
Freescale Semiconductor
Application Note

AN2151
Rev. 1, 1/2005

CONTENTS

1 G.729A Basics 2
1.1 Encoder Differences Between G.729A and G.729 .2
1.2 Decoder Differences Between G.729A and G729 ..3
1.3 Data Table Differences Between G.729A

and G729 ...4
1.4 Processing Load Estimation4
2 Implementation Methodology5
2.1 Porting ITU G.729A Reference Code to

the SC140 ..6
2.2 Project-Level Optimizations6
2.3 Algorithmic Changes .. 8
2.4 Function-Level C Optimizations10
2.5 Assembly Implementation10
3 Results ...12
4 Conclusions ...15
5 References ...16

ITU-T G.729A Implementation on the
StarCore™ SC140/SC1400 Cores
By Razvan Ungureanu, Bogdan Costinescu, and Costel Ilas
This application note reflects the activity flow and the results of
the ITU G.729A implementation on the StarCore™
SC140/SC1400 cores. This project was implemented according
to the methodology described in application note AN2094, ITU-
T G.729 Implementation on the StarCore SC140/SC1400 Cores
[3]. Thus, this application note also reflects the viability of the
methodology.
© Freescale Semiconductor, Inc., 2001, 2005. All rights reserved.

G.729A Basics
1 G.729A Basics
The ITU G.729A 8 kbit per second speech codec is a reduced-complexity version of the ITU G.729 CS-ACELP
speech vocoder. However, the G.729A vocoder is bit-stream compatible and interoperable with the G.729 vocoder.
It operates on 10 ms speech frames with 5 ms look-ahead for linear prediction (LP) analysis. Compared to G.729,
the G.729A vocoder requires much less processing power; however, the reconstructed speech quality may not be as
good in some cases. Table 1 shows the differences between the two vocoders in terms of the Mean Opinion Score
(MOS), a commonly used test to assess speech quality. The MOS rating ranges from 0 to 5; a MOS of 4 is
considered ‘toll’ quality. The general description of G.729A is similar to the G.729 [3], so the following sections
describe only the algorithmic differences between the two vocoders.

Table 1. MOS Results

Vocoder MOS Result (In Clean Conditions)

ITU G.729 4.125

ITU G.729A 3.7

1.1 Encoder Differences Between G.729A and G.729
The major differences between the two vocoders can be found in the LP analysis quantization and interpolation,
perceptual weighting, pitch analysis, adaptive codebook search, and fixed codebook search modules, and the
memory update function.

Table 2. Summary of Encoder Differences Between G.729A and G.729

Module Description

LP analysis quantization and
interpolation

The LP to LSP conversion performed by the Az_lsp() function is simplified in two
ways—the number of points in which the function is evaluated is reduced from 60
to 50, and the number of intervals for root search is reduced by half. In other
respects, the Az_lsp() function is similar to the one in G.729. Interpolation of the
LSP coefficients performed in the encod_ld8a() is also similar to G.729 except
that only the quantized LP coefficients are interpolated

Perceptual weighting The code for this functional block is located in the encod_ld8a() function. It uses
the Weight_Az(), Residu() and Syn_filt() functions, which are identical to those
used in G.729 except that the number of filtering operations is reduced.

Pitch analysis The open loop pitch lag is computed in the Pitch_ol_fast() function,
which reduces the complexity of the search for the best adaptive-codebook delay.

Adaptive codebook search The computation of the impulse response of weighted synthesis filter and the
target vector for pitch search, both encoded in encod_ld8a(), are performed
in the Syn_filt() function as in the G.729, but they are simplified. The
closed-loop fractional pitch search is performed in the Pitch_fr3_fast()
function, which simplifies the process of finding the adaptive codebook by
reducing the search range to a limited interval.

Fixed codebook search The pulse positions search, performed by the d4i40_17_fast() function,
is greatly accelerated. An iterative depth-first, tree search is used instead of the
exhaustive nested-loop search as in G.729. This approach reduces complexity by
limiting the number of candidate pulse position combinations.

