Freescale Semiconductor Order Number: AN2184/D
Rev. 1.1, 10/2001

68KCIdFIRE’

I C R OPROUCESSOR S

Application Note
MCF5272 Interrupt Service Routine
for the Physical Layer Interface Controller

Jean Louis Dolmeta
Networking and Computing Systems Group

Part | Summary and Scope

1.1 Overview

The physical layer interface controller (PLIC) is a peripheral module of the ColdFire® MCF5272 intended
to support ISDN applications such as CODECs, ISDN transceivers, and other peripherals. The PLIC
supports two modes of operation: IDL and GCI physical layer protocols. It also has four dedicated TDM
ports for connecting to external devices.

This document consists of four main parts:

1. A brief description of the inter digital link (IDL) mode of operation
The general circuit interface (GCI) explanation

3. A description of the interrupt service routine used to handle the data transfer for both modes of
operation

4. Some examples of ColdFire microprocessor assembly code to perform quick evaluation of the
MCF5272. See Part VIII, “Appendix A.”

The reader is strongly recommended to read the MCF5272 User’s Manual at www.mot.com/ColdFire
before going through this document. The register and bit explanations therein help the reader to better
understand the device’s internal architecture.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

© Motorola, Inc., 2001. All rights reserved.

freescale*

semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
copywithline

Freescale Semiconductor, Inc.

Summary and Scope Contents

1.2 Contents

Paragraph Number
II
2.1
I
3.1
3.2
33
v
4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
43.2

5.1
5.2
53
VI
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.6.1
6.6.2

Title

Inter Digital Link Mode of Operation
Introduction

General Circuit Interface Mode of Operation
GCI History

Monitor Channel Operation
Command Indicate Operation
GCI/IDL to the MCF5272
Data Registers

Monitor Channel Registers
Monitor Channel Receive
Monitor Channel Transmit
Command Indicate Registers
Command Indicate Receive
Command Indicate Transmit
Periodic Interrupt Process
Bubbles Definitions

One-Port Processing
Multi-Ports Processing
Aperiodic Interrupt Process
Aperiodic One-Port Sequence
Multi-Ports Case

Brief Register Explanation
Monitor Channel Sequence
Transmit Sequence

Receive Sequence

Transmit Abort Condition
Command Indicate Channel
Transmit Sequence

Receive Sequence

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Page

0 N9 9 Oy i i e BB WD

e e e S S e e e O
(o I B e U) B S U R S e S

Freescale Semiconductor, Inc.
Summary and Scope Contents

VI Assembly Code 19
7.1 Interrupt Controller 19
7.2 Interrupt Vector Generation 20
7.3 Prioritization Level: ICR2 Register 21
7.4 Programmable Interrupt Vector Register: PIVR 22
7.5 MBAR Configuration 22
7.6 Hardware Configuration 22
7.7 Software Configuration 23
7.7.1 Customer Premises Equipment Software 23
7.7.2 ColdFire Port Configuration 23
7.7.3 Debugger Configuration 25
VIII Appendix A 26
FIGURES and TABLES
Item Title Page
Figure 1 IDL 10-Bit Mode 4
Figure 2 IDL 8-Bit Mode 5
Figure 3 GCI Frame 6
Figure 4 Monitor Channel Protocol 6
Figure 5 GCI Monitor Channel Receive Register 7
Figure 6 GCI Monitor Channel Transmit Register 8
Figure 7 PnGCIR Register 9
Figure 8 PnGCIT Register 10
Figure One-Port Processing Interrupt Service Routine Flow Diagram 13
Figure 10 Multi-Port Processing Interrupt Service Routine Flow Diagram 14
Figure 11 One-Port Processing Aperiodic Interrupt Service Routine Flow Diagram 15
Figure 12 Multi-Processing Aperiodic Interrupt Service Routine Flow Diagram 16
Figure 13 Monitor Channel Transmit Sequence Flow Diagram 17
Figure 14 Monitor Channel Receive Sequence Flow Diagram 18
Figure 15 Transmit Abort Condition Flow Diagram 19
Figure 16 CI Transmit Sequence Flow Diagram 20
Figure 17 CI Receive Sequence Flow Diagram 21
Figure 18 Interrupt Control Register 2 23

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
interchip Digital Link Mode of Operation Introduction

Figure 19 Programmable Interrupt Vector Register 24
Figure 20 Hardware Configuration 25
Table 1 PnGMR Register Field Descriptions 8
Table 2 PnGMT Register Field Descriptions 8
Table 3 PnGCIR Register Field Descriptions 9
Table 4 PnGCIT Register Field Descriptions 10
Table 5 PIV Register Field Descriptions 24
Table 6 Port Pins Assignment 25
Table 7 Port Control Register Values 26

Part Il Interchip Digital Link Mode of Operation

2.1 Introduction

The IDL mode of operation is a four-wire interface used for full-duplex communication between ICs at the
board level. This interface consists of a transmit path, a receive path, an associated clock, and a
synchronization signal. These signals are known as Dout, Din, DCL, and FSC. The clock determines the
rate of exchange of data in both transmit and receive directions and the sync controls when this exchange is
to take place. Three channels of data are exchanged every 125 microseconds. These channels consist of
two 64-kbps B channels and one 16-kbps D channel used for full-duplex communication. The waveform
diagrams are shown in Figure 1 and Figure 2.

Two modes are available:

e The 10-bit mode:

Frame Sync (FSC) |_| |_|.
esceccoco [T,

Datan@in) | [[[[{ [T QTP T II T IITT TP PTTITTTT P11 [
DataOut@out) [| | [[T 1 {1 [11 01T 001101 T1T 0 P10 0 TT 0T 1711
N /Y \ M
Y Y
D1Channel Dummy Bit D2 Channel
B1 Channel B2 Channel
Figure 1. IDL 10-bit Mode
4 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Frame Sync (FSC) |_|

Freescale Semiconductor, Inc.
General Circuit Interface Mode of Operation GCI History

The 8-bit mode:

Data Clock (DCL) wwmmmm

Data In (Din)

Data Out Bouy IIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIII
C T\ =’

Y Y
B1 Channel B2 Channel D Channel

Figure 2. IDL 8-bit Mode

For more information about the different configurations of IDL, please refer to any ISDN product user’s
manual, such as the MC145574/572 or MC145576 at http://www.freescale.com.

Part lll General Circuit Interface Mode of
Operation

3.1 GCI History

The GCI mode was defined by European companies (Italtel, Siemens, Alcatel, and GPT). GCI is a time
division multiplex (TDM) bus that combines the ISDN 2B+D data, control, and status information onto
four signal pins. Some benefits of the GCI include the following:

Operation and maintenance features
Activation and deactivation facilities (via CI channel)

Well-defined transmission protocols to ensure correct information transfer between
GClI-compatible devices

Point-to-point and multi-point communication links

Multiplexed mode of operation where up to eight GCI channels can be combined to form a single
data stream

Those four signals consist of the following:

FSC, frame synchronization: 8-kHz frame pulse
DCL, data, clock signal: two clocks per data bit
Din, data in: the data in

Dout, data out: This pin is an open-drain output and must be pulled to Vdd through a 1.2-k€2
resistor.

The GCI frame structure has the following format: two B channels, a monitor channel, the ISDN D
channel, the command/indicate channel, and the A and E bits. The frame is shown in Figure 3.

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
General Circuit Interface Mode of Operation Monitor Channel Operation

Frame Sync (FSO) |—|_ L

|
owacioekocy [TV AARAEORA MY AN ATV ARV ARRITAOAN,

INEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

INEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Data Out (Dout) L A A =~
Y Y

B1 Channel B2 Channel Monitor Channel D Channel CI A/E

Data In (Din)

Figure 3. GCI Frame

3.2 Monitor Channel Operation

This feature is available only in GCI mode. The monitor channel is used to access the internal registers of
any GCI device in order to support maintenance channel operations. All monitor channel messages are two
bytes in length. Each byte is sent twice to permit the receiving GCI device to verify data integrity. In ISDN
applications, the monitor channel is used for access to the maintenance messages. The A and E bits in the
GCI channel are used to control and acknowledge monitor channel transfers between the MCF5272 and
another GCI device.

Figure 4 shows the monitor channel protocol used. When the monitor channel is inactive, the A and E bits
are both high. The A and E bits are active when they are driven low during their respective bit times. (Note
that pull-up resistors are required on Din and Dout.) The E bit represents the transmission of a new monitor
channel byte. The A bit from the opposite direction is used to acknowledge the monitor channel byte
transfer. An idle monitor channel is indicated by both A and E bits being inactive for two GCI frames. The
monitor channel data is 0xFF when inactive. The originating GCI device transmits a byte onto the monitor
channel after receiving the A and E bits equal to 1 for at least two consecutive GCI frames. The originating
GCI device also clears its outgoing E bit in the same GCI frame as the byte that is transmitted. The
transmitted byte is repeated for at least two GCI frames, or is repeated in subsequent GCI frames, until the
MCF5272 acknowledges receiving two consecutive GCI frames containing the same monitor byte.

Once the MCF5272 acknowledges the first byte, the sending device sets E high and transmits the first
frame of the second byte. Then, the second byte is repeated with the E bit low until it is acknowledged. The
destination GCI device verifies that it has received the first byte by clearing the A bit towards the
originating GCI device for at least two GCI frames. Successive bytes are acknowledged by the receiving
device setting A high on the first instance of the next byte, followed by A being cleared when the second
instance of the byte is received. If the receiving GCI device does not receive the same monitor channel byte
in two consecutive GCI frames, it indicates this by leaving A = 0 until two consecutive identical bytes are
received. The last byte of the sequence is indicated by the originating GCI device when it sets its E bit for
two successive GCI frames. The procedure is summarized in Figure 4.

125 us
>
| | S | | N | | |
NULL BYTEI BYTEI BYTE2 BYTE2 NULL NULL NULL
e (OO
Ebit |
Dout
Abit]] I I I 1 [L
Figure 4. Monitor Channel Protocol
6 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GCVIDL and the MCF5272 Command Indicate Operation

3.3 Command Indicate Operation

The command/indicate, or C/I channel, is used to activate and deactivate any GCI devices. Some control
functions (such as loopbacks) are also supported over the C/I channel. C/I codes are four bits in length and
must be received for two consecutive GCI frames before they are acted on. C/I channel bits are numbered
bit 3 through 0, with bit 3 being the most significant. The C/I/ channel bits are transmitted starting with bit
3.

Part IV GCIl/IDL and the MCF5272

This section gives a brief description of the internal registers in the PLIC.

4.1 Data Registers

For both GCI and IDL modes of operation, the maximum data rate transmitted for each digital port is
144 kbps (two 64-kbps B channels and one 16-kbps D channel). Frames of B1, B2, and D channels are
packed together in PnRBx/PnTBx registers (with x = 1, 2, 3, 4) for receive and transmit direction
respectively. Since the reception and transmission of information on the GCI/IDL interface is
deterministic, a common interrupt is generated at 2 kHz. It is expected that a common interrupt service
routine will be programmed to service the transmit and receive registers. After reset, the B and D channel
shift registers and shadow registers are initialized to all 1’s. For more information about the data registers,
please refer to the MCF5272 User’s Manual.

4.2 Monitor Channel Registers

This section describes receive and transmit channels.

4.2.1 Monitor Channel Receive

The PnGMR registers are 16-bit registers containing the received monitor channel bits for each of the four
receive ports on the MCF5272. A byte of monitor channel data received on a certain port is put into an
associated register using the format shown in Figure 5 and described in Table 1. A maskable interrupt is
generated when a byte is written into any of the four available MCF5272 ports.

15 11 10 9 8 7 0
Field — EOM| AB | MC M

Reset 0000_0000_1111_1111
R/W Read Only
Addr MBAR + 0x360 (POGMR); 0x362 (P1GMR); 0x364 (P2GMR); 0x366 (P3GMR)

Figure 5. GCI Monitor Channel Receive Register (PnGMR)

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GCVIDL and the MCF5272 Monitor Channel Registers

Table 1. PnGMR Register Field Descriptions

Bits Name Description
15-11 — Reserved, should be cleared.
10 EOM | End of message.

0 Default at reset.

1 Indicates to the CPU that an end-of-message condition has been recognized on
the E bit. EOM is automatically cleared when the PnGMR register has been read
by the CPU.

9 AB Abort.

0 Default at reset.

1 Indicates that the GCI controller has recognized an abort condition and is
acknowledging the abort. It is automatically cleared by the CPU when the
PnGMR register has been read.

8 MC Monitor change.

0 Default at reset.

1 Indicates to the CPU that the monitor channel data byte written to the respective
PnGMR register has changed and that the data is available for processing. This
bit is automatically cleared by the CPU when the PnGMR register has been
read. Clearing this bit also clears the aperiodic GMR interrupt.

7-0 M Monitor channel data byte. These bits are written by the monitor channel controller
when valid monitor channel bytes are received.

4.2.2 Monitor Channel Transmit

The PnGMT registers are 16-bit registers containing the control and monitor channel bits to be transmitted
for each of the four ports on the MCF5272. A byte of monitor channel data to be transmitted on a certain
port is put into an associated register using the format shown in Figure 6 and described in Table 2. A
maskable interrupt is generated when this byte of data has been successfully transmitted.

