
Freescale Semiconductor
Application Note

AN2280
Rev. 1, 11/2004

CONTENTS

1 AMR-NB With EFR Vocoder Basics2
2 Implementation Phases ... 4
2.1 Porting AMR-NB Reference Code 6
2.2 EFR Integration... 6
2.3 Project-Level Optimizations 7
2.4 Algorithmic Changes .. 9
2.5 Function-Level C Optimizations........................... 10
2.6 Assembly Implementation12
3 Results ...13
4 References ...14

3GPP-AMR-NB With ETSI-EFR
Implementation on the StarCore™
SC140/SC1400 Cores
By Razvan Ungureanu, Bogdan Costinescu, and Costel Ilas
Among the vocoders defined by the Third Generation
Partnership Project (3GPP) for use in the 3G world is the
narrowband Adaptive Multi-Rate Codec for speech (AMR-NB).
This application note describes the steps in implementing
AMR-NB on the Freescale StarCore™ SC140 DSP core. The
implementation methodology used for this AMR-NB speech
codec project is the same as that for two earlier speech codec
projects, in which Freescale proved the viability of this
methodology.1 These earlier projects used the methodology to
gain speed; however, the project described in this application
note uses the methodology to reduce the memory footprint
(code and data size) because the product is targeted for 3G
subscriber products. In addition, the most time-consuming
functions are optimized for speed, achieving an efficient
size/speed trade-off.

In contrast to a speed optimized implementation in which the
requirements can be met by optimizing only few of the most
time-consuming functions, the size optimizations require
modification of a large number of functions. The challenge is to
identify the functions to optimize and to predict the size gain.
Even small changes in functions can yield a significant size
reduction. Although the size optimizations have a negative
impact on the Million Cycles Per Second (MCPS)

1. The two projects are described in detail in two Freescale
application notes: ITU-T G.729 Implementation on
StarCore SC140 (AN2094/D) [1] and ITU-T G.729A
Implementation on StarCore SC140 (AN2151/D) [2].
© Freescale Semiconductor, Inc., 2002, 2004. All rights reserved.

AMR-NB With EFR Vocoder Basics
measurements2, this implementation demonstrates that an acceptable trade-off between speed versus size can be
achieved if the most time-consuming functions are carefully optimized for speed. In this project, the AMR-NB
with EFR code size was reduced by 25.45 KB while the speed was increased 3.27 times, compared to the ported to
SC140 AMR with EFR code just compiled with the size optimization switch turned on.

1 AMR-NB With EFR Vocoder Basics
The 3GPP-AMR-NB vocoder is based on the algebraic code excited linear prediction (ACELP) model. The encoder input is a
13-bit PCM signal sampled at 8 KHz. This signal is processed on 20 ms frames divided into four subframes of 5 ms each,
transmitting the adaptive and fixed codebook parameters after each subframe. Depending on the transmission channel
bandwidth, the bitstream rate can be adapted to one of the rates listed in Table 1.

Table 1. AMR-NB Bit Rates

Mode Bit rate (kbit/s)
Number of Bits Per

Frame
Similarity To

MR122
MR102
MR795
MR74
MR67
MR59
MR515
MR475

12.20
10.20

7.95
7.40
6.70
5.90
5.15
4.75

244
204
159
148
134
118
103
95

GSM EFR

TDMA IS-641A

The encoder implements a mechanism called Discontinuous Transmission (DTX) for turning off the transmission
during silence speech frames. The DTX mechanism uses a Voice Activity Detector (VAD) on the encoder side and
a Comfort Noise Generator (CNG) on the decoder side. Reference C code provides a choice of two different VAD
mechanisms, VAD1 and VAD2 (the Freescale VAD), along with the proper test vectors for both. Although the bit
rate and the encoded parameters in the MR122 mode of the AMR-NB vocoder are the same as those for the ETSI
EFR vocoder, the two vocoders implement different VAD/DTX mechanisms. Due to many additional
implementation differences, the encoded parameters of MR122 AMR-NB and EFR are not bit exact. Also, the
auxiliary information appended to the encoded bitstream is different. Table 2 lists the AMR-NB EFR functions that
differ from EFR functions. The EFR vocoder also uses three new tables:

• SID_codeword_bit_idx[] used by encoder

• dhf_mask[] used by decoder

• and interp_factor[] used by decoder

2. The MCPS number indicates the processing power needed to encode and decode a frame of 20 ms of speech in
real time.

Table 2. Comparison of EFR Code and AMR-NB Code

Module Function Comparison Comments

common update_gcode0_CN
update_lsf_history
update_lsf_p_CN

EFR only DTX module functions
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

2 Freescale Semiconductor

AMR-NB With EFR Vocoder Basics
Encoder acf_averaging
vad_computation
predictor_values
vad_hangover
tone_detection
spectral_comparison
threshold_adaptation
energy_computation
schur_recursion
step_up
compute_rav1
periodicity_update

EFR only VAD module functions

cn_encoding
aver_gain_code_history
aver_lsf_history
tx_dtx
update_gain_code_history_tx
compute_cn_excitation_gain
sid_codeword_encoding

DTX module functions

pitch_fr6

cbsearch
cl_ltp
cod_amr
gainquant
subframePostProc
subframePreProc

AMR functions that
also contain blocks of

code used in EFR

vad_decision
q_gain_code

Completely different Function from VAD
-

encoder
pitch_ol
Q_plsf

Many differences -
-

Q_plsf_5 in AMR-NB

gain_quant
enc_lag6
g_code
g_pitch
lag_max
levinson
q_gain_pitch

Few differences MR795_gain_quant in AMR-NB
-
-
-
-
-

Decoder gmed5 EFR only

rx_dtx
interpolate_cn_lsf
interpolate_cn_param
update_gain_code_history_rx

DTX module functions

d_gain_code
d_gain_pitch
D_plsf_5
Decoder_amr
decoder

Many differences

agc Few differences

Table 2. Comparison of EFR Code and AMR-NB Code (Continued)

Module Function Comparison Comments
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 3

Implementation Phases
2 Implementation Phases
Table 3 presents the main phases of the methodology used to implement AMR-NB on the SC140 core. A full
description and examples for each step are provided in [1]. Table 3 includes an additional phase necessary for our
application: EFR integration. In the EFR integration phase, some functions or pieces of code, tables, channel data,
and constants from the EFR reference code are included in the AMR-NB vocoder to achieve bit-exact EFR
functionality.

Table 3. Methodology Phases

Development Phase Description

Porting AMR-NB to the SC140
core

Data type definitions, introduction of intrinsic functions,
StarCore adaptations.

EFR integration Integration of ETSI-EFR code within the AMR-NB code

Project-level optimizations Inlining fast 32-bit DPF operations, data alignment

Algorithm changes Platform-independent and platform-dependent changes in
algorithms

Function-level C optimizations C optimization techniques (multisample, loop unrolling, split
summation), and better use of intrinsic functions

Function implementation in
assembly

Implementation of selected functions in assembly for best
optimization

As discussed in Section 1, there are differences between the bitstream formats of the AMR-NB encoder and
decoder and ETSI EFR encoder and decoder. Therefore, in addition to the reference code, a wrapper interface
feeds each of the two vocoders with the correct data stream. Code Listing 1 presents the API for the AMR-NB
with EFR implementation.

Example 1. AMR-NB with EFR API

void MDCR_AMR750_amrefr_enc
(

INT16 *input_buf, /* input speech data, 160 words */
INT16 *output_buf, /* output data, 245 words */
AMREFR_ENC_CTRL_PTR *ctrl_ptr,
AMREFR_ENC_STATUS_PTR *status_ptr

);

typedef struct {
UINT32 temp_2: 24; /* place holders */
UINT32 mode: 4; /* AMR rate place holder */
UINT32 temp_1: 1; /* place holder */
UINT32 dtx: 1; /* 1 - Enable */
UINT32 coder: 1; /* 0 - AMR, 1 - EFR */
UINT32 init: 1; /* 1 - initialize */
UINT8 *static_ptr; /* static channel data, 3072 bytes */
UINT8 *scratch_ptr; /* scratch space, 4096 bytes */

} AMREFR_ENC_CTRL_PTR;

typedef struct {
UINT8 used_mode; /* Unused for EFR */
UINT8 sp_flag;
UINT8 vad_flag;

} AMREFR_ENC_STATUS_PTR;
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

4 Freescale Semiconductor

Implementation Phases
void MDCR_AMR750_amrefr_dec
(

INT16 * inbuf_ptr, /* input data, 245 words */
INT16 * outbuf_ptr, /* output speech data, 160 words */
AMREFR_DEC_CTRL_IN_T * ctrl_inptr,
AMREFR_DEC_STATUS_PTR * status_ptr