Memory update After the gain quantization stage, the states of the weighted synthesis filter are
updated in order to perform target signal computation in the next subframe. This
update, performed by the encod_ld8a() function, is simplified by eliminating
a filtering operation.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

2 Freescale Semiconductor

G.729A Basics
1.2 Decoder Differences Between G.729A and G729
The decoder is almost the same as the one in G.729 except for the Post-Processing block, in which the long-term
post-filter, short-term post-filter tilt, compensation filter and adaptive gain control are simplified. The post-
processing block is implemented with four new functions: post_filter(), pit_pst_filt(),
preemphasis() and agc(), but uses the Syn_filt() and Residu() functions as in G729. Because of
these modifications there are some minor differences between the decod_ld8a() function in G.729A and the
decod_ld8k() function in G.729. Table 3 compares the functions used in the G.729A vocoder with those in the
G.729 vocoder.
.

Table 3. G.729A Functions

Encoder Functions Common Functions Decoder Functions

Function Name
Comparison
with G.729

Function Name
Comparison
with G.729

Function Name
Comparison
with G.729

ACELP_Code_A
Autocorr
Az_lsp
Chebps_10
Chebps_11
Cor_h
Cor_h_X
Corr_xy2
D4i40_17_fast
Dot_product
Enc_lag3
Encod_ld8a
G_pitch
g729a_encode
g729a_encode_initialize
Gbk_presel
Get_wegt
Lag_window
Levinson
Lsp_expand_1
Lsp_expand_2
Lsp_get_tdist
Lsp_last_select
Lsp_lsf2
Lsp_pre_select
Lsp_qua_cs
Lsp_select_1
Lsp_select_2
Parity_Pitch
Pitch_fr3_fast
Pitch_ol_fast
Pre_Process
Qua_gain
Qua_lsp
Relspwed
test_err
update_exc_err

few diff.
same
few diff.
same
same
same
same
same
different
new
same
different
same
similar
similar
same
same
same
same
same
same
same
same
same
same
same
same
same
same
new
new
same
same
same
same
same
same

ClearOverflow
Copy
Gain_predict
Gain_update
Get_lsp_pol
GetOverflow
Int_qlpc
Inv_sqrt
Log2
Lsf_lsp2
Lsp_Az
Lsp_expand_1_2
Lsp_get_quant
Lsp_prev_compose
Lsp_prev_extract
Lsp_prev_update
Lsp_stability
Pow2
Pred_lt_3
Qua_lsp
Residu
Set_zero
Syn_filt
Weight_Az

same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same
same

agc
D_lsp
Dec_gain
Dec_lag3
Decod_ACELP
Decod_ld8a
Gain_update_erasure
Lsp_iqua_cs
Pit_pst_filt
Post_Filter
Post_Process
Preemphasis
Random
g729a_decode
g729a_decode_initialize

new
same
same
same
same
few diff.
same
same
new
new
same
new
same
similar
similar
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 3

G.729A Basics
1.3 Data Table Differences Between G.729A and G729
Table 4 lists the differences between the global data tables used in G.729A and G.729 reference codes. As the table
shows, the total table data space in G.729A is 584 bytes smaller than in the G.729 reference code.

Table 4. Data Table Comparison

Data Table Name Comparison Comment

Word16 grid[] Different elements and smaller dimensions in G.729A Table reduced by 20 bytes

Word16 inter_3[] Unused in G.729A Saves 26 bytes

Word16 tab_hup_s[] Unused in G.729A Saves 56 bytes

Word16 tab_hup_l[] Unused in G.729A Saves 224 bytes

Word16 table[] Unused in G.729A Saves 130 bytes

Word16 slope[] Unused in G.729A Saves 128 bytes

1.4 Processing Load Estimation
Because only a few functions are different and many identical functions were optimized in the G.729 project, the
identical functions can be used to obtain a faster version of G729A vocoder, as shown in Table 5. Adapted code
means that the initial ITU C reference code was modified to support multiple channels and use the intrinsic
functions and processor flags. In addition, the 32-bit operations are inlined. These modifications are all similar to
those performed in the G.729 project and they are requested by the optimized functions.

Table 5. G.729A Quick Speed-Up

Code Version
Encoder Speed

(MCPS)
Decoder Speed

(MCPS)
Total Speed

(MCPS)

Adapted code 8.99 2.11 11.1

Adapted code with functions optimized in G.729 (asm if available) 6.05 1.19 7.24

Although speed improvement is significant, overall performance is still unacceptable. Based on the experience
gained in the G.729 project, analysis of the initial code led to the estimated speed improvements listed in Table 6.