15 10 9 8 7 0
Field - L R M
Reset 0000_0000_0000_0000
R/W Read/Write
Addr MBAR + 0x368 (POGMT); 0x36A (P1GMT); 0x36C (P2GMT); Ox36E (P3GMT)

Figure 6. GCI Monitor Channel Transmit Register (PnGMT)

Table 2. PhnGMT Register Field Descriptions

Bits | Name Description

15-10 — Reserved, should be cleared.

9 L Last.

0 Default reset value

1 Set by the CPU. Indicates to the monitor channel controller to transmit the end of message signal
on the E bit. Both PnGMTI[L] and PnGMT[R] must be set for the monitor channel controller to send
the end of message signal.

The L bit is automatically cleared by the GCI controller.

8 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GCI/IDL and the MCF5272 Command Indicate Registers

Table 2. PnGMT Register Field Descriptions

Bits | Name Description

8 R Ready.

0 Default reset value.

1 Set by the CPU. Indicate to the monitor channel controller that a byte of data is ready for
transmission. Automatically cleared by the GCI controller when it generates a transmit
acknowledge (ACK bit in PnGMTS register) or when the L bit is reset.

7-0 M Monitor channel data byte. Written by the CPU when a byte is ready for transmission.

4.3 Command Indicate Registers

This section describes receive and transmit command registers.

4.3.1 Command Indicate Receive

The PrGCIR register is an 8-bit register containing the received C/I bits for one of each of the four ports on
the MCF5272. The register is shown in Figure 7 and described in Table 3.

7 5 4 3 2 1 0
Field — F C3 | c2 | C1 co
Read R/W
Reset 0000_0000

Figure 7. PnGCIR Register

Table 3. PnGCIR Register Field Descriptions

Bits | Name Description

7-5 — Reserved, should be cleared.

4 F |Full. This bit is set by the C/I channel controller to indicate to the CPU that new C/I
channel data has been received and is available for processing. It is automatically
cleared by a CPU read. The clearing of this bit by reading this register also clears the
aperiodic GCR interrupt.

3-0 | C3—C0|C/I bits. These four bits are received on the GCI or SCIT channel 0. When a change in
the C/I data value is received in two successive frames, it is interpreted as being valid
and is passed on to the CPU via this register. A maskable interrupt is generated when
data is written into any of the four available positions.

4.3.2 Command Indicate Transmit

The PnGCIT registers are 8-bit registers containing the monitor channel bits to be transmitted for each of
the four ports on the MCF5272. The register is shown in Figure 8 and described in Table 4.

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Periodic Interrupt Process ISR Bubble Definitions

7 5 4 3 2 1 0
Field — F C3 | c2 | C1 co
Read R/W
Reset 0000_0000

Figure 8. PnGCIT Register

Table 4. PnGCIT Register Field Descriptions

Bits Name Description

7-5 — Reserved, should be cleared.

4 R Ready. This bit is set by the CPU to indicate to the C/I channel controller that data is
ready for transmission. Setting this bit starts the C/I state machine, which responds
with the transmit acknowledge (ACK bit in the PNnGCITS register) once transmission
of two successive C/l words is complete. This bit is automatically cleared by the GCI
controller when it generates an ACK. The clearing of this bit by reading this register
also clears the aperiodic GCT interrupt.

3-0 | C3-CO0 |C/I bits. The CPU writes C/I data to be transmitted, on the GCI or SCIT channel 0,
into these positions. The CPU must ensure that this data is not overwritten before it
has been transmitted the required minimum number of times, that is, before a
change is detected and confirmed by a receiver. A maskable interrupt is generated
when this data has been successfully transmitted.

PartV Periodic Interrupt Process

This document does not intend to define all the meanings of the PnPSR register. For more information, the
user should read the MCF5272 User’s Manual. This PnPSR register is involved in the data processing. All
PnRBx and PnTBux registers, either in IDL or GCI modes of operation, will use these registers. There is no
difference between those two modes as far as they are concerned. PnPSR register is updated every 500us.
As long as the interrupt enable (IE) bits are set to invoke the interrupt service routine, the BXRDF bits will
be set every 500us, and a register access will be achieved to clear this interrupt.

This section is explained in two parts:

* One port only is enabled: description of how to handle all the bits involved in PnPSR
e Multiple ports are enabled: description of how to access the ports that created this interrupt

5.1 ISR Bubble Definitions

To assure that the following flow charts are well understood, this section defines the bubble shapes used in
the illustrations:

e Start or End of the process

¢ Test Condition

10 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Periodic Interrupt Process One-Port Processing

9

e Interrupt creation

* Return from Interrupt

PASR
(GMT) =0

e Action taken

Port0 Read

5.2 One-Port Processing

For this PLIC interrupt service routine, the channel priorities are fixed. In the periodic status registers, the
B1RDF, BITDE, and DRDF have top priority, then the B2RDF, B2TDE, and DTDE follow. The xTUE and
xROE should be given lowest priority because they should be cleared. This interrupt service routine
implementation gives some flexibility by dynamically jumping between the action to take and the
verification of the bit that creates the interrupt. Furthermore, the purpose of the code was to first evaluate
the product after first silicon. The code and the ISR have been written with this objective in mind. In
conclusion, all the actions are taken inside the ISR instead of raising a flag in order to perform it once the
ISR has completed. The flow chart is shown in Figure 9.

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Periodic Interrupt Process One-Port Processing

Process Port
PnPSR =0

Move.l PnB 1RR, DO

< Move.l DO,PnB ITR >_

(Move 1 PnB 2RR,D0)_

No

(Move‘l DO, PnB2TR ’

E Yes
Yes Yes
@ (' Move.l PaDRR,DO)_
et?
No

¢
Yes Yes
< Move.l DO, PuDTR }—

v

No

No

No No

Figure 9. One-Port Processing Interrupt Service Routine Flow Diagram

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Periodic Interrupt Process Multi-Ports Processing

Generate Error
Read PnPSR

Generate Error
Read PnPSR

Read PnPSR

Read PnPSR

T YT T YT

Yes
DROE Generate Error
Set? Read PnPSR
No
Yes
Read PnPSR
No

End

Figure 9. One-Port Processing Interrupt Service Routine Flow Diagram (Continued)

5.3 Multi-Ports Processing

Most of the time, more than one port will be enabled, and in order to make the ISR subroutine more
efficient, several steps should be taken. When the periodic interrupt occurs, the user does not know yet
which port has caused it. To find out, check the following registers:

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Aperiodic One-Port Sequence

1. PnICR: PLIC Interrupt Configuration register
2. PnPSR: PLIC Periodic Status Register

In fact, even if the PLPSR has been updated, the corresponding bit in the PrICR (IE) may not have been
programmed; thus the ISR process cannot be called by this port. The flow chart is shown in Figure 10.

Yes

PIPSR != 0

Process Port2

Yes Yes
P3PSR != 0

Process Port3

[Process End]

Figure 10. Multi-Port Processing Interrupt Service Routine Flow Diagram

Part VI Aperiodic Interrupt Process

This part describes port sequence, multi-port case, registers, channel sequence, abort condition, and the
command indicate channel.

6.1 Aperiodic One-Port Sequence

This section explains how the aperiodic interrupt is used with one port enabled. The next section describes
a multi-channel approach. When one port is enabled, a level of priority must be set up. For obvious
reasons, the CI channel will be top priority because of its ability to activate and deactivate. As far the

14 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Multi-Port Case

monitor channel is concerned, the same philosophy will be applied, and the received path takes higher
priority. The flow chart is shown in Figure 11.

Yes
PLICR
(GCR) Set?
No
Yes Yes
PLICR
(GCT) Set?

Yes

ASR(GSR)
Set ?

Read PLGCR

./

No

ASR(GCT)
Set ?

(Read PLGCITS ’—

PLUR ASR(GMR)

Set ?

Read PLGMR

No

Read PLGM TS

"

\
[Process End

Figure 11. One-Port Processing Aperiodic Interrupt Service Routine Flow Diagram

6.2 Multi-Port Case

Once the PLIC has many GCI ports enabled, a generic aperiodic interrupt is required to handle all of the
possibilities. As previously done in the periodic interrupt, the PnICR will be read so it can save some MIPS
in case the port is not enabled. The flow chart is shown in Figure 12.

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Brief Register Explanation

Interrupsts
ON

Yes

PASR[30]
1=0

Yes

PASR[7:4]
=0

Yes

PASR[11:8]
1=0

Yes

PASR[15:12
11=0

[Process End]

Figure 12. Multi-Processing Aperiodic Interrupt Service Routine Flow Diagram

6.3 Brief Register Explanation

This section describes the registers involved in the aperiodic interrupts service routine. The GCI oriented
registers are PnGMR, PnGMT, PnGCIR, and PnGCIT. These are the only register that affect the PASR
register. For more information about the definition of all those registers, please refer to the PLIC section in
the MCF5272 User’s Manual for a more detailed description.

6.4 Monitor Channel Sequence

This section details the manner in which GCI monitor channel data is handled. Based on the low-level
protocol specification, the following information will help the user better understand the GCI monitor
channel operation.

16 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Monitor Channel Sequence

6.4.1 Transmit Sequence

Here is the transmit sequence of the GCI protocol using the GCI monitor channel transmit registers. The
flow chart is shown in Figure 13.

Start

>
No

Yes

Write Value into
PnGMT with
R=1,L=0

PASR (GMT) =0

Write into PuGMT
with R=1,L=1

Figure 13. Monitor Channel Transmit Sequence Flow Diagram

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Monitor Channel Sequence

6.4.2 Receive Sequence

This section describes with the receive sequence of the GCI protocol. The flow chart is shown in Figure 14.

\

Yes

CAb ort Message >—>

Read PnGMR
(D7:D0)

Device Failure)_>

\
[Process End]

Figure 14. Monitor Channel Receive Sequence Flow Diagram

18 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Transmit Abort Condition

6.5 Transmit Abort Condition

One register is used to indicate an abort condition. The flow chart is shown in Figure 15.

l

GMTA (AR) =1

Yes

[Process End]

Figure 15. Transmit Abort Condition Flow Diagram

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Aperiodic Interrupt Process Command Indicate Channel

6.6 Command Indicate Channel

This section details the channel for command indication.

6.6.1 Transmit Sequence

Figure 16 explains CI channel operation.

Start

€S

7t

Write CI into

No
PnGCIT (R=1, C3: C0O)
-

Yes

PASR (GCT) =0

Process
End

Figure 16. Cl Transmit Sequence Flow Diagram

20 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembly Code Interrupt Controller

6.6.2 Receive Sequence

The flow chart for the receive sequence is shown in Figure 17.

PASR (GCR)=1

Silicon Issue

Yes

< Read PnGCIR (C3: C0) >

Y
[Process End]

PASR (GCR) =0

Figure 17. Cl Receive Sequence Flow Diagram

Part VIl Assembly Code

This section outlines how the ColdFire core will handle the PLIC. Some assembly code will be shown to
better describe the sequence flow of the interrupt service routine. An interrupt occurs every 500
microseconds; therefore, all the actions must be performed within this time.

7.1 Interrupt Controller

The MCF5272 microprocessor device has some registers that set the interrupt prioritization levels for each
interrupt source.

The on-chip system integration module contains an interrupt controller that is capable of providing up to
32 interrupt sources.

These sources include the following:

e External interrupt signals INT[6:1]
* Software watchdog timer

* Four general-purpose timers

e Two USARTSs

e Ethernet controller

e PLIC controller

¢ DMA controller

e QSPI

e USB module

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembly Code Interrupt Vector Generation

All external interrupt inputs are edge-sensitive where the active edge is programmable. The active edge is
programmable. An interrupt request must be held valid for at least three consecutive CPU clock cycles to
be considered a valid input. Each interrupt input can have its priority programmed by programming the
xIPL(2-0) bits in the interrupt control registers. When the ColdFire core responds to a request with an
interrupt acknowledge cycle, as is standard in MC52xx implementations, the interrupt controller logic will
forward the correct vector depending on the original source of the interrupt. Software can clear pending
interrupts from any source via the registers in the interrupt controller logic, and can program the location of
the block of vectors used for interrupt sources via the programmable interrupt vector register. For an
interrupt to be successfully processed, RAM must be available for the stack, and often this RAM will be
selected by one of the programmable chip selects. So upon system startup there is a brief period where
RAM is not available for the stack. To ensure no problems resulting from interrupts (particularly of priority
level 7) during this period, there is an interlock which prevents any interrupt from reaching the ColdFire
core until the first write cycle to the programmable interrupt vector register (PIVR). The user should ensure
that both RAM chip selects and the system stack are set up prior to this write operation.