);

typedef struct {
UINT32 temp_2: 20; /* place holders */
UINT32 mode: 4; /* AMR rate place holder */
UINT32 temp_1: 2; /* place holders */
UINT32 sid: 2; /* SID frame type for EFR */
UINT32 bfi: 1; /* BFI for EFR */
UINT32 taf: 1; /* Signifies TAF alignment for EFR */
UINT32 coder: 1; /* 0 - AMR, 1 - EFR */
UINT32 init: 1; /* 1 - initialize */
UINT8 *static_ptr; /* static channel data, 1776 bytes */
UINT8 *scratch_ptr; /* scratch space of 4096 bytes */

} AMREFR_DEC_CTRL_PTR;

typedef struct {
UINT8 temp

} AMREFR_DEC_STATUS_PTR;

Both the AMR-NB and ETSI-EFR standards require the implementation to be bit exact with the C reference code.
To test the bit exactness of the code, the two standards bodies provide sets of test vectors for all operating modes of
each vocoder. Table 4 presents the tests performed to verify the bit exactness of the application.

Table 4. Bit-Exactness Tests

Vocoder Type Operating Mode Number of Frames

3GPP-AMR-NB MR475
MR515
 MR59
 MR67
 MR74

MR795
MR102
MR122

MRDTX

7938
7986
7986
7986
7986
7988
7988
9913
2927

ETSI-EFR speech
DTX

7645
4222

The tests are performed on the MSC8101 Application Development System (MSC8101ADS), but they can be
performed on the simulator instead, yielding the same results. The software development tools are provided with
Metrowerks® CodeWarrior® IDE, Release 1.1. The performance results will improve as the C compiler evolves.
The algorithmic changes are tested on a PC using a PC-native development environment. Speed measurements,
presented as MCPS, are collected using the MSC8101 on-chip timers. The stack peak is measured on the
MSC8101ADS using the watermark technique described in [3]. The speed and stack measurements can also be
performed by processing the simsc100.exe simulator log file. This technique is described in [1], [2], and [3].
All the performance measurements are worst case measurements; that is, they are the maximum values obtained
after all tests are performed in all AMR-NB and EFR operating modes.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 5

Implementation Phases
2.1 Porting AMR-NB Reference Code
After the data types, such as Word8, Word16, Word32, and Flag, are redefined to comply with the SC140
architecture, the “out-of-the-box” C reference code is compiled to obtain an SC140 binary file. However,
significantly better performance in both speed and size is obtained by replacing the calls to the DSP emulation
functions—prototyped in basic_op.h and defined in basicop2.c—with compiler intrinsics defined in
prototype.h. Intrinsic usage eliminates the need for Overflow and Carry boolean flags because their
functionality is assured by the corresponding processor flags. However the overflow flag must be tested in several
functions, so three intrinsics are used to give access to processor Overflow flag. See prototype.h:
Set_Overflow(), Get_Overflow(), and Test_Overflow().

In the methodology presented in [1] and [2], file splitting and multichannel transformations are part of the project-
level optimizations phase. However, to reduce development time, they are performed in the first phase in parallel
with the other actions. File splitting yields more than 250 files. Although file splitting is time-consuming, it is very
useful in the optimization process. Although this is a subscriber implementation, multichannel transformations
allow conference calls between multiple parties and also make the project “infrastructure ready” without any
performance penalties. Table 5 presents the performance results in two cases: all C sources compiled with size
optimizations turned on (–O3 –Os) or speed optimizations turned on (–O3).

Table 5. Performance Results of the Porting Phase

Development Stage
Speed

(MCPS)

Memory Consumption
(ROM)

Memory Consumption (RAM)

Program
(KB1)

Tables
(KB)

Channel Data
(KB)

Stack (KB)

AMR-NB porting to SC140 size compilation 35.45 70.7 28.3 4.6 × N2 5.4

AMR-NB porting to SC140 speed compilation 25.50 91.1 28.3 4.6 × N 5.2

NOTES: 1. 1 KB = 1024 bytes.

2. N = the number of channels.

2.2 EFR Integration
The overall steps performed to add EFR functionality to the ported AMR-NB are listed as follows:

1. Introduce the amr_efr_selector flag into the data channel to indicate the current mode of operation:
AMR-NB or EFR functionality.