Table 6. Speed Estimation

Encoder Speed Decoder Speed Total Speed

4.8 MCPS1 0.97 MCPS 5.77 MCPS

NOTES: 1.Millions of Cycles Per Second.

Before the estimation, a profiling session was performed to select the most time-consuming functions, those that
took up to 80 percent of the encoder and up to 80 percent of decoder time. The functions already optimized in
G.729 were included in this group of functions. Speed improvements in the other functions were estimated taking
the following factors into account:

• the type of the code: DSP code or control code

• factors which affect data access, including data alignment and addressing mode

• code flow in loops
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

4 Freescale Semiconductor

Implementation Methodology
2 Implementation Methodology
The implementation methodology used for the G.729A speech codec project was the same as in the G.729 speech
codec for SC140, as described in [3]. Thus, the G.729A project provided an opportunity to confirm the G.729
methodology. This section presents the results obtained at each step as well as comparisons to G.729 in terms of the
impact of that step on the code speed and other related issues. Table 7 summarizes the main stages of this
methodology. For a complete description and examples for each stage, refer to [3].

Table 7. Methodology Steps

Development Stage Description

Porting to SC140 Data type definitions, introduction of intrinsic functions, StarCore adaptations.

Project-level optimizations Inlining, data alignment, multichannel transformations.

Algorithm changes Platform-independent and platform-dependent changes in algorithms.

Function-level C optimizations C optimization techniques (multisample, loop unrolling, split summation), better
use of intrinsic functions.

Function implementation in assembly Implementation of selected functions in assembly for best optimization.

The goal of the G.729 project was to obtain the maximum speed without concern for memory consumption (code,
tables and stack). In the G.729A project, speed was also the primary concern, but special attention was also paid to
memory consumption. Therefore, the results show a reduction in memory consumption as well as an increase in
speed. One of the requirements of the ITU G.729A recommendation is that all implementations preserve bit-
exactness with the reference code. To verify bit-exactness, the ITU provides a set of test vectors for both the
encoder and decoder. These tests are listed in Table 8. In addition to ITU test vectors, the code was also tested with
a set of Freescale Semiconductor internal test vectors that sum up to 56000 frames.

Table 8. ITU G.729A Test Vectors

Encoder Inputs
Encoder Outputs and

Decoder Inputs
Decoder Outputs

algthm.in
fixed.in
lsp.in
pitch.in
speech.in
tame.in

algthm.bit
fixed.bit
lsp.bit
pitch.bit
speech.bit
tame.bit
erasure.bit
overflow.bit
parity.bit

algthm.pst
fixed.pst
lsp.pst
pitch.pst
speech.pst
tame.pst
erasure.pst
overflow.pst
parity.pst

The tests were performed on StarCore SC140 simulator as well as the following hardware platforms:

• SC140 Software Development Platform (SDP) equipped with an SC140 core

• MSC8101 Application Development System equipped with an MSC8101 DSP.

The software environment for developing the project on the SC140 platform was Metrowerks® CodeWarrior®
IDE Release 1. All results (MCPS and bytes) presented here were measured with the latest available tools. As tools
evolve, one can expect improvement in these figures. A PC-based compiler was used to check the modifications of
the C code and generate test vectors in the unit-testing phase.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 5

Implementation Methodology
2.1 Porting ITU G.729A Reference Code to the SC140
The original ITU C reference code can be easily compiled and run on the SC140 platform. However, this code is
very inefficient because it does not use many of the available compiler extensions, and all DSP fractional
operations are simulated with integer add, integer multiply or shift operations. Thus, in order to obtain a true
SC140 ported version, the reference code was modified as follows:

• Word16, Word32, Flag and other data types were redefined in typedef.h to comply with SC140
architecture (see [3] and [11]).

• The intrinsic functions defined in the compiler's prototype.h replaced the DSP emulation
functions from basic_op.c.

• The Boolean overflow and carry flags used by emulated fractional operations were removed because
the intrinsic functions rely on the corresponding processor flags. However, because the overflow flag
must be tested in some functions, two assembly routines that give access to the processor overflow flag
were added to basic_op.c: GetOverflow() and ClearOverflow().