The interrupt controller includes daisy-chaining functions in order to avoid contention when the ColdFire
core issues an interrupt acknowledge cycle. So if more than one interrupt source has the same interrupt
priority level (IPL), they are daisy chained with INT1 being the highest priority. There are four interrupt
control registers which control the interrupt priorities for the external general purpose latched interrupt
input signals and the internal I/O modules’ signals. These registers allow software to reset any pending
interrupts from these external interrupt lines or internal modules. There are up to 32 interrupt inputs, each
of which has four bits assigned to it in these registers. The registers can be read or written at any time.
When read, the data returned is the last value that was written to the register, with the exception of the reset
bits, which are transitory functions. The registers can be accessed by either long word (32-bit), word
(16-bit), or byte (8-bit) data transfer instructions. An 8-bit write to one-half of a register will leave the other
half intact.

7.2 Interrupt Vector Generation

Pending interrupts are presented to the MCF52xx core in order of priority. The core responds to an
interrupt request by initiating an interrupt acknowledge cycle to receive a vector number, which allows the
core to locate the interrupt’s service routine. The interrupt controller is able to identify the source of the
interrupt, which is being acknowledged and indicates this to the interrupt module mapper. The mapper
determines which slave bus module is to provide the interrupt vector for the identified interrupt source. In
most instances it is the interrupt controller itself which will provide the interrupt vector in which case the
following procedure is used. The three most significant bits of the interrupt vector are programmed by the
user in the programmable interrupt vector register.

7.3 Prioritization Level: ICR2 Register

The interrupt control registers (ICRx) allow the user to define which interrupt priority level (IPL), each of
these peripheral sources will use. For those modules whose interrupt sources are mapped to the interrupt
controller for the vector source, the programmable interrupt vector register (PIVR) allows the user to
define a particular vector number to be presented when the respective module receives an interrupt
acknowledge from the MCF52xx core via the interrupt controller logic. The interrupt vector register is
initialized upon system reset with the uninitialized interrupt vector (hexadecimal 0xOF), and must be
programmed with the required vector number for normal operation. It is important not to use reserved
interrupt vector locations for this purpose. The dedicated ICRx for the periodic and aperiodic interrupts is
ICR2.

22 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assembly Code Programmable Interrupt Vector Register: PIVR

MBASE +0x24
31 30 29 28 27 26 25 24
Write| UART1PIR|UART1PL2|UART1/PL1|UART1/PLO [UART2PIR| UART2/PL2 | UART2/PL1|UART2PLO
Read| UART1 |UART1PL2|UART1/PL1|UART1/PLO| UART2 |UART2/PL2|UART2/PL1|UART2PLO
Reset 0000_0000
23 22 21 20 19 18 17 16
Write| PLIPIR | PLIPL2 | PLIPL1 | PLIPLO | PLIAPIR | PLIAIPL2 | PLIAIPL1 | PLIAIPLO
Read| PLIP | PLIPL2 | PLIPL1 | PLIPLO | PLIA | PLIAIPL2 | PLIAIPL1 | PLIAIPLO
Reset 0000_0000
15 14 13 12 11 10 9 8
Write| USBOPIR | USBOIPL2 | ISBOIPL1 | USBOIPLO | USB1PIR | USB1IPL2 | USB1IPL1 | USBOIPLO
Read| USBO | USBOIPL2 | ISBOIPL1 | USBOIPLO | USB1 | USB1IPL2 | USB1IPL1 | USBOIPLO
Reset 0000_0000
7 6 5 4 3 2 1 0
Write| USB2PIR | USB2IPL2 | USB2IPL1 | USB2IPLO | USB3PIR | USB3IPL2 | USB2IPL1 | USB2IPLO
Read| ISB2 | USB2IPL2 | USB2IPL1 | USB2IPLO | USB3 | USB3IPL2 | USB2IPL1 | USB2IPLO
Reset 0000_0000

Figure 18. Interrupt Controller Register 2

For more explanation about the meaning of those bits, the user should read the MCF5272 User’s Manual.
Here is a brief summary ICRx bits:

xPIR: When set to one, the new IPL value is stored. When set to zero, the corresponding INTx interrupt
latch and IPL level is unaffected. Any pending interrupt on that line will remain pending.

xIPL(2:0): Interrupt Priority Level (1-7): When set to zero, the corresponding INTx interrupt line is
inhibited and will not generate interrupts. Its state can still be read via the ISR1 register. Otherwise, the
corresponding INT1x interrupt line is enabled, and will generate an interrupt to the MCF52xx core with the
indicated priority level.

For more explanation about the meaning of these bits, see the MCF5272 User’s Manual.

7.4 Programmable Interrupt Vector Register: PIVR

This register specifies the vector numbers which will be returned by the interrupt controller in response to
interrupt acknowledge cycles for the various peripherals and discrete interrupt sources. The high three bits
of the vector number are programmed in the PIVR. The low five bits are provided by the interrupt
controller depending on the highest priority source which is currently active for the specific interrupt
priority level (IPL) being responded to in the current acknowledge cycle.

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembly Code MBAR Configuration

MBASE+0x3C
7 6 5 4 3 2 1 0
Write| IV7 | IV6 | V5 —
Read| IV7 | IV6 | IV5 0_1111

Reset 0000_1111

Figure 19. Programmable Interrupt Vector Register

Table 5. PIV Register Field Descriptions

Bits Name Description

7-5 | IV7-IV5 |Interrupt vectors 7-5. These bits provide the three MSB’s of the interrupt vector for
interrupt acknowledge cycles from all sources. To conform to ColdFire interrupt
vector allocation these bits should be set equal to or greater than 010. This is the
same as writing a value of 0x40 to the register.

4-0 — Reserved, should be cleared.

7.5 MBAR Configuration

This is one of the first registers that should be written after reset. MBAR configuration is arbitrarily set by
the user.

7.6 Hardware Configuration

The evaluation board that is used in this setup is the M5272C3. The four ports are available through PCI
sockets on the evaluation board. Be sure that, in addition to supplying the evaluation board with power, the
user supplies 5V to J7, which supplies power to the daughter cards connected into the PCI sockets. The
wire connection between the PC and the board is a BDM wiggler cable. Depending on the tested registers,
the external environment could be either MCI145572EVK (U Transceiver-oriented board) or
MC145574EVK (T transceiver-oriented board). Along with the M5272C3 board, daughter cards will be
plugged into these PCI sockets. Most of the time, the T2 daughter boards will be plugged in to evaluate
multi-port functionality, D channel access, and other features. The U2 daughter card will be used for IDL
BER measurement. The BER tester is the HP1645A, which is directly connected to either the
MC145572EVK or MC145574EVK. The hardware setup is as follows:

24 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembly Code Software Configuration

BER Tester
BDM Cable HP1645A
pPC M5272C3 Coax Cables
For BER Measurement
MC145572EVK

/ / UorT lines MC145574EVK
PCI Sockets {
RS232 Cable

PC

Figure 20. Hardware Configuration

7.7 Software Configuration

This section describes software configuration.

7.7.1 Customer Premises Equipment (CPE)

Depending on the CPE board used, the control software will run differently. This gives the user the ability
to control the sourcing transceiver. If the MC145572EVK is used, the RS232 cable is connected and the
embedded software will automatically come up with power-on reset. If the MC145574EVK is used, the
scp.exe software must be run on a Windows-based PC. (Note: scp.exe software will not run on Windows
NT.) Please refer to the specific EVK user’s manual for more detailed information about the hardware and
software for each.

7.7.2 ColdFire Port Configuration

Writing into the ColdFire core general purpose registers must configure the TDM pins of the MCF5272.
With power-on reset, portl will be automatically configured. Then portO and some pins of port3 must be
configured as a result of the GPIO register access. Table 6 shows the values.

Table 6. Port Pin Assignments

Port Pins Configured by Fielg(iar;i(:(t);trol Cg;::'g?ﬂf;? Map BGA Pin
FSCO PortA PACNTS8 01 J2
DCLO PortD PDCNTO 01 Ja
Din0 PortD PDCNT1 01 K1
Dout0 PortD PDCNT4 01 K4
DREQO PortA PACNT10 01 K5
DGRANTO PortA PACNT9 01 J3
FSCA1 Reset N/A L4
DCL1/DCL2 Reset N/A M1

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembly Code Software Configuration

Table 6. Port Pin Assignments

Port Pins Configured by Fie'gl’;iz:’;tm' C\‘,’a’l‘ltl::'(gfng:;‘;r Map BGA Pin
Din1 / Din2 Reset N/A N2
Dout1 / Dout2 Reset N/A N1
DREQ1 PortA PACNT14 01 M2
DGRANT1 PortA PACNT15 01 M3
FSC2 PortA PACNT12 01 L2
FSC3 PortA PACNT13 01 L3
Din3* PortD / Reset PDCNT5 10/00 P3 /N2
Dout3 PortA / Reset PACNT 7 10/00 P1 /N1
Note: The user must keep in mind that ports 1, 2, and 3 share the same resource as long as DCL, Din, and Dout
are concerned. This is called the indirect mode. Only the FSC pins are different. In some applications, Din3 and
Dout3 might come from other resources, called the direct mode. In this case, PDCNT and PACNT values must be
programmed as the above array shows. The MAP BGA pins will, of course, be different.

As a summary, the port control registers values are:

Table 7. Port Control Register Values

Port Control Register Indirect Mode (Hex) Direct Mode (Hex)
PACNT (MBAR+0x80) 55150000 55158000
PDCNT (MBAR+0x98) 00000105 00000905

7.7.3 Debugger Configuration

Once the code has been compiled with the Diab compiler to the file main.elf, the user can download it to
the M5272C3 evaluation board via the BDM cable. The configuration file is as follows:

0x00000000
0x00000000

set vectbase
set vectaddr

@ MBAR = 0x10000001
@ RAMBAR = 0x20000001

2MB FLASH on CS0 at OxXFFE00000
write -1 0x10000040=0xFFE00201
write -1 0x10000044=0xFFE00014

Nothing on CS1 at 0x00000000
write -1 0x10000048=0x00000000
write -1 0x1000004C=0x00000000

External FSRAM on CS2 at 0x30000000
write -1 0x10000050=0x30000001
write -1 0x10000054=0xFFF80008

26 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

Nothing on CS3 at 0x00000000
write -1 0x10000058=0x00000000
write -1 0x1000005C=0x00000000

CS7 from address 0x00000000 4M byte SDRAM
write -1 0x10000078 0x00000701
write -1 0x1000007C 0xXFFC0007c

setup SDRAM Timing and Control Registers SDCTR then SDCCR
write -1 0x10000184 0x0000£415
write -1 0x10000180 0x00004211

rem initialize SDRAM with a write
write -r 0x00040000=0x55555555 # STARTS SDRAM controller

Part VIIl Appendix A

This appendix deals with an example of program that has been used to evaluate the MCF5272.
Scope of the program:

The purpose of that program was not to productize the MCF5272, but to simply evaluate the silicon. This is
the reason why the internal architecture might not be optimized to the fullest. Some knowledge of
Freescale ISDN products is required, in order to fully activate and send data over the data link. For more
information, the user must refer to the MC145572 and MC145574 User’s Manuals.

Once the hardware has been correctly set up (see Figure 20), the NT-configured MC145574 chip activates
the (NR2 to 0x1) down to the TE-configured MC145574 device. When the link is up and running (NR1 to
0x9), the TE must have the B1 and B2 channels on (NR5 to 0xC). Once connected to the NT-configured T
chip, the bit error rate tester (HP 1645A) sends data from the NT device through the link down to the TE
device. The purpose of MCF5272 is to capture the received data and to perform a loopback in the ColdFire
core via the interrupt service routine. The possible loopbacks that can be tested are all combinations of B
channels or D channel by itself. Due to the internal architecture and the special processing of the D
channel, the 2B+D loopback cannot be performed. The entire loopback process runs in the ISR. The flow
diagram of the program (for both IDL and GCI modes, except that there is no aperiodic interrupt in IDL
mode) is as follows:

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

Program ISR Start
Start
CPU and PLI Periodic Multi-
Initialization
MC145574
Initialization

Port Processing
Main Core of the
Program where the
ISR takes place

[ISR End
Program
End

Aperiodic
processing
APER # 0

APER =0

Figure 21. Main Program and ISR Flow Diagram

Here below is the MAIN file, with all the invoked files that are necessary

.include “configuration.h” ;Equates

.include “PLIInterupt.s” ;Interrupt Vectors
.include “PerIntVector.s” ;Periodic Interrupt
.include “AperIntVector.s” ;Aperiodic Interrupt
.include “CoreInit.s” ;Main file

.include “Init.s” ;Subroutine to init
.include “CPUInit.s” ;Linked to ColdFire Core

.include “Table.s”

Note: The user must add a space at each beginning of line to make sure the code will be correctly
compiled.

This is the file that must be compiled with the following executable file makeit:

28 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

das -1 -g -Xalign-value -tMCF5206eFN:simple -Xasm-debug-on -I@ -o
main.o target.s

dld -m2 -o main.elf main.o -lc > map

ddump -Rv -0 try.mot main.elf

Once the main.elf file has been generated, it must be downloaded to the board via the BDM. Shown below
are all the files included in main.s.

Configuration.h is the file used for all the definition of the equates. In order to save space, only the
important and used equates are shown: i.e. the Initialization registers and the PLIC registers.