2. Add the EFR tables, code, and channel data to the AMR-NB project.
3. Adapt the EFR code to use the AMR-NB name space when accessing constants or functions with the

same functionality but different naming.

In a few cases, parts of the EFR code must be ported to the SC140 architecture, as described in Section 2.1. For
each new function that deals with channel data of its own, a new data structure is defined in the amr_status.h
file. For functions that are similar in the two vocoders but have different channel data, the different channel data is
added to the existing data structures from amr_status.h.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

6 Freescale Semiconductor

Implementation Phases
In some cases, the code from several different EFR functions resides in one AMR-NB function. These EFR
functions are dropped in favor of using the AMR-NB function for EFR mode of operation. Many sections of code
from EFR functions are added to AMR-NB functions with similar functionality. In this case, the
amr_efr_selector flag is tested before entering the code block that is not common to the two vocoders (see
Example 2):

Example 2. Testing of the amr_efr_selector Flag

#ifdef MDCR_AMR_WITH_EFR
if(amr_efr_selector == MDCR_EFR_VOCODER)
{
 .. EFR code here ..
}
else
{

#endif /* MDCR_AMR_WITH_EFR* /

 .. AMR-NB code ..
#ifdef MDCR_AMR_WITH_EFR

}
#endif /* MDCR_AMR_WITH_EFR* /

All non-AMR-NB code introduced is compiled and conditioned by the MDCR_AMR_WITH_EFR preprocessor
define to allow easy removal of EFR code and obtain an AMR-NB-only implementation. Table 6 lists the
performance figures at the end of the EFR integration phase.

Table 6. Performance Results of the EFR Integration Phase

Development Stage
Speed
(MCPS)

Memory
Consumption (ROM)

Memory
Consumption (RAM)

Program
(KB)

Tables
(KB)

Channel
Data (KB)

Stack
(KB)

EFR integration, size compilation 36.15 80.4 28.6 4.7 × N1 5.6

EFR integration, speed compilation 25.80 103.2 28.6 4.7 × N 5.3

NOTES: 1. N = the number of channels.

2.3 Project-Level Optimizations
The main code transformations involved in the project-level optimizations are as follows:

1. Change the memory representation of Double-Precision Format (DPF) numbers. Combine and store
the two 16-bit portions of a DPF number as a single 32-bit number.

2. Inline the fast 32-bit operations on DPF numbers.

The fast versions of the DPF operations, defined in the oper_32b.c file, use the processor support for 32-bit
operations. These functions are very short, and often the computations can be performed in parallel with other
computations. Inlining these functions yields a significant speed gain because of the high call frequency. Also,
eliminating the calling overhead reduces the code size.

3. Reduce table size, as follows:
— Eliminate the symmetrical parts.

— Remove the tables or parts of tables that can be dynamically computed.

— Eliminate the unused elements from a table.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 7

Implementation Phases
— Redefine storage types.

— Remove tables needed by the vocoder tester.

4. Reduce the stack by mapping the data structures with different and disjoint lifetime to the same storage
area, allocated as soon as possible in the function calling chain. Reducing the number of function
parameters also improves code size.

5. Allocate static memory for the channel data.

Almost 6 KB of code are saved by removing the malloc() calls and combining all channel data initialization and
reset functions. Also, we gain size by replacing the individual data initialization with 0 with a global initialization
to 0 of all the channel data structures.

The first four techniques are described in detail in [1] and [2]. The last task in this development phase is to perform
a profiling session on the compiled for speed C sources in order to identify the two following function categories
according to the 80–20 percent rule of thumb:

• G1 set. The top time-consuming functions whose processing time requires up to 80 percent of the
frame processing time (see Table 7).

• G2 set. The functions that consume the remaining 20 percent of the frame processing time.

Table 7. Top Time-Consuming Functions

Common
(bytes)

Encoder
(bytes)

Decoder
(bytes)

build_cn_code (180)
filter_excitation (110)
inv_sqrt (94)
pred_lt_3or6 (164)
pseudonoise (110)
syn_filt (502)
get_lsp_pol (304)
residu (372)
pre_post_process (340)
restorevector (116)
window4x (58)
energy4x (68)
correlation4x (90)
scaleright4x (48)

az_lsp (654)
block_norm (204)
chebps (130)
convolve (96)
cor_h (488)
lag_max_wgh (364)
mr475_gain_quant (1120)
mr795_gain_code_quant3 (914)
mr795_gain_code_quant_mod (966)
qua_gain (610)
search_10and8i40 (3652)
search_2i40_11bits (582)
search_2i40_9bits (522)
search_3i40_14bits (974)
search_4i40_17bits (1300)
vq_subvec (862)
vq_subvec3 (306)
vq_subvec_s (862)
c_fft (492)
comp_corr (210)
cor_h_x2 (824)
levinson (1256)

agc (330)
preemphasis (88)