Table 9 summarizes the results of the porting phase.

Table 9. Performance Results After Porting to the SC140

Speed
ROM RAM

Program Tables Channel Data Stack

15.07 MCPS 33.42 KB 5340 bytes 3144 bytes 2592 bytes

2.2 Project-Level Optimizations
In this development stage, three types of changes were applied to the ported code:

• changes that modified the number of C files and the structure of the code

• changes that affected memory structures

• changes that affected certain function prototypes

In the first step, almost all C files (except for basic_op.c and oper_32b.c) were split into smaller files, each
containing only one function. The files were named with the name of the contained function. This action helps in
the optimization process, especially in the unit testing phase and assembly implementation phases, and enables the
functions to be grouped in separate compilation classes— those optimized for speed and those optimized for size.

The second step was to alter the code to accommodate multi-channel systems. This step was performed in the same
way as in the G.729 project—the global and the static variables from each C module (except for the constant tables
from tab_ld8a.c) were moved in special data structures that form the so-called ‘channel data’. The memory for
these structures is allocated on the caller stack and is now initialized with dedicated functions. In addition, pointers
to the appropriate channel data structures were added to the function prototypes.

The library calls must be compliant with the Application Binary Interface (ABI) as specified in [3]. The ABI
defines the standard calling convention and other rules for the calling and called functions. Code Listing 1 shows
the ABI-compliant C functions of the external interface to the vocoder.

Code Listing 1. G.729A Vocoder Software Interface

void g729a_encode_initialize(G729A_ENCODER_CHANNEL_INFO_T *enc_info);
void g729a_encode(Word16 *signal, Word16 *prm,

G729A_ENCODER_CHANNEL_INFO_T *enc_info);
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

6 Freescale Semiconductor

Implementation Methodology
void g729a_decode_initialize(G729A_DECODER_CHANNEL_INFO_T *decoder_channel_info);
void g729a_decode(Word16 *prm, Word16 *synth,

G729A_DECODER_CHANNEL_INFO_T *dec_info);

Table 10 summarizes the data structures required by the software interface.
.

Table 10. Data Structures Required by Vocoder Software Interface

Data Structure Description

G729A_ENCODER_CHANNEL_INFO_T 8-byte aligned type defined by MDCR

G729A_DECODER_CHANNEL_INFO_T 8-byte aligned type defined by MDCR

signal 8-byte aligned array of eighty 16-bit signed fractions

prm 8-byte aligned array of eleven 16-bit integers that stores the analysis parame-
ters

synth 8-byte aligned array of eighty 16-bit signed fractions that stores the synthe-
sized speech

Another change was the introduction of fast 32-bit operations. Because the ITU code was originally designed for
16-bit processors, the 32-bit operations are performed using a non-standard representation of 32-bit double-
precision numbers called double precision format (DPF). Two 16-bit portions that were originally processed in two
separate DALU registers were combined into a single 32-bit value, using only one DALU register. This enables the
usage of the processor’s 32-bit capabilities, speeding-up the 32-bit operations in oper_32b.c. The prototypes of
several functions that originally received two 16-bit parameters were modified to receive only one 32-bit DPF
parameter. In addition, the original DPF vectors stored as two 16-bit vectors were combined and stored as 32-bit
vectors, thus increasing the efficiency of memory operations.

The StarCore C compiler provides efficient support for writing fast DPF operations based on intrinsics. Appendix
A lists the new form of the DPF operations used in the G.729A project.

As in the G.729 project, the profiling performed on the ported G.729A code revealed that 32-bit operations required
a great deal of processing time. Although the functions were quite small, the calling overhead became significant
because of the frequency of the calls. Table 11 shows the impact of three such 32-bit operations on the encoder
time. Note that because the three functions take more than 1 MCPS, inlining 32-bit functions can provide a
significant speed increase.