; Default initial register values

;s Most of the values are not used for the PLIC evaluation

Module Regs Addr EQU $00300000 ;Addr. of on-chip reg
Init MBAR EQU $10000001 ;MBAR value

Init SCR EQU $0000

Init PMR EQU $0 ;Initial value of PMR
UserProgram EQU $00020000 ;Put program in SDRAM
Init SPR EQU SO0ES8 ;Initial value of SPR
Init SCFR EQU $1211 ;Initial value of SCFR
Init PIVR EQU $40 ;Initial value of PIVR
VBR Init EQU $00000000

SRValue EQU $2500

LED EQU $3

; ADDRESSES OF SYSTEM CONFIGURATION REGISTERS - These are absolute addresses

Sys_Config Regs EQU $00000400 ;Absolute address of sers
MBAR EQU Sys_Config Regs+0 ;Module Base Add Register
SCR EQU Sys_Config Regs+4 ;System Config Register
SPR EQU Sys_Config Regs+6 ;System Protection Register
PMR EQU Sys_Config Regs+8 ;Power Management Register
SCFR EQU Sys_Config Regs+$C ;Synthesized Clock Freq
DIR EQU Sys_Config Regs+$10 ;Device ID Register

; OFFSETS TO MODULES - Offsets w.r.t. contents of MBAR (don't use directly, use
register names below)

Intc Reg Offset EQU $000 ;O0ffset of SIM's IntC
Csel Reg Offset EQU $040 ;0ffset of SIM's CSel
Port Reg Offset EQU $080 ;0ffset of SIM's Ports
QSPI_Reg Offset EQU $0A0 ;O0ffset of QSPI module
PWM Reg Offset EQU $S0CO ;O0ffset of PWM module
DMA Reg Offset EQU SOEO ;0ffset of DMA module
Uartl Reg Offset EQU $100 ;0ffset of UART module
Uart2 Reg Offset EQU $140 ;0ffset of UART module
SDRAM Reg Offset EQU $180 ;0ffset of SDRAM module
Timer Reg Offset EQU $200 ;O0ffset of Timer module
PLIC Reg Offset EQU $300 ;0ffset of PLIC module
Ether Reg Offset EQU $800 ;O0ffset of Ethernet module
USB_Reg Offset EQU $1000 ;O0ffset of USB module

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

; SIM INTERRUPT CONTROLLER REGISTERS

ICR1
ICR2
ICR3
ICR4
ISR

PITR
PIWR
PIVR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Intc Reg Offset+$20
Intc_Reg Offset+$24
Intc_Reg Offset+$28
Intc Reg Offset+$2C
Intc_Reg Offset+$30
Intc_Reg Offset+$34
Intc Reg Offset+$38
Intc Reg Offset+$3F

; SIM CHIP SELECT REGISTERS

BRO
ORO
BR1
OR1
BR2
OR2
BR3
OR3
BR4
OR4
BR5
OR5
BR6
OR6
BR7
OR7

* SIM PORTS REGISTERS

PACNT
PADDR
PADAT
PBCNT
PBDDR
PBDAT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

Csel Reg Offset+$0

Csel Reg Offset+$4

Csel Reg Offset+$8

Csel Reg Offset+$C

Csel Reg Offset+$10
Csel Reg Offset+$14
Csel Reg Offset+$18
Csel Reg Offset+$1C
Csel Reg Offset+$20
Csel Reg Offset+$24
Csel Reg Offset+$28
Csel Reg Offset+$2C
Csel Reg Offset+$30
Csel Reg Offset+$34
Csel Reg Offset+$38
Csel Reg Offset+$3C

(PORT A and PORT B)

Port Reg Offset+$00
Port Reg Offset+$04
Port Reg Offset+$06
Port Reg Offset+$08
Port Reg Offset+$0C
Port Reg Offset+$0E

;Int Control Register
;Int Control Register
;Int Control Register
;Int Control Register

; Interrupt Source Register
;Prog Interrupt Transition

;Prog. Interrupt Wakeup
;Prog. Interrupt Vector

;Chip Select Base Register

;CS

;Chip Select Base Register

;CS

;Chip Select Base Register

;CS

;Chip Select Base Register

;CS
;CS
;CS
;CS
;CS
;CS
;CS
;CS
;CS

Option Register
Option Register 1
Option Register

Option Register 3
Base Register 4
Option Register 4
Base Register 5
Option Register 5
Base Register 6
Option Register 6
Base Register 7
Option Register 7

;Port A Control Reg
;Port A Data Direction
;Port A Data Register
;Port B Control Register

;Port
;Port

Data Direction

B
B Data Register

; Port C has no CNT register - pins controlled by data bus 16/32-bit mode

PCDDR
PCDAT
PDCNT

EQU
EQU
EQU

Port Reg Offset+$14
Port Reg Offset+$16
Port Reg Offset+$18

;Port C Data Direction
;Port C Data Register
;Port C Control Register

; Port D has no DDR or DAT register - used for pin asignment only

; PLIC MODULE REGISTERS

POB1RR
P1B1RR
P2B1RR
P3B1RR
POB2RR
P1B2RR

30

EQU
EQU
EQU
EQU
EQU
EQU

PLIC Reg Offset+$00
PLIC Reg Offset+$04
PLIC Reg Offset+$08
PLIC Reg Offset+$0C
PLIC Reg Offset+$10
PLIC Reg Offset+$14

;Bl Data
;Bl Data
;B1 Data
;Bl Data
;B2 Data
;B2 Data

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Receive,
Receive,
Receive,
Receive,
Receive,
Receive,

Port0
Portl
Port2
Port3
Port0
Portl

Freescale Semiconductor, Inc.
Appendix A Software Configuration

P2B2RR EQU PLIC Reg Offset+$18 ;B2 Data Receive, Port2
P3B2RR EQU PLIC Reg Offset+$1C ;B2 Data Receive, Port3
PODRR EQU PLIC Reg Offset+$20 ;D Data Receive, Port0
P1DRR EQU PLIC Reg Offset+$21 ;D Data Receive, Portl
P2DRR EQU PLIC Reg Offset+$22 ;D Data Receive, Port2
P3DRR EQU PLIC Reg Offset+$23 ;D Data Receive, Port3
POB1TR EQU PLIC Reg Offset+$28 ;Bl Data Transmit, Port0
P1B1TR EQU PLIC Reg Offset+$2C ;Bl Data Transmit, Portl
P2BI1TR EQU PLIC Reg Offset+$30 ;Bl Data Transmit,Port2
P3B1TR EQU PLIC Reg Offset+$34 ;Bl Data Transmit, Port3
POB2TR EQU PLIC Reg Offset+$38 ;B2 Data Transmit, Port0
P1B2TR EQU PLIC Reg Offset+$3C ;B2 Data Transmit, Portl
P2B2TR EQU PLIC Reg Offset+$40 ;B2 Data Transmit, Port2
P3B2TR EQU PLIC Reg Offset+$44 ;B2 Data Transmit, Port3
PODTR EQU PLIC Reg Offset+$48 ;D Data Transmit, PortO
P1DTR EQU PLIC Reg Offset+$49 ;D Data Transmit, Portl
P2DTR EQU PLIC Reg Offset+$4A ;D Data Transmit, Port2
P3DTR EQU PLIC Reg Offset+$4B ;D Data Transmit, Port3
PLCRO EQU PLIC Reg Offset+$50 ;GCI/IDL config, Port0
PLCR1 EQU PLIC Reg Offset+$52 ;GCI/IDL config, Portl
PLCR2 EQU PLIC_Reg Offset+$54 ;GCI/IDL config, Port2
PLCR3 EQU PLIC Reg Offset+$56 ;GCI/IDL config, Port3
POICR EQU PLIC Reg Offset+$58 ;GCI Int config, Port0
P1ICR EQU PLIC_Reg_Offset+$5A ;GCI Int config, Portl
P2ICR EQU PLIC Reg Offset+$5C ;GCI Int config, Port2
P3ICR EQU PLIC Reg Offset+$5E ;GCI Int config, Port3
POGMR EQU PLIC Reg Offset+$60 ;GCI Monitor RX, Port0
P1GMR EQU PLIC Reg Offset+$62 ;GCI Monitor RX, Portl
P2GMR EQU PLIC Reg Offset+$64 ;GCI Monitor RX, Port2
P3GMR EQU PLIC Reg Offset+$66 ;GCI Monitor RX, Port3
POGMT EQU PLIC Reg Offset+$68 ;GCI Monitor TX, PortO
P1GMT EQU PLIC Reg Offset+$6A ;GCI Monitor TX, Portl
P2GMT EQU PLIC_Reg_Offset+$6C ;GCI Monitor TX, Port2
P3GMT EQU PLIC_Reg_Offset+$6E ;GCI Monitor TX, Port3
PGMTS EQU PLIC Reg Offset+$71 ;GCI Monitor TX status
PGMTA EQU PLIC_Reg_Offset+$72 ;GCI Monitor TX abort
POGCIR EQU PLIC Reg Offset+$74 ;GCI C/I RX, Port0
P1GCIR EQU PLIC Reg Offset+$75 ;GCI C/I RX, Portl
P2GCIR EQU PLIC_Reg Offset+$76 ;GCI C/I RX, Port2
P3GCIR EQU PLIC Reg Offset+$77 ;GCI C/I RX, Port3
POGCIT EQU PLIC Reg Offset+$78 ;GCI C/I TX, Port0
P1GCIT EQU PLIC_Reg_Offset+$79 ;GCI C/I TX, Portl
P2GCIT EQU PLIC Reg Offset+$7A ;GCI C/I TX, Port2
P3GCIT EQU PLIC Reg Offset+$7B ;GCI C/I TX, Port3
PGCITSR EQU PLIC_Reg_Offset+$7F ;GCI C/I TX status
PDCSR EQU PLIC Reg Offset+$83 ;D Channel Status

POPSR EQU PLIC Reg Offset+$84 ;Port Status, Port0
P1PSR EQU PLIC Reg Offset+$86 ;Port Status, Portl
P2PSR EQU PLIC Reg Offset+$88 ;Port Status, Port2
P3PSR EQU PLIC Reg Offset+$8A ;Port Status, Port3
PASR EQU PLIC Reg Offset+$8C ;Aperiodic Status Reg
PLCR EQU PLIC Reg Offset+$8F ;Loopback Control

PDROR EQU PLIC Reg Offset+$92 ;D Channel Request
POSDR EQU PLIC Reg Offset+$94 ;Sync Delay, Port0
P1SDR EQU PLIC Reg Offset+$96 ;Sync Delay, Portl
P2SDR EQU PLIC Reg Offset+$98 ;Sync Delay, Port2
P3SDR EQU PLIC Reg Offset+$9A ;Sync Delay, Port3

PCSR EQU PLIC Reg Offset+$9E ;Clock Select

Shown below are the interrupt vector file. As long as the purpose of this evaluation is PLIC oriented, not all

vectors need to correspond to a real ISR address:

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix A Software Configuration

reset _vec

berr vec

aerr_vec

illeg vec
divz_vec

chk vec

trapv_vec
privv_vec
trace_vec
aline vec
fline vec
resl2_vec
resl3 vec
resld vec
uninit vec
reslé_vec
resl7_vec
resl8_vec
resl9 vec
res20_vec
res2l_vec
res22 vec
res23_vec
spuri_vec
res25 vec
res26_vec
res27_vec
res28 vec
res29 vec
res30_vec
res3l vec
trap0_vec
trapl_vec
trap2 vec
trap3_vec
trap4_vec
trap5 vec
trap6_vec
trap7_vec
trap8 vec
trap9_vec
trapl0_vec
trapll vec
trapl2_vec
trapl3_vec
trapl4 vec
trapl5_vec
res48_vec
res49 vec
res50_vec
res51_vec
res52 vec
res53_vec
res54_vec
res55 vec
res56_vec
res57_vec
res58 vec
res59 vec
res60_vec
res6l vec

32

org

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

VBR Init

Init SSP
Code_Start
berr handler
aerr_handler
illeg handler
divz_handler
chk_handler
trapv_handler
privv_handler
trace handler
aline handler
fline handler
rsrv_handler
rsrv_handler
rsrv_handler
uninit handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
spuri_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
trap0_handler
trapl handler
trap2 handler
trap3_handler
trap4 handler
trap5 handler
trap6_handler
trap7_handler
trap8 handler
trap9 handler
traplO0_handler
trapll handler
trapl2_ handler
trapl3_handler
trapl4 handler
trapl5 handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
rsrv_handler
mbar handler
mbar handler

