid data block
 105
 FC11 [02] F6 106 skipdec: lda ,x ;get first byte of data
 FC12 [02] A701 107 ais #1 ;de-allocate stack
 FC14 [04] 81 108 rts
 109
 110
 111 ;***
 112 ;* *
 113 ;* WrtBlock - Writes a block of data into FLASH from RAM buffer *
 114 ;* *
 115 ;* Calling convention: ldhx #Blk1page *
 116 ;* lda #Blk1Size *
 117 ;* jsr WrtBlock *
 118 ;* *
 119 ;* Inputs: H:X - pointing to start of FLASH page used for data *
 120 ;* A - block size *
 121 ;* *
 122 ;* Returns: nothing *
 123 ;* *
 124 ;* Uses: FindClear, EraRnge (ROM), PgrRnge (ROM) *
 125 ;* *
 126 ;***
 127
 FC15 [04] 6E0D89 128 WrtBlock: mov #13,CPUSpd ;3.2MHz/0.25MHz = 13
 FC18 [03] 3F88 129 clr CtrlByt ;page (not mass) erase
 FC1A [02] 87 130 psha ;save block size
 FC1B [04] AD18 131 bsr FindClear ;find first available erased block
 FC1D [02] A1FF 132 cmp #$FF ;erased block found ?
 FC1F [03] 2707 133 beq blkfnd ;if so write to it
 FC21 [05] CD2806 134 jsr EraRnge ;if not then erase page
 FC24 [01] 9F 135 txa ;get LS byte of FLASH address
 FC25 [02] A4C0 136 and #$C0 ;and reset it to start of page
 FC27 [01] 97 137 tax ;H:X now pointing to first block
 138
 FC28 [02] 86 139 blkfnd: pula ;get block size
 FC29 [02] 89 140 pshx ;save start address LS byte
 FC2A [04] 9EEB01 141 add 1,sp ;add block size to LS byte
 FC2D [01] 4A 142 deca ;back to last address in block
 FC2E [01] 97 143 tax ;last address now in H:X
 FC2F [04] 358A 144 sthx LstAddr ;save in RAM for use by ROM routine
 FC31 [02] 88 145 pulx ;restore X (H hasn’t changed)
 FC32 [03] CC2809 146 jmp PgrRnge ;program block (includes RTS)
 147
 148
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 149 ;***
 150 ;* *
 151 ;* FindClear - Finds first erased block within page *
 152 ;* *
 153 ;* Inputs: H:X - pointing to start of page used for required data *
 154 ;* Stack - block size last thing on stack *
 155 ;* *
 156 ;* Returns if erased block found: *
 157 ;* H:X - pointing to start of first erased block in page *
 158 ;* A - $FF *
 159 ;* Returns if no erased block found (page full): *
 160 ;* H:X - pointing to start of last written block *
 161 ;* A - $00 *
 162 ;* *
 163 ;***
 164
 FC35 [02] A640 165 FindClear: lda #$40 ;number of bytes in a page
 FC37 [04] 9EE003 166 sub 3,sp ;less number in first block
 FC3A [02] 87 167 psha ;save bytes left
 168
 FC3B [02] F6 169 floop: lda ,x ;get first data byte in block
 FC3C [02] A1FF 170 cmp #$FF ;erased byte ?
 FC3E [03] 270F 171 beq finish1 ;if so then exit, otherwise try next
 172
 FC40 [02] 86 173 pula ;bytes left
 FC41 [04] 9EE003 174 sub 3,sp ;less number in next block
 FC44 [02] 87 175 psha ;resave bytes left
 FC45 [03] 2B07 176 bmi finish2 ;enough for another block ?
 177
 FC47 [01] 9F 178 txa ;yes, get LS byte of address
 FC48 [04] 9EEB04 179 add 4,sp ;add block size
 FC4B [01] 97 180 tax ;put it back (can’t be a carry)
 FC4C [03] 20ED 181 bra floop ;and try again
 182
 FC4E [01] 4F 183 finish2: clra ;no room (A shouldn’t be $FF)
 FC4F [02] A701 184 finish1: ais #1 ;fix stack pointer
 FC51 [04] 81 185 rts
 186
 187
 188

 Symbol Table

BLKFND FC28
CPUSPD 0089
CTRLBYT 0088
ERARNGE 2806
FINDCLEAR FC35
FINISH1 FC4F
FINISH2 FC4E
FLOOP FC3B
LSTADDR 008A
PGRRNGE 2809
RDBLOCK FC00
SKIPDEC FC11
WRTBLOCK FC15
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Appendix

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix

The code shown in the listing in this appendix is an alternative to that shown in
the previous section. It uses a different WrtBlock routine that does not use the
erase routine, EraRnge, which is included in the on-chip ROM.