Table 11. Profile Data for Most Called DPF Operations

Function
Function Time

(cycles)
Calls per

Frame

Function Time ×
Calls per Frame

(cycles)

Percentage of
Encoder Time

Mpy_32_16() 8 816 6930 5.63%

L_extract() 8 538 4197 3.41%

Mpy_32 12 123 1511 1.23%

Unlike the G.729 project, the G.729A project was also concerned with reducing data memory consumption. The
space occupied by the tables was reduced by 620 bytes by applying several techniques listed in Table 12. In some
cases the elements were computed, but the size of the introduced code was smaller than the size of the elements
eliminated. In addition, the overhead is not significant so the space gained justified the trade. In other cases the
tables were regenerated on the function stack without increasing the maximum stack size of the vocoder.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 7

Implementation Methodology
Table 12. Tables Reduction

Reduction Method
Affected

Table

Size
Decrease

(bytes)

Files/Functions
Affected

Elimination of symmetrical parts table2[] 62 lsf_lsp2
lsp_lsf2

slope_cos[] 64 lsf_lsp2

slope_acos[] 64 lsp_lsf2

grid[] 50 az_lsp

Removal of tables that can be dynamically computed tab_zone[] 306 test_err
update_exc_err

Elimination of unused elements from a table a100[] 2 post_process

a140[] 2 pre_process()

Storage type redefinition map1[] 8 qua_gain

map2[] 16

imap1[] 8 dec_gain

imap2[] 16

Removal of the table needed by the vocoder caller. bitsno[] 22 bits.c file created

One method employed to reduce stack size was to map data structures with different and disjointed lifetimes to the
same storage area, allocated as soon as possible in the functions’ calling chain. In addition, some redundant
parameters from the function prototypes were removed. Table 13 lists the speed and memory usage after project-
level optimization.

Table 13. Performance Results After Project-Level Optimization

Speed
ROM RAM

Program Tables Channel Data Stack

13.82 MCPS 30.40 KB 4270 bytes 3108 × N1 bytes 2240 bytes

NOTES: 1.N = Number of channels

2.3 Algorithmic Changes
As described in the introduction, if one were simply to C-optimize or hand-assemble only those portions of the
code with the worst C performance, the estimated speed would be about 5.77 MCPS. This figure can be improved
if the algorithms in certain functions or blocks of chained functions are changed as described in [3]. Even if these
algorithmic changes do not improve speed directly, they allow the implementation of many subsequent C
optimization techniques in the next phase, function level C optimizations, described in Section 2.4. A profiling
session was run to identify the functions to be algorithmic changed. The 80-20 rule of thumb was applied in order
to group the functions into two sets:

• G1 set – the most time-consuming functions, consuming 80 percent of the frame processing time

• G2 set – the functions that take the remaining 20 percent of the frame processing time

Most functions selected for the algorithmic changes belong to the top of the G1 set. The G1 set also includes
closely-linked functions that provide input data to or use the results from the time consuming functions.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

8 Freescale Semiconductor

Implementation Methodology
Table 14 lists the functions selected for algorithmic changes. All the functions are encoder functions because the
encoder consumes about 80% of the vocoder time. These functions consume 56.9 percent of the encoder time.

Table 14. Functions Selected for Algorithmic Changes.

Functional Module G1 Function
Encoder

Time
Related

Function
Encoder

Time
Total Encoder

Time

Fixed codebook search D4i40_17_fast() 15.4% Acelp_code_A() 0.23% 28.18%

Cor_h_X() 8.93%

Cor_h() 3.62%

LP analysis Chebps_1x() 5.65% 16.71%

Az_lsp() 4.38%

Autocorr() 3.88% Lag_window() 0.13%

Levinson() 2.67%

Open loop pitch analysis Pitch_ol_fast() 6.33% 6.33%

Gain quantization Qua_gain() 5.68% 5.68%

Two types of changes are applied in this stage:

1. Platform-independent changes – improvements in code flow:
a. avoid repeated computations of the same value
b. reorder computations to avoid repeated fetches of the same value
c. reduce the number of tests
d. replace time consuming operations like div or log with simpler operations

2. Platform dependent changes – improvements that take advantage of the parallel architecture of the pro-
cessor:
a. Reorder or restructure the vectors in order to perform sequential packed accesses
b. Searches based on interval splitting
c. Perform sequential non-dependent computations in parallel
d. Adapt the computations to pipelines with four computation units.

Note: Algorithmic changes may not be necessary if the algorithm is designed from the start to take
advantage of the SC140 architecture.

Table 15 summarizes the vocoder results at the end of this stage.