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

res62_vec DC.L mbar handler

res63_vec DC.L mbar_handler

i spur vec DC.L i_spur handler

intl vec DC.L intl handler

int2 vec DC.L int2 handler

int3 vec DC.L int3 handler

int4 vec DC.L int4 handler

i timl vec DC.L i_timl handler ;Timer interrupt handler
i tim2 vec DC.L i tim2 handler ;Timer interrupt handler
i_tim3_vec DC.L i_tim3_handler ;Timer interrupt handler
i tim4 vec DC.L i _tim4 handler ;Timer interrupt handler
i uartl vec DC.L i uartl handler ;UART interrupt handler
i uart2_vec DC.L i_uart2_handler ;UART interrupt handler
i plic_per vec DC.L i PLIC Periodic ;PLIC periodic interrupt
i plic aper vec DC.L i PLIC Aperiodic ;PLIC Aperiodic interrupt
i_usb0_vec DC.L i_usb0_handler

i usbl vec DC.L i_usbl handler

i usb2 vec DC.L i usb2_handler

i_usb3_vec DC.L i_usb3_handler

i usb4 vec DC.L i_usb4 handler

i usb5 vec DC.L i usb5 handler

i_usb6_vec DC.L i_usb6_handler

i usb7_vec DC.L i_usb7 handler

i dma vec DC.L i_dma handler

i_ether rx vec DC.L i_ether rx handler

i ether tx vec DC.L i_ether tx handler

i ether ntc vec DC.L i_ether ntc handler

i _gspi_vec DC.L i_gspi_handler

int5_ vec DC.L int5 handler

int6_vec DC.L int6_handler

berr handler:

aerr handler:

illeg handler:
divz_handler:

chk handler:

trapv_handler:
privv_handler:
trace handler:
aline handler:
fline handler:
rsrv_handler:

uninit handler
spuri_ handler:
trap0 handler:
trapl handler:
trap2 handler:
trap3 handler:
trap4 handler:
trap5 handler:
trap6 handler:
trap7_handler:
trap8 handler:
trap9 handler:
trapl0_handler:
trapll_handler:
trapl2 handler:
trapl3_handler:
trapl4 _handler:
trapl5 handler:
mbar_handler:

i spur handler:
intl handler:

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

int2 handler:

int3 handler:

int4 handler:

i timl handler:

i tim2 handler:

i tim3_handler:

i tim4 handler:

i uvartl handler:

i uart2_ handler:

i usb0 handler:

i usbl handler:

i usb2_ handler:

i usb3 handler:

i usb4 handler:

i usb5_handler:

i usbé handler:

i usb7 handler:

i dma handler:

i ether rx handler:
i ether tx handler:
i _ether ntc_handler:
i gspi handler:
int5 handler:
int6_handler:

nop

stop #$2700

org UserProgram
User Ram: ds.b 10 ;Leave 1K for user variables
Stack: ds.b 10 ;Supervisor Stack 1Kbytes
Init SSP ;Initial SSP

The file below deals with the general periodic interrupt service routine including all of the bit handling.
Not all of the overrun and underrun bits are implemented in this file. Nevertheless, those bits have been
verified. Further more, this file has been written as dynamic as possible.

;***

The program below has been written in the dynamic way. That means
every time an Interrupt has been handled, the program counter exits
In case that other bits are set, the program counter will enter the
ISR again.

~e Ne ~e ~o

;***

DO is used for Data

D1 is used for recovering the PnPSR

D2 is used for checking the T/RIE bits by reading PnICR
D3 is used for checking bits

D4 is used for B2 Data in case of crossing the B1/B2 data
D5 is used LED if necessary

D6 is used for D channel

D7 for comparing values

Ne Ne Ne Ne Ne Ne N ~o

i PLIC Periodic:

Port(0Test:move.w POICR(A5),Dl; Interrupt Config Register

andi.l #$00008000,D1 ; Mask the IE bit
cmp.l #$00008000,D1 ; compare
bne PortlTest ; Go to Portl
move.w POPSR(A5),D1 ; Port0 is the cause
move.l D1,D7 ; Save D1 into D7

34 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

andi.l #$0000003F, D7 ; mask with all Port0 bits

cmp.l #$0,D7 ; compare to 0

beq PortlTest ; go to Portl if not equal
Port0Int:

move.w POICR(A5),D2 ; Read ICRO

andi.l #$00000001,D2 ; to make sure BIRIE is set

cmp.l #$00000001,D2

bne EndPortORxB1 ; 1f not, go to next interrupt

move.l D1,D7 ; POPSR check

andi.l #$00000001,D7 ; D1 has the PLPSPO value

cmp.l #$00000001,D7

beq PortOReadBl ; Go to read Bl if bit set
EndPortORxB1:

move.w POICR(A5),D2 ; Read ICRO to make sure BITIE

andi.l #$00000008,D2 ; is set

cmp.l #$00000008,D2

bne EndPort0TxB1

move.l D1,D7 ; B1TDE Test

andi.l #$00000008,D7

cmp.l #$00000008,D7

beq Port0TransmitBl ; go to Transmit Bl if bit set
EndPort0TxB1:

move.w POICR(A5),D2 ; Read ICRO to make sure B2RIE

andi.l #$00000002,D2 ; is set

cmp.1l #$00000002,D2

bne EndPortO0RxB2

move.l D1,D7 ; R2RDF Test

andi.l #$00000002,D7

cmp.l #$00000002,D7

beq PortOReadB2 ; Go to read B2 if bit set
EndPortORxB2:

move.w POICR(A5),D2

andi.l #$00000010,D2

cmp.l #$00000010,D2

bne Port0D

move.l D1,D7 ; B2TDE Test

andi.l #$00000010,D7

cmp.l #$00000010,D7

beq Port0TransmitB2 ; go to Transmit B2 if bit set

Port0OD: move.w

POICR(A5),D2

; Read ICRO to make sure DRIE

andi.l #$00000004,D2 : 1s set
cmp.l #$00000004,D2
bne EndPortORx ; i1f not, go to next source
move.l D1,D7 ; DRIE is set, needs to
andi.l #$00000004,D7 ; receive the D data
cmp.l #$00000004,D7
beq PortORxD ; Go to Read D if bit set
EndPortORx:
move.w POICR(A5),D2 ; Read ICRO(DTIE) to make
andi.l #$00000020,D2 ; sure the bit is set
cmp.l #$00000020,D2
bne PortlTest ; go to next port
move.l D1,D7 ; DTDE Test
andi.l #$00000020,D7
cmp.l #$00000020,D7
beq Port(0TxD
PortlTest:
move.w P1ICR(A5),D1 ; IE Test on Portl

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Appendix A Software Configuration

andi.l
cmp.l
bne

PortlInt:nop
move.w
move.l
andi.l
cmp.l
beq
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

EndPortl1RxBl:
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

EndPortl1TxBl:
move.w
andi.l
cmp.1l
bne
move.l
andi.l
cmp.l
beq

EndPortl1RxB2:
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.1l
beq

PortlD: move.w
andi.l
cmp.1l
bne
move.l
andi.l
cmp.l
beq

EndPortlRx:
move.w
andi.l
cmp.l
bne
move.l

36

#$00008000,D1
#$00008000,D1
Port2Test

PnPSR1(A5),D1
D1,D7
#$0000003F, D7
#$0,D7
Port2Test
P1ICR(A5),D2
#$00000001,D2
#$00000001,D2
EndPort1RxB1l
D1,D7
#$00000001,D7
#$00000001,D7
PortlReadBl

P1ICR(A5),D2
#$00000008,D2
#$00000008,D2
EndPortl1TxB1
D1,D7
#$00000008,D7
#$00000008,D7

PortlTransmitB1

P1ICR(A5),D2
#$00000002,D2
#$00000002,D2
EndPort1RxB2
D1,D7
#$00000002,D7
#$00000002,D7
Port1ReadB2

P1ICR(A5),D2
#$00000010,D2
#$00000010,D2
PortlD

D1,D7
#$00000010,D7
#$00000010,D7

PortlTransmitB2

P1ICR(A5),D2
#$00000004,D2
#$00000004,D2
EndPortlRx
D1,D7
#$00000004,D7
#$00000004,D7
PortlRxD

P1ICR(A5),D2
#$00000020,D2
#$00000020,D2
Port2Test
D1,D7

; go to

; Portl

; go to

; BI1RDF

; B1TDE

; B2RDF

; B2TDE

MCF5272 Interrupt Service Routine

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Port2 if not equal

Port2 if not equal

Test

Test

Test

Test

; DRDF Test

; DIDE Test

For More Information On This Product,

andi.l
cmp.l
beq

Port2Test:
move.w
andi.l
cmp.l
bne

Port2Int:nop
move.w
move.l
andi.l
cmp.l
beq
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

EndPort2RxB1:
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.1l
beq

EndPort2TxBl1:
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

EndPort2RxB2:
move.w
andi.l
cmp.1l
bne
move.l
andi.l
cmp.l
beq

Port2D: move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

Freescale Semiconductor, Inc.

#$00000020,D7
#$00000020,D7
Port1TxD

P2ICR(A5),D1
#$00008000,D1
#$00008000,D1
Port3Test

P2PSR(A5),D1
D1,D7
#$0000003F,D7
#$0,D7
Port3Test
P2ICR(A5),D2
#$00000001,D2
#$00000001,D2
EndPort2RxB1l
D1,D7
#$00000001,D7
#$00000001,D7
Port2ReadB1l

P2ICR(A5),D2
#$00000008,D2
#$00000008,D2
EndPort2TxB1l
D1,D7
#$00000008,D7
#$00000008,D7
Port2TransmitB1l

P2ICR(A5),D2
#$00000002,D2
#$00000002,D2
EndPort2RxB2
D1,D7
#$00000002,D7
#$00000002,D7
Port2ReadB?2

P2ICR(A5),D2
#$00000010,D2
#$00000010,D2
Port2D

D1,D7
#$00000010,D7
#$00000010,D7
Port2TransmitB2

P2ICR(A5),D2
#$00000004,D2
#$00000004,D2
EndPort2Rx
D1,D7
#$00000004,D7
#$00000004,D7
Port2RxD

Appendix A Software Configuration

; IE Test on Port2

; Port2

; B1RDF Test

; BITDE Test

; B2RDF Test

; B2TDE Test

; DRDF Test

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

EndPort2Rx:
move.w P2ICR(A5),D2
andi.l #$00000020,D2
cmp.l #$00000020,D2
bne Port3Test
move.l D1,D7 ; DTDE Test
andi.l #$00000020,D7
cmp.l #$00000020,D7
beq Port2TxD
Port3Test:
move.w P3ICR(A5),D1 ;Port3 IE Test
andi.l #$00008000,D1
cmp.l #$00008000,D1
bne EndSR
Port3Int:move.w P3PSR(A5),D1
move.l D1,D7
andi.l #$0000003F, D7
cmp.l #$0,D7
beq EndSR
move.w P3ICR(A5),D2
andi.l #$00000001,D2
cmp.l #$00000001,D2
bne EndPort3RxB1
move.l D1,D7 ; BIRDF Test
andi.l #$00000001,D7
cmp.l #$00000001,D7
beq Port3ReadBl
EndPort3RxBl1:
move.w P3ICR(A5),D2
andi.l #$00000008,D2
cmp.l #$00000008,D2
bne EndPort3TxB1
move.l D1,D7 ; B1TDE Test
andi.l #$00000008,D7
cmp.l #$00000008,D7
beq Port3TransmitBl
EndPort3TxB1l:
move.w P3ICR(A5),D2
andi.l #$00000002,D2
cmp.l #$00000002,D2
bne EndPort3RxB2
move.l D1,D7 ; B2RDF Test
andi.l #$00000002,D7
cmp.l #$00000002,D7
beq Port3ReadB2
EndPort3RxB2:
move.w P3ICR(A5),D2
andi.l #$00000010,D2
cmp.l #$00000010,D2
bne Port3D
move.l D1,D7 ; B2TDE test
andi.l #$00000010,D7
cmp.l #$00000010,D7
beq Port3TransmitB2
Port3D: nop
move.w P3ICR(A5),D2
andi.l #$00000004,D2
cmp.l #$00000004,D2
bne EndPort3Rx
move.l D1,D7 ; DRDF Test
38 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

andi.l
cmp.l
beq

EndPort3Rx:
move.w
andi.l
cmp.l
bne
move.l
andi.l
cmp.l
beq

EndSR: rte

~e Ne Ne ~eo ~o

PortOReadBl:
move.l
jsr
bra

PortOReadB2:
move.l
jsr
bra

PortORxD:
move.b
jsr
bra

PortlReadBl:
move.l
jsr
bra

PortlReadB2:
move.l
jsr
bra

PortlRxD:
move.b
jsr
bra

Port2ReadBl:
move.l
jsr
bra

Port2ReadB2:
move.l
jsr
bra

Port2RxD:
move.b
jsr
bra

Freescale Semiconductor, Inc.