This alternative code is appropriate for use with early mask sets of the
MC68HC908QY/QT (1L69J, 2L69J and 3L69J) which have the FLASH control
logic error described in errata 68HC908QY/QTMSE3.

There are two blocks of FLASH memory in the M68HC908QY/QT MCU which
are selected internally by array select signals. Address values are protected
against changes after a page erase sequence has started. Any attempt to write
a new address after HVEN=1 is blocked. However, due to a logic error in these
mask sets, the latching of the array select signals is not blocked so it is possible
that one page in one array could be unintentionally erased when a page erase
is performed on a page in the other array.

EraRnge refreshes the COP by periodically writing to address $FFFF. This is
in the top FLASH array so a write to this location while erasing (using EraRnge)
a FLASH page in the bottom array ($EE00-$FDFF) can result in the erroneous
erasure of a page in the top array. This occurs regardless of the protection
status of the page in the top array.

To avoid this problem it is thus necessary, on the mask sets with this problem,
to avoid using the on-chip erase routine. The alternative code shown below
replaces this routine with one downloaded into RAM.

Although functionally equivalent, the replacement software uses half of the
available RAM (from $C0 to $FF) and is thus intended only as an interim
solution until silicon without the logic fault is available.
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Alternative software listing

 1 ;***
 2 ;* *
 3 ;* EEPROM Emulation using FLASH in MC68HC908QT/QY MCUs *
 4 ;* *
 5 ;* This listing includes an alternative Write subroutine to the *
 6 ;* one presented in Application Note AN2346. It avoids using the *
 7 ;* 908QT/QY erase routine in ROM and thus the additional page erase *
 8 ;* described in Errata 68HC908QY/QTMSE3. It downloads code into *
 9 ;* RAM and uses all of the top half of the RAM (from $C0 to $FF). *
 10 ;* *
 11 ;* The main subroutine "WrtBlock" is the same as in the Application *
 12 ;* Note code except that it calls "EEEPage" instead of the ROM *
 13 ;* subroutine "EraRnge". As long as this change is made to *
 14 ;* WrtBlock, the only aditional code required is "EEEPage" and *
 15 ;* "EEEinRAM". The FLASH reading routime "RdBlock" and the *
 16 ;* subroutine "FindClear" are identical to those in the Application *
 17 ;* Note. *
 18 ;* *
 19 ;* Peter Topping 18th July 2002 *
 20 ;* *
 21 ;***
 22
 0000 23 PgrRnge equ $2809 ;FLASH programming routine in ROM
 0000 24 CtrlByt equ $88 ;control byte for ROM subroutines
 0000 25 CPUSpd equ $89 ;CPU speed in units of 0.25MHz
 0000 26 LstAddr equ $8A ;last FLASH address to be programmed
 27
 28 ;* Additional equates
 0000 29 ERASE equ %00000010 ;erase bit in FLCR
 0000 30 HVEN equ %00001000 ;high voltage bit in FLCR
 0000 31 ERAHVEN equ %00001010 ;erase and high voltage bits in FLCR
 0000 32 FLBPR equ $FFBE ;flash block protect reg (flash)
 0000 33 FLCR equ $FE08 ;FLASH control register
 34
 FD00 35 org $FD00
 36
 37 ;***
 38 ;* *
 39 ;* RdBlock - Reads a block of data from FLASH and puts it in RAM *
 40 ;* *
 41 ;* Calling convention: ldhx #Blk1page *
 42 ;* lda #Blk1Size *
 43 ;* jsr RdBlock *
 44 ;* *
 45 ;* Inputs: H:X - pointing to start of FLASH page used for data *
 46 ;* A - block size *
 47 ;* *
 48 ;* Returns: H:X - pointing to start of FLASH block containing data *
 49 ;* A - data from first byte of block *
 50 ;* *
 51 ;* Uses: FindClear *
 52 ;* *
 53 ;***
 54