Table 15. Performance Results After Algorithmic Changes

Speed
ROM RAM

Program Tables Channel Data Stack

15.47 MCPS 32.90 KB 4740 bytes 3108 × N1 bytes 2480 bytes

NOTES: 1.N = Number of channels
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 9

Implementation Methodology
2.4 Function-Level C Optimizations
The C code was modified so that the compiler can generate code that takes full advantage of the SC140 parallel
architecture. First, a new profiling session was run to identify the G1 set of functions after the algorithmic changes
phase. Function-level C optimizations were then performed on all the G1 functions. The general optimization
techniques included:

• Multisample

• Split summation

• Loop unrolling

• Loop merging

• Loop splitting.

The selection methodology and the optimization techniques are fully described in [3]. Special care was taken when
applying the multisample technique to two nested loops. Typically, multisample by 4 is applied to maximize
execution speed, but this sometimes results in an unacceptable increase in code size. In these cases, multisample by
2 combined with split summation can generate smaller code with similar speed improvement, and this was the
technique applied to the Lsp_pre_select() and Autocorr() functions.

A similar problem occurs when searching in two vectors for the index of the elements that gives the maximum
ratio. Ideally, the fastest solution is to perform the search with three partial maxima with the vectors already
computed. However, in the real world the terms of the ratio must be computed first, as with the fixed codebook
search (the d4i40_17_fast() function). In this case, computing the ratio terms and searching the index with
two local maxima is more efficient than pre-computing the vectors and then performing the search because it saves
both code size and stack size with a very small speed penalty. In addition to the programming tips described in [3],
it is worth mentioning that the modulo addressing mode is now supported by the C compiler. This technique was
applied to the Cor_h() function to save code size without a speed penalty.

Another way to reduce code size is to eliminate the code redundancies if the time penalty is negligible. For
example, the only differences between the two Chebychev polynomial evaluation functions—Chebps_10() and
Chebps_11()—are three constant values. The two functions were replaced with a new generic function,
Chebps(), which receives the constants as parameters. Table 16 summarizes the results after function-level C
optimization.

Table 16. Performance Results After Function-Level C Optimization

Speed
ROM RAM

Program Tables Channel Data Stack

6.81 MCPS 32.80 KB 4736 bytes 2240 × N1 bytes 2312 bytes

NOTES: 1.N = Number of channels.

2.5 Assembly Implementation
While results for compiled C in the G.729A project were impressive, performance still fell short of estimates of
capability of the SC140 architecture. The next step was to manually intervene and hand-assemble critical portions
of the code that consumed a lot of cycles. Typical areas where developer intervention can increase performance
over compiled code include

• Complex aliasing analysis without the –Og compilation option

• Register pressure in long loops

ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

10 Freescale Semiconductor

Implementation Methodology
• Inability to force parallel operations in C

• Complex alignment-preservation analysis

For functions in which the generated code is almost optimal, the following time-saving approach can be used:

1. Compile the C-optimized code and retain the assembly output
2. Manually modify the generated assembly code
3. Replace the C file with the new assembly file

The set of functions already implemented in assembly in G.729 was reused with minor adjustments in some cases.
Table 17 lists the functions that required assembly implementation.

Table 17. Assembly-Implemented Functions in G.729A

Module Function
Cycle Count per Call Reused

from
G.729

Comments
C-Optimized Version Assembly Version

common Get_lsp_pol() 213 121 yes

Pred_lt_3() 424 392 yes

Residu() 203 164 yes One minor change

Syn_filt() 347 184 yes Few modifications

encoder Autocorr() 1308 921 no

Az_lsp()+Chebps() 8827 3861 no

Cor_h() 1732 1154 no Compiler generated
assembly with small
optimizations

D4i40_17_fast() 5458 2438 no

Levinson() 2023 1252 yes Minor adaptations

Pitch_fr3_fast() 2584 2512 no Compiler generated
assembly with minor
optimizations

Pitch_ol_fast() 2838 2197 no

Pre_process() 937 575 yes

Qua_gain() 2450 1234 no

decoder Post_process() 926 575 yes

Table 18 summarizes the results after assembly implementation.