Appendix A Software Configuration

#$00000004,D7
#$00000004,D7
Port3RxD

P3ICR(A5),D2

#$00000020,D2

#$00000020,D2

EndSR

D1,D7 ; DTDE Test
#$00000020,D7

#$00000020,D7

Port3TxD

kkhkkkhkkkkkkkkkkhkkhkhkkhkhkhkhhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkk*x

End of Interrupt Procedure *

khkkkkhkkkkhkkhkhkhkhkkhkhkhkhkkhkhkhkhhkhkhkhkhkhhkhkhkhkkhkhkhkhkhhkhkhkkkkkhkkkk*x

Read Procedure for each port *

khkkkhkkhkkkkhkkhkkhkhkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkkkhkhkhkhkhkkhkhkhkhkkkkkhkhkhkkkkkhkkkx*

POB1RR(A5),D0; Read Bl on Port0
PortOB1RDFReset; test if RDF is reset
EndSR ; go to ISR end

POB2RR(A5),D0; Read B2 on Port0
PortOB2RDFReset; test if RDF is reset
EndSR ; go to ISR end

PODRR(A5),D6
PortODRDFReset
EndSR

P1B1RR(A5),D0
Port1B1RDFReset
EndSR

P1B2RR(A5),D0
Port1B2RDFReset
EndSR

P1DRR(A5),D6
Port1DRDFReset
EndSR

P2B1RR(A5),D0
Port2B1RDFReset
EndSR

P2B2RR(A5),D0
Port2B2RDFReset
EndSR

P2DRR(A5),D6
Port2DRDFReset
EndSR

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Port3ReadBl:
move.l
jsr
bra

Port3ReadB2:
move.l
jsr
bra

Port3RxD:
move.b
jsr
bra

~e ~e ~o

Port0TransmitBl:
jsr
move.l
jsr
bra

Port0TransmitB2:
jsr
move.l
jsr
bra

Port0TxD: jsr
move.b
jsr
bra

PortlTransmitBl:
jsr
move.l
jsr
bra

PortlTransmitB2:
jsr
move.l
jsr
bra

PortlTxD: jsr
move.b
jsr
bra

Port2TransmitBl:
jsr
move.l
jsr
bra

Port2TransmitB2:
jsr
move.l
jsr
bra

40

Freescale Semiconductor, Inc.
Appendix A Software Configuration

P3B1RR(A5),D0
Port3B1RDFReset
EndSR

P3B2RR(A5),D0
Port3B2RDFReset
EndSR

P3DRR(A5),D6
Port3DRDFReset
EndSR

PortOB1TDESet
DO,POBITR(A5)
Port0OB1TDEReset
EndSR

Port0OB2TDESet
D0,POB2TR(A5)
Port0B2TDEReset
EndSR

PortODTDESet
D6,PODTR(AS5)
PortODTDEReset
EndSR

Port1B1TDESet
DO, P1B1TR(A5)
Port1B1TDEReset
EndSR

Portl1B2TDESet
D0O,P1B2TR(A5)
Port1B2TDEReset
EndSR

Port1DTDESet
D6,P1DTR(A5)
Port1DTDEReset
EndSR

Port2B1TDESet
D0,P2B1TR(A5)
Port2B1TDEReset
EndSR

Port2B2TDESet
DO, P2B2TR(A5)
Port2B2TDEReset
EndSR

Ne Ne ~eo ~o

Ne Ne ~e N

khkkkkhkkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkkhkhkhkhkhkhkhkhkhkkkkhkhkkkkk*

Transmit Procedure
khhkkhkkhhhhkhddhhhhhddhbhhddhhhhddhbhhddhhhhddhhhdddhdrhdddhdrhddddrdkisd

*

Make sure CPU can write
move to the register

Make sure the bit is reset
go to ISR end

Make sure CPU can write
move to the register

Make sure the bit is reset
go to ISR end

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

Port2TxD: jsr Port2DTDESet

move.b D6,P2DTR(A5)

jsr Port2DTDEReset

bra EndSR
Port3TransmitBl:

jsr Port3BlTDESet

move.1l DO, P3B1TR(A5)

jsr Port3B1lTDEReset

bra EndSR
Port3TransmitB2:

jsr Port3B2TDESet

move.l D0,P3B2TR(AS)

jsr Port3B2TDEReset

bra EndSR
Port3TxD: jsr Port3DTDESet

move.b D6,P3DTR(A5)

jsr Port3DTDEReset

bra EndSR
;**
; End of Transmit Bx *
;**
; Bx RDF reset *
;*******-k-k*********************-k-k**************************
PortOB1lRDFReset:

nop

move.w POPSR(A5),D3 ; To make sure BIRDF is reset

andi.l #$00000001,D3

cmp.l #$00000000,D3

bne Port0OB1RDFReset

rts
Port0B2RDFReset:

nop

move.w POPSR(A5),D3 ; To make sure B2RDF is reset

andi.l #$00000002,D3

cmp.l #$00000000,D3

bne Port0B2RDFReset

rts
PortODRDFReset
: nop

move.w POPSR(A5),D3

andi.l #$00000004,D3

cmp.l #$00000000,D3

bne PortODRDFReset

rts
Port1B1lRDFReset:

nop

move.w PnPSR1(A5),D3

andi.l #$00000001,D3

cmp.l #$00000000,D3

bne Port1B1RDFReset

rts
Port1B2RDFReset:

nop

move.w PnPSR1(A5),D3

andi.l #$00000002,D3

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix A Software Configuration

cmp.l #$00000000,D3

bne Port1B2RDFReset

rts
Port2B1lRDFReset:

nop

move.w P2PSR(A5),D3

andi.l #$00000001,D3

cmp.l #$00000000,D3

bne Port2B1RDFReset

rts
Port2B2RDFReset:

nop

move.w P2PSR(A5),D3

andi.l #$00000002,D3

cmp.l #$00000000,D3

bne Port2B2RDFReset

rts
Port2DRDFReset :

nop

move.w P2PSR(A5),D3

andi.l #$00000004,D3

cmp.l #$00000000,D3

bne Port2DRDFReset

rts
Port3B1lRDFReset:

nop

move.w P3PSR(A5),D3

andi.l #$00000001,D3

cmp.l #$00000000,D3

bne Port3B1RDFReset

rts
Port3B2RDFReset:

nop

move.w P3PSR(A5),D3

andi.l #$00000002,D3

cmp.l #$00000000,D3

bne Port3B2RDFReset

rts
Port3DRDFReset :

nop

move.w P3PSR(A5),D3

andi.l #$00000004,D3

cmp.l #$00000000,D3

bne Port3DRDFReset

rts
;***
P * End of Bx RDF Procedures *
;***
; Bx TDE Set *
;***
Port0B1TDESet : nop

move.w POPSR(A5),D3 ; to make sure BITDE is set

andi.l #$00000008,D3

cmp.1l #$00000008,D3

bne Port0OBlTDESet

rts
Port0B2TDESet : nop

move.w POPSR(A5),D3 ; to make sure B2TDE is set

andi.l #$00000010,D3

cmp.1l #$00000010,D3
42 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

bne
rts

PortODTDESet :nop

move.w
andi.l
cmp.l
bne
rts

Port1B1TDESet :nop

move.w
andi.l
cmp.l
bne
rts

Port1B2TDESet : nop

move.w
andi.l
cmp.l
bne
rts

Port1DTDESet :nop

move.w
andi.l
cmp.l
bne
rts

Port2B1TDESet : nop

move.w
andi.l
cmp.l
bne
rts

Port2B2TDESet : nop

move.w
andi.l
cmp.l
bne
rts

Port2DTDESet :nop

move.w
andi.l
cmp.l
bne
rts

Port3B1lTDESet :nop

move.w
andi.l
cmp.l
bne
rts

Port3B2TDESet : nop

move.w
andi.l
cmp.l
bne
rts

Port3DTDESet :nop

move.w
andi.l
cmp.l
bne
rts

;***

Port0OB2TDESet

POPSR(A5),D3
#$00000020,D3
#$00000020,D3
PortODTDESet

P1PSR(A5),D3

#$00000008,D3
#$00000008,D3
Port1B1TDESet

P1PSR(A5),D3

#$00000010,D3
#$00000010,D3
Port1B2TDESet

P1PSR(A5),D3
#$00000020,D3
#$00000020,D3
Port1DTDESet

P2PSR(A5),D3

#$00000008,D3
#$00000008,D3
Port2B1TDESet

P2PSR(A5),D3

#$00000010,D3
#$00000010,D3
Port2B2TDESet

P2PSR(A5),D3
#$00000020,D3
#$00000020,D3
Port2DTDESet

P3PSR(A5),D3

#$00000008,D3
#$00000008,D3
Port3B1TDESet

P3PSR(A5),D3

#$00000010,D3
#$00000010,D3
Port3B2TDESet

P3PSR(A5),D3
#$00000020,D3
#$00000020,D3
Port3DTDESet

; End of Bx TDE Set procedures

Freescale Semiconductor, Inc.

Appendix A Software Configuration

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

;***

g Bx TDE Reset *
;***

Port0BlTDEReset :nop

move.w POPSR(A5),D3 ; to make sure B1TDE is Reset
andi.l #$00000008,D3

cmp.1l #$00000000,D3

bne Port0OB1TDEReset

rts

Port0B2TDEReset :nop

move.w POPSR(A5),D3 ; to make sure B2TDE is Reset
andi.l #$00000010,D3
cmp.l #$00000000,D3
bne Port0B2TDEReset
rts

PortODTDEReset :nop
move.w POPSR(A5),D3
andi.l #$00000020,D3
cmp.l #$00000000,D3
bne PortODTDEReset
rts

Port1B1TDEReset :nop
move.w P1PSR(A5),D3
andi.l #$00000008,D3
cmp.l #$00000000,D3
bne Port1BlTDEReset
rts

Port1B2TDEReset :nop
move.w P1PSR(A5),D3
andi.l #$00000010,D3
cmp.l #$00000000,D3
bne Port1B2TDEReset
rts

Port1DTDEReset : nop
move.w P1PSR(A5),D3
andi.l #$00000020,D3
cmp.l #$00000000,D3
bne Port1DTDEReset
rts

Port2B1TDEReset :nop
move.w P2PSR(A5),D3
andi.l #$00000008,D3
cmp.l #$00000000,D3
bne Port2BlTDEReset
rts

Port2B2TDEReset :nop
move.w P2PSR(A5),D3
andi.l #$00000010,D3
cmp.l #$00000000,D3
bne Port2B2TDEReset
rts

Port2DTDEReset : nop
move.w P2PSR(A5),D3
andi.l #$00000020,D3
cmp.l #$00000000,D3
bne Port2DTDEReset
rts

Port3B1lTDEReset :nop
move.w P3PSR(A5),D3
andi.l #$00000008,D3
cmp.l #$00000000,D3
bne Port3BlTDEReset
rts

44 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

Port3B2TDEReset :nop

move.w P3PSR(A5),D3
andi.l #$00000010,D3
cmp.l #$00000000,D3
bne Port3B2TDEReset
rts

Port3DTDEReset :nop
move.w P3PSR(A5),D3
andi.l #$00000020,D3
cmp.l #$00000000,D3
bne Port3DTDEReset
rts

The following file describes all the aperiodic interrupts that only occur in GCI mode of operation. Given
that the ports are supposed to work in conjunction with periodic process, this example below does not
show IE tests. The file is as follows:

PLIC Aperiodic Interrupt Subroutine
Can handle up to 4 GCI Ports in a dynamic way

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne we “we ~o

As soon as the action has been taken, the program counter quits

the interrupt. In case of many interrupts at the same time, the

program counter will re-enter the Aperiodic Interrupt.

All the comments will be written for the Port0. For the other Ports, the

same comments apply.

Use of register

D1l: PASR Value

D2: No use

D3: Monitor Channel Receive or Transmit register

D4: Monitor Channel Receive or Transmit Buffer of D3

D5: First Byte of the Received Monitor Channel Register
D6: Second Byte of the Received Monitor Channel Register
D7: Buffer of D1

i PLIC Aperiodic:

move.w PASR(A5),D1 ; Store PASR into D1

move.w D1,D7 ; Buffering D1 into D7

andi.l #$0000000F, D7 ; mask D7

cmp.l #$0,D7 ; compare with 0

bne AperPort0 ; go to AperPort(0 otherwise

move.w D1,D7 ; Store PASR into D7

andi.l #$000000F0,D7 ; mask D7

cmp.l #$0,D7 ; compare with 0

bne AperPortl ; go to AperPoprtl otherwise

move.w D1,D7 ; Store PASR into D7

andi.l #$00000F00,D7 ; mask D7

cmp.l #$0,D7 ; compare with 0

bne AperPort2 ; go to AperPort2 otherwise

move.w D1,D7 ; Store PASR into D7

andi.l #$0000F000,D7 ; mask D7

cmp.l #$0,D7 ; compare with 0

bne AperPort3 ; go to AperPort3 otherwise

bra EndASR ; exit w/o taking action
AperPort0:

move.w D1,D7 ; Store PASR into D7

andi.l #$0000008,D7 ; mask D7

cmp.l #$00000008,D7 ; compare with $8

beq PortOCommandIndRx ; if equal, go to CI Receive

move.w D1,D7 ; Store PASR into D7

andi.l #$00000004,D7 ; mask D7

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Appendix A Software Configuration

cmp.l
beq
move .w
andi.l
cmp.l
beq
move.w
andi.l
cmp.l
beq

AperPortl:
move.w
move .w
andi.l
cmp.l
beq
move.w
andi.l
cmp.l
beq
move .w
andi.l
cmp.l
beq
move .w
andi.l
cmp.1l
beq

AperPort2:
move .w
move .w
andi.l
cmp.1l
beq
move.w
andi.l
cmp.l
beq
move .w
andi.l
cmp.l
beq
move .w
andi.l
cmp.1l
beq

AperPort3:
move .w
move .w
andi.l
cmp.1l
beq
move.w
andi.l
cmp.l
beq
move .w
andi.l
cmp.l
beq
move .w
andi.l
cmp.1l
beq