 FD00 [02] 87 55 RdBlock: psha ;save block size
 FD01 [04] AD32 56 bsr FindClear ;find first erased block
 FD03 [02] A1FF 57 cmp #$FF ;was an erased block found ?
 FD05 [03] 260A 58 bne skipdec ;if not then don’t go back a block
 FD07 [01] 9F 59 txa ;get LS byte of address
 FD08 [02] A43F 60 and #$3F ;only look at address within page
 FD0A [03] 2705 61 beq skipdec ;if 0 then no data so don’t go back
 FD0C [01] 9F 62 txa ;if not get LS byte of address again
 FD0D [04] 9EE001 63 sub 1,sp ;and subtract block size to point
 FD10 [01] 97 64 tax ;to start of valid data block
 65
 FD11 [02] F6 66 skipdec: lda ,x ;get first byte of data
 FD12 [02] A701 67 ais #1 ;de-allocate stack
 FD14 [04] 81 68 rts
 69
 70
 71
 72
 73
 74
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Alternative software listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 75 ;***
 76 ;* *
 77 ;* WrtBlock - Writes a block of data into FLASH from RAM buffer *
 78 ;* *
 79 ;* Calling convention: ldhx #Blk1page *
 80 ;* lda #Blk1Size *
 81 ;* jsr WrtBlock *
 82 ;* *
 83 ;* Inputs: H:X - pointing to start of FLASH page used for data *
 84 ;* A - block size *
 85 ;* *
 86 ;* Returns: nothing *
 87 ;* *
 88 ;* Uses: FindClear, EEEPage, EEEinRAM (RAM), PgrRnge (ROM) *
 89 ;* *
 90 ;***
 91
 FD15 [04] 6E0D89 92 WrtBlock: mov #13,CPUSpd ;3.2MHz/0.25MHz = 13
 FD18 [03] 3F88 93 clr CtrlByt ;page (not mass) erase
 FD1A [02] 87 94 psha ;save block size
 FD1B [04] AD18 95 bsr FindClear ;find first available erased block
 FD1D [02] A1FF 96 cmp #$FF ;erased block found ?
 FD1F [03] 2707 97 beq blkfnd ;if so write to it
 FD21 [05] CDFD52 98 jsr EEEPage ;if not then erase page
 FD24 [01] 9F 99 txa ;get LS byte of FLASH address
 FD25 [02] A4C0 100 and #$C0 ;and reset it to start of page
 FD27 [01] 97 101 tax ;H:X now pointing to first block
 102
 FD28 [02] 86 103 blkfnd: pula ;get block size
 FD29 [02] 89 104 pshx ;save start address LS byte
 FD2A [04] 9EEB01 105 add 1,sp ;add block size to LS byte
 FD2D [01] 4A 106 deca ;back to last address in block
 FD2E [01] 97 107 tax ;last address now in H:X
 FD2F [04] 358A 108 sthx LstAddr ;save in RAM for use by ROM routine
 FD31 [02] 88 109 pulx ;restore X (H hasn’t changed)
 FD32 [03] CC2809 110 jmp PgrRnge ;program block (includes RTS)
 111
 112 ;***
 113 ;* *
 114 ;* FindClear - Finds first erased block within page *
 115 ;* *
 116 ;* Inputs: H:X - pointing to start of page used for required data *
 117 ;* block size last thing on stack *
 118 ;* *
 119 ;* Returns if erased block found: *
 120 ;* H:X - pointing to start of first erased block in page *
 121 ;* A - $FF *
 122 ;* Returns if no erased block found (page full): *
 123 ;* H:X - pointing to start of last written block *
 124 ;* A - $00 *
 125 ;* *
 126 ;***
 127
 FD35 [02] A640 128 FindClear: lda #$40 ;number of bytes in a page
 FD37 [04] 9EE003 129 sub 3,sp ;less number in first block
 FD3A [02] 87 130 psha ;save bytes left
 131
 FD3B [02] F6 132 floop: lda ,x ;get first data byte in block
 FD3C [02] A1FF 133 cmp #$FF ;erased byte ?
 FD3E [03] 270F 134 beq finish1 ;if so then exit, otherwise try next
 135
 FD40 [02] 86 136 pula ;bytes left
 FD41 [04] 9EE003 137 sub 3,sp ;less number in next block
 FD44 [02] 87 138 psha ;resave bytes left
 FD45 [03] 2B07 139 bmi finish2 ;enough for another block ?
 140
 FD47 [01] 9F 141 txa ;yes, get LS byte of address
 FD48 [04] 9EEB04 142 add 4,sp ;add block size
 FD4B [01] 97 143 tax ;put it back (can’t be a carry)
 FD4C [03] 20ED 144 bra floop ;and try again
 145