From now on, the G1 set of functions is compiled with speed optimizations turned on (–O3), and the G2 set of
functions is compiled with the size optimizations options turned on (–O3 –Os). Table 8 depicts the speed and the
memory usage at the end of project-level optimizations.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

8 Freescale Semiconductor

Implementation Phases
Table 8. Performance Results of the Project-Level Optimizations Phase

Development Stage
Speed
(MCPS)

Memory Consumption (ROM) Memory Consumption (RAM)

Program (KB) Tables (KB) Channel Data (KB) Stack (KB)

Project_Level Optimizations 18.14 65.7 24.3 5.6 × N1 6.4

NOTES: 1. N = the number of channels.

2.4 Algorithmic Changes
Table 7 shows that several functions in the G1 set consume much memory when compiled for speed. Therefore,
the purpose of the algorithmic changes phase is to reduce the size of some of these functions while keeping them in
the list of speed-optimized functions. The only candidate for the algorithmic change is the fixed codebook search
block of functions. Reordering some vectors provides efficient data access and also simplifies several
computations. Table 9 presents all the functions involved in the algorithmic change and the size reduction
obtained.

Table 9. Functions in Algorithmic Changes Phase

Function Code Size Reduction (Bytes) Comments

build_code_10i40_35bits
build_code_2i40_11bits
build_code_2i40_9bits
build_code_3i40_14bits
build_code_4i40_17bits
build_code_8i40_31bits

246
140

86
116

94
188

G1 set

code_2i40_11bits
code_2i40_9bits
code_3i40_14bits
code_4i40_17bits

–104
216
190
190

G1 set

cor_h –130 G1 set

set_sign –94 G1 set

set_sign12k2.c –48 G1 set

search_10and8i40
search_2i40_11bits
search_2i40_9bits
search_3i40_14bits
search_4i40_17bits

 86
116
 70
 48

146

TOTAL 1556

Table 10 depicts the speed and the memory usage at the end of the algorithmic change phase.

Table 10. Performance Results of the Algorithmic Changes Phase

Development Stage
Speed
(MCPS)

Memory Consumption
(ROM)

Memory Consumption (RAM)

Program (KB) Tables (KB) Channel Data (KB) Stack (KB)

Algorithmic changes 18.48 64.2 24.3 5.6 × N1 6.4

NOTES: 1. N = the number of channels.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 9

Implementation Phases
2.5 Function-Level C Optimizations
Because our focus is to reduce code size, the most-used C optimization techniques are as follows:

• code factorization

• loop merging

• removal of data redundancies

• test number reduction

• avoiding repeated fetches

• avoiding repeated computation of the same value

These techniques are extensively applied to the G2 set of functions and sometimes applied to the G1 set of
functions because they may reduce the register pressure, resulting in more efficient compiled code. Unfortunately,
an accurate prediciton for size reduction in a C code optimization is impossible. In contrast to speed optimizations,
size optimizations have no rule to specify the results of optimizing a few functions that require only 20 percent of
the code size. Therefore, we must inspect many functions to see if some optimization techniques can be applied.
We hand-optimized more than 50 functions to obtain the required code size. The first candidates for the code
factorization technique are the fixed codebook search block of functions. Although there are five different search
functions, they have a very similar structure based on two basic search blocks of code that are repeated with
different variables and indexes. Therefore, we isolated the two search blocks into two small functions,
search_calc1_index() and search_calc2_index(), fully optimized for speed to compensate for the calling overhead
caused by the high calling frequency.

An important reduction in code size is obtained by performing the ABI-compliant register save/restore with
function calls. This code can take up to 26 bytes if the d6, d7, r6, r7 registers must be saved. Calls to subroutines
that perform this task require only 8 bytes, so the maximum size reduction can be S = 18 × n (bytes), where n is the
number of functions that use this custom context saving. In this project, n=86 functions and the size reduction is
876 bytes. This technique is made possible by defining a custom calling convention.