46

#$00000004,D7
Port0CommandIndTx
D1,D7
#$00000002,D7
#$00000002,D7
PortOMonitorChanRx
D1,D7
#$00000001,D7
#$00000001,D7
PortOMonitorChanTx

PASR(A5),D1

D1,D7
#$00000080,D7
#$00000080,D7
PortlCommandIndRx
D1,D7
#$00000040,D7
#$00000040,D7
PortlCommandIndTx
D1,D7
#$00000020,D7
#$00000020,D7
PortlMonitorChanRx
D1,D7
#$00000010,D7
#$00000010,D7
PortlMonitorChanTx

PASR(A5),D1

D1,D7
#$00000800,D7
#$00000800,D7
Port2CommandIndRx
D1,D7
#$00000400,D7
#$00000400,D7
Port2CommandIndTx
D1,D7
#$00000200,D7
#$00000200,D7
Port2MonitorChanRx
D1,D7
#$00000100,D7
#$00000100,D7
Port2MonitorChanTx

PASR(A5),D1

D1,D7
#$00008000,D7
#$00008000,D7
Port3CommandIndRx
D1,D7
#$00004000,D7
#$00004000,D7
Port3CommandIndTx
D1,D7
#$00002000,D7
#$00002000,D7
Port3MonitorChanRx
D1,D7
#$00001000,D7
#$00001000,D7
Port3MonitorChanTx

Ne Ne Ne Ne Ne Ne Ne e ~e ~o

N N6 Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N e “e ~o N Ne N6 Ne Ne Ne Ne Ne Ne Ne Ne Ne N Ne “e ~o

N N6 Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N e “e ~o

compare with $4
if equal, go to
Store PASR into
mask D7

compare with $2
if equal, go to
Store PASR into
mask D7

compare with $1
if equal, go to

Store PASR into
mask D7

compare with $8
if equal, go to
Store PASR into
mask D7

compare with $4
if equal, go to
Store PASR into
mask D7

compare with $2
if equal, go to
Store PASR into
mask D7

compare with $1
if equal, go to

Store PASR into
mask D7

compare with $8
if equal, go to
Store PASR into
mask D7

compare with $4
if equal, go to
Store PASR into
mask D7

compare with $2
if equal, go to
Store PASR into
mask D7

compare with $1
if equal, go to

Store PASR into
mask D7

compare with $8
if equal, go to
Store PASR into
mask D7

compare with $4
if equal, go to
Store PASR into
mask D7

compare with $2
if equal, go to
Store PASR into
mask D7

compare with $1
if equal, go to

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

CI
D7

MC
D7

MC

D7

CI
D7

CI
D7

MC
D7

MC

D7

CI
D7

CI
D7

MC
D7

MC

D7

CI
D7

CI
D7

MC
D7

MC

Transmit

receive

Transmit

Receive

Transmit

receive

Transmit

Receive

Transmit

receive

Transmit

Receive

Transmit

receive

Transmit

Freescale Semiconductor, Inc.
Appendix A Software Configuration

EndASR nop

move.l #$0,D1 ; clear all registers
move.l #$0,D2
move.1l #$0,D3
move.b #$0,D4
move.b #$0,D5
move.b #$0,D6
move.l #$0,D7
rte ; End of ISR
;**
i * Port0 Subroutines *
;**
P Monitor Channel Subroutine *
;***
PortOMonitorChanTx:
move.b PGMTS (A5),D3 ; read PGMTS to clear the bit
jsr Port0GMTCheck ; to make sure GMT=0
bra EndASR ; ends the CI Tx
PortOMonitorChanRx:
move.w POGMR(A5),D3 ; read GMR
jsr Port0GMRCheck ; to make sure R=0
move.w D3,D4 ; Save D3 into D4
andi.l #$000000FF, D4
cmp.l #$00000035,D4 ; to access to NR5 (MC145574)
beq FirstByte ; if equal go to FirstByte
move.w D3,D4 ; otherwise continue
andi.l #$000000FF, D4
cmp.l #$000000CF, D4 ;s SCF is NR5 Value of MC145574
beq SecondByte ; if equal go to SecondByte
bra EndASR ; ends the ISR
FirstByte:
move.w D3,D5 ; move D3 into D5 to check
bra EndASR
SecondByte:
move.w D3,D6 ; move D3 into D6 to check
bra EndASR
;***
P * Command Indicate Subroutine *

;***

Port0CommandIndTx:
move.l PGCITSR(A5),D3 ; clear the bit
jsr PortORcheck ; to make sure R=0
bra EndASR
Port0CommandIndRx:
move.l #0,D3
move.b POGCIR(A5),D3 ; Move GCRO into D3
andi.l #$000000FF, D3
cmp.l #$00000010,D3 ; Deactivation Request
beq Port0ODeacReq
cmp.l #$00000018,D3 ; Activation Indication Value
beq Port0ActInd
cmp.l #$0000001C,D3 ; Activation Confirmed
beq EndASR ; nothing to do
cmp.l #$0000001F,D3 ; Deactivation Indication
beq PortODeacInd
bra EndASR
Port(ODeacReq:
move.b #S1F,DO ; Send Deactivation Indication
move.b D0,POGCIT(A5) ; in response of dea Request
jsr PortORcheck ; to make sure R=0
bra EndASR
Port0ODeacConf:
nop ; nothing else to do

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Appendix A Software Configuration

bra
PortOActInd:
move.b
move.b
jsr
bra
PortODeacInd:
move.b
move.b
jsr
bra

EndASR

#$1C,DO
d0,POGCIT(AS5)
PortORCheck
EndASR

#S1F,DO

DO, POGCIT(A5)
PortORCheck
EndASR

4

.
14

Freescale Semiconductor, Inc.

Send Activation Indication

Send Deactivation Indication

;***

s * Checking Procedure
;***

PortOGMTCheck:
move.w
andi.l
cmp.l
bne
rts

PortOGMRCheck:
move.w
andi.l
cmp.l
bne
rts

PortOLCheck:
move.w
andi.l
cmp.l
bne
rts

PortORTxCheck:
move.w
andi.l
cmp.l
bne
rts

PortORCheck:
move.b
andi.l
cmp.l
bne
rts

PASR(A5),D3
#$00000001,D3
#$0,D3
Port0GMTCheck

PASR(A5),D4
#$00000002,D4
#$0,D4
Port0GMRCheck

POGMT (A5),D3
#$00000200,D3
#$0,D3
PortORTxCheck

POGMT (A5),D3
#$00000100,D3
#$0,D3
PortORTxCheck

POGCIT(A5),D3
#$00000010,D3
#$0,D3
PortORCheck

*

to make sure GMT=0

to make sure GMR=0

to make sure L=0

to make sure R=0

to make sure R=0

;**

R Portl Subroutines
;**

PortlMonitorChanTx:
move.b
jsr
bra
PortlMonitorChanRx:
move.w
jsr
move.w
andi.l
cmp.l
beq
move.w
andi.l
cmp.l
beq
bra

48

PGMTS (A5) ,D3
Port1GMTCheck
EndASR

P1GMR(A5),D3
Port1GMRCheck
D3,D4
#$S000000FF, D4
#$00000035,D4
FirstBytel
D3,D4
#$000000FF, D4
#$000000CF, D4
SecondBytel
EndASR

*

;to make sure GMT=0

4

to make sure GMR=0

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

FirstBytel:

move.w D3,D5

bra EndASR
SecondBytel:

move.w D3,D6

bra EndASR
PortlCommandIndTx:

move.b PGCITSR(A5),D3

jsr Port1RCheck

bra EndASR
;***
i * Command Indicate Subroutine *

;***

PortlCommandIndRx:

move.1l #0,D3
move.b P1GCIR(A5),D3
andi.l #$000000FF,D3
cmp.l #$00000010,D3
beq PortlDeacReq
cmp.l #$00000018,D3
beq PortlActInd
cmp.l #$0000001C,D3
beq EndASR
cmp.l #$0000001F,D3
beq PortlDeacInd
bra EndASR
PortlDeacReq:
move.b #S1F,DO
move.b DO,P1GCIT(A5)
jsr Port1RCheck
bra EndASR
PortlDeacConf:
nop
bra EndASR
PortlActInd:
move.b #$1C,DO
move.b d0,P1GCIT(AS)
jsr PortlRCheck
bra EndASR
PortlDeacInd:
move.b #$S1F,DO
move.b DO, P1GCIT(A5)
jsr Portl1RCheck
bra EndASR
;**
3 * Checking Procedures *

;**

Port1GMTCheck:
move.w PASR(A5),D4 ; to make sure GMT=0
andi.l #$00000010,D4
cmp.l #$0,D4
bne Port1GMTCheck
rts
Port1GMRCheck:
move.w PASR(A5),D4 ; to make sure GMR=0
andi.l #$00000020,D4
cmp.l #$0,D4
bne Port1GMRCheck
rts
PortlLCheck:
move.w P1GMT (A5),D4 ; to make sure L=0
andi.l #$00000200,D4
cmp.l #$0,D4

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

bne PortlLCheck
rts
PortlRTxCheck:
move.w P1GMT(A5),D4 ; to make sure R=0
andi.l #$00000100,D4
cmp.l #$0,D4
bne Port1RTxCheck
rts
PortlRCheck:
move.b P1GCIT(A5),D4 ; to make sure R=0
andi.l #$00000010,D4
cmp.l #$0,D4
bne Port1lRCheck
rts
;**
3 * Port2 Subroutines *
;**
; Monitor Channel Subroutines *
14

khkkkkhkkkhkkhkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkkkkhkhkhkkhkkhkhkkkkkhkhkkkkkx*

Port2MonitorChanTx:
move.b PGMTS (A5),D3
jsr Port2GMTCheck ; to make sure GMT=0
bra EndASR
Port2MonitorChanRx:
move.w P2GMR(A5),D3
jsr Port2GMRCheck ; to make sure GMR=0
move.w D3,D4
andi.l #$000000FF, D4
cmp.l #$00000035,D4
beq FirstByte2
move.w D3,D4
andi.l #$000000FF, D4
cmp.l #$000000CF, D4
beq SecondByte2
bra EndASR
FirstByte2:
move.w D3,D5
bra EndASR
SecondByte2:
move.w D3,D6
bra EndASR
;**
R Command Indicate Subroutine *

;**

Port2CommandIndTx:
move.b PGCITSR(A5),D3
jsr Port2RCheck
bra EndASR

Port2CommandIndRx:
move.l #0,D3
move.b P2GCIR(A5),D3
andi.l #$000000FF,D3
cmp.l #$00000010,D3
beq Port2DeacReq
cmp.l #$00000018,D3
beq Port2ActInd
cmp.l #$0000001C,D3
beq EndASR
cmp.l #$0000001F,D3
beq Port2DeacInd
bra EndASR

50 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Port2DeacReq:
move.b
move.b
jsr
bra

Port2DeacConf:
bra

Port2ActInd:
move.b
move.b
jsr
bra

Port2DeacInd:
move.b
move.b
jsr
bra

Freescale Semiconductor, Inc.

Appendix A Software Configuration

#S1F,DO

DO, P2GCIT(A5)
Port2RCheck
EndASR

EndASR

#$1C,DO
d0,P2GCIT(A5)
Port2RCheck
EndASR

#S1F,DO

DO, P2GCIT(A5)
Port2RCheck
EndASR

;***

s * Checking Subroutines *
;***

Port2GMTCheck:
move.w PASR(A5),D4 ; to make sure GMT=0
andi.l #$00000100,D4
cmp.l #$0,D4
bne Port2GMTCheck
rts
Port2GMRCheck:
move.w PASR(A5),D4 ; to make sure GMR=0
andi.l #$00000200,D4
cmp.l #$0,D4
bne Port2GMRCheck
rts
Port2LCheck:
move.w P2GMT (A5) ,D4 ; to make sure L=0
andi.l #$00000200,D4
cmp.l #$0,D4
bne Port2LCheck
rts
Port2RTxCheck:
move.w P2GMT (A5) ,D4 ; to make sure R=0
andi.l #$00000100,D4
cmp.l #$0,D4
bne Port2RTxCheck
rts
Port2RCheck:
move.b P2GCIT(AS5),D4 ; to make sure R=0
andi.l #$00000010,D4
cmp.l #$0,D4
bne Port2RCheck
rts
;**
i * Port3 Subroutines *
;**
3 * Monitor Channel Subroutines *
;**
Port3MonitorChanTx:
move.b PGMTS (A5),D3
jsr Port3GMTCheck ; to make sure GMT=0
bra EndASR
Port3MonitorChanRx:
move.w P3GMR(A5),D3
jsr Port3GMRCheck ; to make sure GMR=0
move.w D3,D4

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Appendix A Software Configuration

andi.l
cmp.l
beq
move.w
andi.l
cmp.l
beq
bra
FirstByte3:
move.w
bra
SecondByte3:
move.w
bra

#$000000FF, D4
#$00000035,D4
FirstByte3
D3,D4
#S$000000FF, D4
#$000000CF, D4
SecondByte3
EndASR

D3,D5
EndASR

D3,D6
EndASR

Freescale Semiconductor, Inc.