 FD4E [01] 4F 146 finish2: clra ;no room but A can’t be $FF
 FD4F [02] A701 147 finish1: ais #1 ;fix stack pointer
 FD51 [04] 81 148 rts
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 149
 150 ;***
 151 ;* *
 152 ;* EEEPage - Erases a page of emulated EEPROM FLASH *
 153 ;* *
 154 ;* Calling convention: ldhx #EEPage *
 155 ;* jsr EEEpage *
 156 ;* *
 157 ;* Inputs: H:X - pointing into FLASH page to be erased *
 158 ;* *
 159 ;* Returns: H:X - unchanged *
 160 ;* *
 161 ;***
 162
 FD52 [02] 89 163 EEEPage: pshx ;save FLASH address in RAM for
 FD53 [02] 8B 164 pshh ;retrieval from within RAM routine
 FD54 [03] 450034 165 ldhx #RAMsize ;get size of RAM resident routine
 FD57 [04] D6FD66 166 loadloop: lda EEEinRAM-1,x ;get a byte of code
 FD5A [02] 87 167 psha ;and put it into RAM
 FD5B [03] 5BFA 168 dbnzx loadloop ;finished ?
 FD5D [01] 85 169 tpa ;get CCR
 FD5E [02] 9B 170 sei ;disable interrupts
 FD5F [02] 95 171 tsx ;pointer to RAM routine
 FD60 [04] FD 172 jsr ,x ;execute RAM routine
 FD61 [02] A734 173 ais #RAMsize ;de-allocate stack space
 FD63 [02] 8A 174 pulh ;restore FLASH address
 FD64 [02] 88 175 pulx
 FD65 [02] 84 176 tap ;restore CCR
 FD66 [04] 81 177 rts
 178
 179 ;***
 180 ;* *
 181 ;* EEEinRAM - RAM resident part of EEEPage *
 182 ;* *
 183 ;* Calling convention: ldhx #{pointer to routine} *
 184 ;* jsr ,x *
 185 ;* *
 186 ;* Delays calculated to give the required times assuming the bus *
 187 ;* clock is 3.2MHz + 25% ie 4.0MHz. *
 188 ;* *
 189 ;***
 190
 FD67 [02] 87 191 EEEinRAM: psha ;save CCR
 FD68 [04] D60034 192 lda (RAMsize),x ;retrieve FLASH address MSB from RAM
 FD6B [04] DE0035 193 ldx (RAMsize+1),x ;and LS byte
 FD6E [02] 87 194 psha
 FD6F [02] 8A 195 pulh ;MSB into h (address is now in H:X)
 FD70 [02] A602 196 lda #ERASE
 FD72 [04] C7FE08 197 sta FLCR ;set ERASE bit in control register
 FD75 [04] C6FFBE 198 lda FLBPR ;read block protection register
 FD78 [02] F7 199 sta ,x ;write to an address within page
 FD79 [02] A60E 200 lda #14 ;3 cycle loop so 14 times for delay
 FD7B [03] 4BFE 201 dbnza * ;of 10us at 4 MHz (14*3/4MHz=10.5us)
 202
 FD7D [02] A60A 203 lda #ERAHVEN ;ERASE and HVEN bit
 FD7F [04] C7FE08 204 sta FLCR ;set HVEN bit in control register
 FD82 [02] AE28 205 ldx #40 ;40 times
 FD84 [02] A686 206 tloop: lda #134 ;100us delay
 FD86 [03] 4BFE 207 dbnza * ;for 4ms of HVEN high
 FD88 [03] 5BFA 208 dbnzx tloop ;40*(5+134*3)/4MHz=4070us
 209
 FD8A [02] A608 210 lda #HVEN
 FD8C [04] C7FE08 211 sta FLCR ;clear ERASE bit
 FD8F [02] A607 212 lda #7 ;3 cycle loop so 7 times for delay
 FD91 [03] 4BFE 213 dbnza * ;of 10us at 4 MHz (7*3/4MHz=5.2us)
 214
 FD93 [01] 4F 215 clra
 FD94 [04] C7FE08 216 sta FLCR ;clear HVEN bit
 FD97 [02] 86 217 pula ;restore CCR (2 cycles)
 FD98 [03] 21FE 218 brn * ;3 more cycles ie >1us
 FD9A [04] 81 219 rts
 220
 FD9B 221 RAMsize equ (*-EEEinRAM)
 222
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

AN2346/D
Alternative software listing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 Symbol Table

BLKFND FD28
CPUSPD 0089
CTRLBYT 0088
EEEINRAM FD67
EEEPAGE FD52
ERAHVEN 000A
ERASE 0002
FINDCLEAR FD35
FINISH1 FD4F
FINISH2 FD4E
FLBPR FFBE
FLCR FE08
FLOOP FD3B
HVEN 0008
LOADLOOP FD57
LSTADDR 008A
PGRRNGE 2809
RAMSIZE 0034
RDBLOCK FD00
SKIPDEC FD11
TLOOP FD84
WRTBLOCK FD15
EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2346/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Emulated EPROM interface
	FLASH memory
	On-chip ROM routine
	Software
	References
	Software listing
	Appendix
	Alternative software listing