Another important reduction in code size (812 bytes) is obtained by using the integer operations in several
functions instead of the similar fractional intrinsics (that is, “+“ instead of add()). This is possible because the
reference code developers used the basic_op calls on integer values for profiling purposes. However, care must be
taken because some integer operations must be saturating operations. This can be achieved only with
intrinsic/basic_op calls.

One concern is to reduce the size reserved for the stack segment. The memory space reserved on the stack for large
local vectors is moved into a “scratch memory” space. To obtain the size of this scratch memory, we compare the
sizes reserved by all disjoint call chains and choose the maximum one. The effort spent on this action is inversely
proportional with the minimum size of the vectors that are moved. In this project, the minimum size for the eligible
vectors is 100 bytes.

The following techniques are used to increase the speed of the functions placed in the G1 set:

• multisampling

• split summation

• loop unrolling

• loop splitting

• software pipelining
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

10 Freescale Semiconductor

Implementation Phases
These techniques, which take advantage of the SC140 parallel architecture, are detailed in [1], [2], [8] and [9].
However, because of size constraints, care must be taken when implementing them. In some cases, software
pipelining is not implemented, and also the split or unroll factor when applying these techniques is 2 instead of 4.
One advantage is that some functions are similar or even identical to the ones used in ITU G.729 series (see Table
11), so, we can reuse or adapt the versions optimized for speed from G.729A projects to the AMR-NB project.

Table 11. Functions Adapted from ITU G.729 Series

Function Comparison Comments

syn_filt same G.729AB

get_lsp_pol same G.729AB

residu same G.729AB

convolve same G.729

az_lsp similar G.729

chebps similar G.729

levinson similar G.729AB EFR DPF operations different from
AMR-NB or G729AB

Table 12 depicts the vocoder results of the end of this stage.

Table 12. Performance Results of the Function-Level C Optimizations Phase

Development Stage
Speed

(MCPS)

Memory consumption
ROM

Memory Consumption RAM

Program (KB)
Tables
(KB)

Channel Data
(KB)

Stack and Scratch
(KB)

Function-Level C Optimizations 16.55 57.4 24.3 4.8 × N1 2.2 + 4

NOTES: 1. N = the number of channels.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 11

Implementation Phases
2.6 Assembly Implementation
The next step is to hand assemble the critical portions of the code that are high cycle consumers, as when the
increased register pressure makes the compiler generate too much spill code. Table 13 presents the assembly
functions included in the project in this phase. The functions are listed in decreasing order of importance: most
time consuming first in the speed row, and largest first in the size row.

Table 13. Hand Assembly Functions

Assembly Implementation Focus Function

Speed search_calc1_index
search_calc2_index
cor_h comp_corr
restorevector
az_lsp syn_filt
pred_lt_3or6
prm2bits
chebps
convolve
log2_norm
c_fft vq_subvec_s
residu
mdcr_correlation4x
set_sign12k2
set_sign mdcr_energy4x
levinson
inv_sqrt
cor_h_x2
pre_post_process
get_lsp_pol
mdcr_scaleright4x
mdcr_window4x

Size decompress_code
compress_code
decompress10
sqrt_l_exp
log2_norm
compress10
copy

The functions in the “size assembly implementation focus” row are functions in the G2 set of small to medium
complexity. The purpose is to see the size gain of hand-assembling such functions. The “size assembly
implementation” strategy is to eliminate the spill code by performing a better register allocation and take advantage
of the entire SC140 instruction set. We use the instructions that can perform the computations for which the
compiler generates a larger number of simpler instructions. The conclusion is that too much effort is spent for a 10
–20 percent size gain. Again, for the functions listed in Table 11 the assembly implementations are adapted from
the G.729 project series. The fixed codebook search kernel from search_calc2_index() is also adapted from a
G729AB codebook search. Table 14 lists the performance figures at the end of this phase.
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

12 Freescale Semiconductor

Results
Table 14. Performance Results of the Function Implementation in Assembly Phase

Development Stage
Speed

(MCPS)

Memory Consumption
(ROM)

Memory Consumption (RAM)

Program
(KB)

Tables
(KB)

Channel Data
(KB)

Stack and Scratch
(KB)

Function Implementation in Assembly 11.05 54.95 24.3 4.8 × N1 2.2 + 4

NOTES: 1. N = the number of channels.

3 Results
Table 15 summarizes the performance figures in terms of processing load (MCPS) and memory consumption. The
final performance figures were achieved after an effort of eleven man months.