;**

;* Command Indicate Subroutine
;**

Port3CommandIndTx:

move.b
jsr
bra

Port3CommandIndRx:

move.l
move.b
andi.l
cmp.l
beq
cmp.1l
beq
cmp.l
beq
cmp.l
beq
bra
Port3DeacReq:
move.b
move.b
jsr
bra
Port3DeacConf:
nop
bra
Port3ActInd:
move.b
move.b
jsr
bra
Port3DeacInd:
move.b
move.b
jsr
bra

PGCITSR(A5),D3
Port3RCheck
EndASR

#0,D3
P3GCIR(A5),D3
#$S000000FF, D3
#$00000010,D3
Port3DeacReq
#$00000018,D3
Port3ActInd
#$0000001C,D3
EndASR
#$0000001F,D3
Port3DeacInd
EndASR

#S1F,DO

DO, P3GCIT(A5)
Port3RCheck
EndASR

EndASR

#$1C,DO
d0,P3GCIT(A5)
Port3RCheck
EndASR

#S1F,DO

DO, P3GCIT(A5)
Port3RCheck
EndASR

*

;***

i Checking Subroutines
;***

Port3GMTCheck:
move.w
andi.l
cmp.l
bne
rts

52

PASR(A5),D4
#$00001000,D4
#$0,D4
Port3GMTCheck

.
I

*

to make sure GMT=0

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

Port3GMRCheck:
move.w PASR(A5),D4 ; to make sure GMR=0
andi.l #$00002000,D4
cmp.l #$0,D4
bne Port3GMRCheck
rts
Port3LCheck:
move.w P3GMT (A5) ,D4 ; to make sure L=0
andi.l #$00000200,D4
cmp.l #$0,D4
bne Port3LCheck
rts
Port3RTxCheck:
move.w P3GMT (A5) ,D4 ; to make sure R=0
andi.l #$00000100,D4
cmp.l #$0,D4
bne Port3RTxCheck
rts
Port3RCheck:
move.b P3GCIT(AS5),D4 ; to make sure R=0
andi.l #$00000010,D4
cmp.l #$0,D4
bne Port3RCheck
rts

The following file is called Corelnit.s. It is the core of the program with the program counter starting at the
address defined by the user. Obviously, this program will require modifications depending on the
evaluation the user wants to perform. This example shows a very generic flow. Users are welcome to make
further modifications, which should not affect the core of the program itself.

Code Start:

nop

move.l #$40000000,A3 ; address allocation
move.l #$10000000,A6

move.l #$10000000,A5

move.l #$20001000,A7

jsr IntInit ; Interrupt Initialization
jsr RegisterInit ; Register Initialization
jsr GCIInit ; if used, GCI mode on

jsr GCIIntEnable ; GCI Interrupt on

jsr WaitLoop ; loop to configure in GCI
jsr CI2F ;

jsr MonitorAbort ; Monitor initialization
jsr CICommand ; to Initialization CI

jsr ST1BchannelEn ; to Send Value to MC

jsr ReadPort0OMC

rts

The file shown below is the initialization file configuring some registers in order to perform the right tests.
Before performing any tests, the user definitely needs to know the PLIC registers set to make sure the PLIC
configuration will match the test requirements. The following example tests Portl in GCI Slave Mode.
Some monitor channel information is sent and the 2kHz rate works. The other ports are off.

;***

;* Different Subroutine used for init and checking GCI/IDL *
;***

GCIInit:

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Appendix A Software Configuration

move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
rts

sgggggggssssgo0o00gE555¢5¢%

GCIIntEnable:
move.
move.
move.
move.
move.
move.
move.
move.
rts

s£€€€€s¢%

MonitorAbort:
move.
move.
rts

oo

CI2F: move.b
move.b
rts

ST1BChannelEn:

lea.l
LoopO: nop
move.w
jsr
move.w
and.l
cmp.l
beq
bra
EndLoop2:
nop
rts

RTxCheckl:

move.w
andi.l

54

#3$0003,d0
d0,PLCRO (A5)
#$A203,D0
DO, PLCR1 (A5)
#$0003,D0
DO, PLCR3 (A5)
#$0003,D0
DO, PLCR2 (A5)
PGMTS (A5) , DO

PGCITSR(A5),D0

POGCIR(A5),D0
#$0000,D0
DO, PCSR(A5)
#$0000,D0
DO, POSDR(A5)
#3$0000,D0
DO, P1SDR(A5)
#$0000,D0
DO, P2SDR(A5)
#$0000,D0
DO, P3SDR(A5)
#3$0000,D0
DO, PDROR (A5)

#$0F000,D0
DO, POICR(A5)
#$001B,D0
DO, P2ICR(A5)
#3$0000,D0
DO,P3ICR(A5)
#$8F1B, DO
DO,P1ICR(A5)

#$20,D2
D2, PGMTA (A5)

#S1F,DO
D0,P1GCIT(A5)

B1B2En,A2

(A2)+,D0
RTxCheckl

DO, P1GMT (A5)
#$000000RA, DO
#$000000AA, DO
EndLoop2
Loop0

P1GMT(A5),D2
#$00000100,D2

Freescale Semiconductor, Inc.

; port0 off, GCI, B1,B2 on
;portl on,S, FSM, GCI,B1,B2 on
7

port3 off,Slave,GCI, Bl1,B2 on

port2 off,Slave,GCI, B1l,B2 on

Ne Neo Ne ~o

; NPM disabled
; DCL=512kHz, MULT=64, MUX=FSC

; S1E delay,Max delay at 512kHz
; $40
; Total delay=$20 but not used

; Total delay=$20 but not used
; D channel off

; IE=0, GCI Interrupt Off
; B1,B2, D Interrupt Off
; Interrupt off on Port2
; Interrupt off on Port3

; IE=1, GCI Interrupts On,
; Bl,B2 Interrupts On

; Abort previous Portl GCI MC

; Portl Deactivation Request

; Send Monitor Channel

MCF5272 Interrupt Service Routine

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

cmp.l #$0,D2
bne RTxCheckl
rts

CICommand:nop

lea.l CICom,A2

jsr RCheck
LoopCI: move.b (A2)+,D0

andi.l #$000000FF, DO

jsr RCheck

move.b DO0,P1GCIT(AS5)

cmp.l #$1C,DO

bne LoopCI

rts

CheckACK:nop

move.b PGCITSR(A5),Dl1
andi.l #$02,D1

cmp.l #$02,D1

bne CheckACK

rts

RCheck: nop

move.b P1GCIT(A5),D2
andi.l #$00000010,D2
cmp.l #$00000010,D2
beq RCheck
rts
WaitLoop:
nop
Move.l #SFFF, DO
LoopGCI: sub.l #1,D0
cmp.l #0,D0
bne LoopGCI
rts

The following file is used to configure the ColdFire® CPU core. Before using this file, the user must check
to make sure the configuration matches his requirements. The file is as follows:

RegisterInit:; to initialize the registers

clr.l DO
clr.l D1
clr.1l D2
clr.l D3
clr.l D4
clr.1l D5
clr.l D6
clr.l D7
rts
IntInit:
move.l #VBR Init,DO ; to set the vector base reg.
movec DO,VBR
move.w #$2400,D0 ; to set the status register
move.w DO, SR
move.b #$40,D0 ; to point the interrupts
move.b D0,PIVR(A6)
move.l #$88888888,D0 ; Disable all type of ISR
move.l D0, ICR1(A6)
move.l DO,ICR3(A6)
move.l D0, ICR4(A6) ; reset all types of interrupt
move.l #$88EF8888,D0 ; PLIC APer Interrupt on, level 7
move.l D0O,ICR2(A6) ; PLIC Per Interrupt on level 6

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

move.l #$0,D0 ; this case.

move.l DO,PIWR(A6) ; No wake up process yet
move.l #i PLIC_Periodic,DO ; Point to the address vector
move.l DO,i plic per vec

move.l #1i PLIC_Aperiodic,DO0 ; Point to the address vector
move.l DO,i plic aper vec

rts

The final file represents the table allocation of configuration data that can be sent to the peripheral to
control various funcions:

B1B2En:
DC.W $0125 ; MC145574 NR5 access
DC.W $01C0 ; Enabling the B1/B2 Channels
DC.W $03AA ; End of sending (should see S$FF)
DC.W $0126 ; MC145574 NR5 access
DC.W $0180 ; Enabling Loopabck
DC.W $03FF ; End of sending
DC.W $0105 ; Access to BR5
DC.W SO1EE ; Send SEE
DC.W $O03FF ; End of sending
B1B2Read:
DC.W $0135 ; Read NR5
DC.W SO03FF ; End of Process
BlSend:
DC.L $00112233 ; Value written to TBx
DC.L SAOOASFF5 ; Value written to TBx
DC.L SF708D728 ; Value written to TBx
DC.L SFFFFFFFF ; Value written to TBx
CICom: DC.B $18 ; Command Indicate Activation Request
DC.B $1c ; Command Indicate Activation Confirmed
TxData:
DC.B $95
DC.B SA5
DC.B SAA
; DC.W SO3FF ; End of sending
B1B2Read:
DC.W $0135 ; Read NR5
DC.W SO3FF ; End of Process
BlSend:
DC.L $00112233 ; Value written to TBx
DC.L SAOOASFF5 ; Value written to TBx
DC.L $F708D728 ; Value written to TBx
DC.L SFFFFFFFF ; Value written to TBx
CICom:
DC.B $18 ; Command Indicate Activation Request
DC.B S1cC ; Command Indicate Activation Confirmed
TxData:
DC.B $95
DC.B SA5
DC.B SAA
56 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

58 MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Appendix A Software Configuration

MCF5272 Interrupt Service Routine

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Z “freescale

semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	MCF5272 Interrupt Service Routine
	for the Physical Layer Interface Controller
	Part I Summary and Scope
	1.1 Overview
	1.2 Contents
	Part II Interchip Digital Link Mode of Operation
	2.1 Introduction
	Figure�1. IDL 10-bit Mode
	Figure�2. IDL 8-bit Mode

	Part III General Circuit Interface Mode of Operation
	3.1 GCI History
	Figure�3. GCI Frame

	3.2 Monitor Channel Operation
	Figure�4. Monitor Channel Protocol

	3.3 Command Indicate Operation
	Part IV GCI/IDL and the MCF5272
	4.1 Data Registers
	4.2 Monitor Channel Registers
	4.2.1 Monitor Channel Receive
	Figure�5. GCI Monitor Channel Receive Register (PnGMR)
	Table�1. PnGMR Register Field Descriptions

	4.2.2 Monitor Channel Transmit
	Figure�6. GCI Monitor Channel Transmit Register (PnGMT)
	Table�2. PnGMT Register Field Descriptions

	4.3 Command Indicate Registers
	4.3.1 Command Indicate Receive
	Figure�7. PnGCIR Register
	Table�3. PnGCIR Register Field Descriptions

	4.3.2 Command Indicate Transmit
	Figure�8. PnGCIT Register
	Table�4. PnGCIT Register Field Descriptions

	Part V Periodic Interrupt Process
	5.1 ISR Bubble Definitions
	5.2 One-Port Processing
	Figure�9. One-Port Processing Interrupt Service Routine Flow Diagram
	Figure�9. One-Port Processing Interrupt Service Routine Flow Diagram (Continued)

	5.3 Multi-Ports Processing
	Figure�10. Multi-Port Processing Interrupt Service Routine Flow Diagram

	Part VI Aperiodic Interrupt Process
	6.1 Aperiodic One-Port Sequence
	Figure�11. One-Port Processing Aperiodic Interrupt Service Routine Flow Diagram

	6.2 Multi-Port Case
	Figure�12. Multi-Processing Aperiodic Interrupt Service Routine Flow Diagram

	6.3 Brief Register Explanation
	6.4 Monitor Channel Sequence
	6.4.1 Transmit Sequence
	Figure�13. Monitor Channel Transmit Sequence Flow Diagram

	6.4.2 Receive Sequence
	Figure�14. Monitor Channel Receive Sequence Flow Diagram

	6.5 Transmit Abort Condition
	Figure�15. Transmit Abort Condition Flow Diagram

	6.6 Command Indicate Channel
	6.6.1 Transmit Sequence
	Figure�16. CI Transmit Sequence Flow Diagram

	6.6.2 Receive Sequence
	Figure�17. CI Receive Sequence Flow Diagram

	Part VII Assembly Code
	7.1 Interrupt Controller
	7.2 Interrupt Vector Generation
	7.3 Prioritization Level: ICR2 Register
	Figure�18. Interrupt Controller Register 2

	7.4 Programmable Interrupt Vector Register: PIVR
	Figure�19. Programmable Interrupt Vector Register
	Table�5. PIV Register Field Descriptions

	7.5 MBAR Configuration
	7.6 Hardware Configuration
	Figure�20. Hardware Configuration

	7.7 Software Configuration
	7.7.1 Customer Premises Equipment (CPE)
	7.7.2 ColdFire Port Configuration
	Table�6. Port Pin Assignments
	Table�7. Port Control Register Values

	7.7.3 Debugger Configuration

	Part VIII Appendix A
	Figure�21. Main Program and ISR Flow Diagram