Table 15. Performance Results

Development Stage
Speed
(MCPS)

Memory Consumption
(ROM)

Memory Consumption (RAM)

Program
(KB)

Tables
(KB)

Channel
Data (KB)

Stack and
Scratch (KB)

AMR-NB Porting to SC140: Size compilation 35.45 70.70 28.3 4.6 × N1 5.4 + 0

AMR-NB Porting to SC140: Speed compilation 25.50 91.10 28.3 4.6 × N 5.2 + 0

EFR integration - size compilation 36.15 80.40 28.6 4.7 × N 5.6 + 0

EFR integration - speed compilation 25.80 103.20 28.6 4.7 × N 5.3 + 0

Project_Level Optimizations 18.14 65.70 24.3 5.6 × N 6.4 + 0

Algorithmic Changes 18.48 64.20 24.3 5.6 × N 2.4 + 4

Function_Level C Optimizations 16.55 57.40 24.3 4.8 × N 2.2 + 4

Function Implementation in Assembly 11.05 54.95 24.3 4.8 × N 2.2 + 4

AMR-NB only: Function Implementation in
Assembly

10.90 46.40 24.1 4.5 × N 2.0 + 4

NOTES: 1. N = the number of channels.

Table 16 presents the total number of channels processed in parallel with this subscriber implementation, on the
SC140 architecture at 300 MHz.

Table 16. Number of Channels, Subscriber Implementation

Development Stage Number of Channels Memory Usage (KB)

AMR-NB Porting to SC140: Size compilation 8 141.2

AMR-NB Porting to SC140: Speed compilation 11 175.2

EFR integration - Size compilation 8 152.2

EFR integration - Speed compilation 11 188.80

Project_Level Optimizations 16 186.00

Algorithmic Changes 16 184.50

Function_Level C Optimizations 18 174.30
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 13

References
The number of MCPSs required to encode/decode a frame is obtained by multiplying the measured number of
cycles by the number of frames to be processed per second (in 3GPP-AMR-NB and ETSI-EFR, 50 frames of 20 ms
each must be processed in one second), and dividing the result by 1,000,000. For example, if 100,000 cycles are
required to encode or decode a frame, the processing power required is (100,000 × 50) / 1,000,000 = 5 MCPS. The
performance measurement techniques are detailed in [1], [2], [3] and [10]. The overall vocoder cycle count is the
sum of the encoder and decoder worst case results, obtained after performing the measurements on all the test
vectors with all modes of operation, EFR and AMR-NB, at every rate. The maximum stack frame is in fact the
maximum between the encoder and the decoder maximum stack frame.

4 References
All of the following documents, except [9] are Freescale documents that are available at the web site listed on the
back cover of this application note.

[1] ITU-T G.729 Implementation on StarCore SC140 (AN2094).
[2] ITU-T G.729A Implementation on StarCore SC140 (AN2151).
[3] Stack Measurement for StarCore SC140 Core (AN2267).
[4] SC140 DSP Core Reference Manual (MNSC140CORE), Rev.1, 6/2000.
[5] SC100 C Compiler User's Manual (MNSC100CC)..
[6] SC100 Assembly Language Tools User's Manual (MNSC100ALT/D).
[7] SC100 Application Binary Interface Reference Manual (MNSC100ABI/D).
[8] StarCore Multisample Programming Technique (STCR140MLAN/D).
[9] GSM EFR Vocoder on StarCore 140, Dror Halahmi, Sharon Ronen, Yariv Mishlovsky, Assaf Naor,

Shlomo Malka, Amit Gur, Haim Rizi, ICSPAT 1999.
[10] Using the SC140 Enhanced OnCE Stopwatch Timer (AN2090).

Function Implementation in Assembly 27 215.05

AMR-NB only: Function Implementation in Assembly 27 198.00

Table 16. Number of Channels, Subscriber Implementation (Continued)

Development Stage Number of Channels Memory Usage (KB)
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

14 Freescale Semiconductor

References
NOTES:
3GPP-AMR-NB With ETSI-EFR Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 15

AN2280

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc.2002, 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 1
11/2004

	1 AMR-NB With EFR Vocoder Basics
	2 Implementation Phases
	2.1 Porting AMR-NB Reference Code
	2.2 EFR Integration
	2.3 Project-Level Optimizations
	2.4 Algorithmic Changes
	2.5 Function-Level C Optimizations
	2.6 Assembly Implementation

	3 Results
	4 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