Table 18. Performance Results After Function Implementation in Assembly

Speed
ROM RAM

Program Tables Channel Data Stack

4.7 MCPS 28.09 KB 4736 bytes 2240 × N1 bytes 2312 bytes

NOTES: 1.N = Number of channels.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 11

Results
3 Results
Table 19 summarizes the results of the G.729A vocoder project in terms of the processing load (measured in
Million Cycles per Second or MCPS) and memory consumption.

Table 19. Vocoder Performance Results

Development Stage
Speed

(MCPS)

ROM Memory Consumption RAM Memory Consumption

Program (KB)
Tables
(bytes)

Channel Data
(bytes)

Stack (bytes)

SRS 5.5 31.00 4812 3108 × N1 2560

Porting to SC140 15.07 33.42 5340 3144 2592

Project_Level Optimizations 13.82 30.42 4720 3108 × N 2240

Algorithmic Changes 15.47 32.90 4740 3108 × N 2480

Function_Level C Optimization 6.81 32.80 4736 2240 × N 2312

Function Implementation in
Assembly - 4 Functions

5.47 30.51 4736 2240 × N 2312

Function Implementation in Assem-
bly - 15 Functions

4.7 28.09 4736 2240 × N 2312

NOTES: 1.N = the number of channels.

The number of MCPS required to encode/decode a frame is obtained by multiplying the measured number of
cycles by the number of frames to be processed per second (in G.729A, 100 frames of 10 ms each must be
processed per second), and dividing the result by 1,000,000. For example, if it takes 50,000cycles to encode or
decode a frame, the processing power required is (50,000 × 100) / 1,000,000 = 5 MCPS. The cycle count can be
measured with either the simsc100.exe program in the StarCore simulator or the MSC8101 Application
Development System (ADS). The simulator has a special ‘cyc’ register that counts the clock cycles elapsed from
the beginning of the simulation. This register also counts the memory stalls caused by concurrent accesses to the
same memory block. In the ADS, the cycle count is measured by configuring the EOnCE event counter to count
the core clock cycles (for details see [17]). Unfortunately this counter does not count the memory stalls. The overall
vocoder cycle count is the sum of the encoder and decoder worst case results, which were obtained after
performing the measurements on all the ITU test vectors. For every test, the cycle counts measured in hardware
were smaller than those measured with the simulator, so the simulator was used to report the results presented here.

Stack consumption is measured by tracing the movement of the stack pointer. The Perl script listed in Appendix B
parses the log file generated by simsc100.exe and computes the largest stack frame used by the tested
module—encoder or decoder. The chosen result is the larger of the two results. The script also reports the calling
chain that generated maximum stack growth. It generates simulator log files by calling the appropriate simulator
commands. The primary script routines include

• stack_analyzer_encoder.sc

• stack_analyzer_decoder.sc

• stack_analyzer_frame_start.sc

• stack_analyzer_frame_end.sc

Table 19 also shows the MDCR Software Requirements Specification (SRS) for G.729A. The SRS specifies the
target performance in terms of speed (MCPS) and memory consumption (bytes) for the entire vocoder (encoder +
decoder). The SRS was established by correlating several factors, including
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

12 Freescale Semiconductor

Results
• A speed estimation of 5.77 MCPS if the functions that take 80% of the vocoder time are only C-
optimized

• Experience with memory consumption on the G.729 project

• Other Freescale Semiconductor internal documents

• Third party implementations of the same vocoder on similar processors.

If the final implementation is run on StarCore at 300 Mhz the total number of channels processed in parallel is

N = 300/4.7 = 63 Equation 1

The memory required to process 63 channels is 172.72 KB. Figure 1 and Figure 2 show the evolution of the data
size and code size respectively for each development stage.

4812
5340

4720 4740 4736 4736 4736

3108
3144

3108 3108
2240 2240 2240

2560

2592

2240 2480

2312 2312 2312

0

2000

4000

6000

8000

10000

12000

SRS Porting to SC140 Project-Level
Optimizations

Algorithm Changes Function-Level C
Optimizations

Function
Implementation in

Assembly - 4
Functions

Function
Implementation in

Assembly - 15
Functions

B
yt

es

Stack
Channel Data
Tables

Figure 1. Data Size Versus Development Stage

31.00

33.42

30.40

32.90 32.80

30.51

28.09

25

26

27

28

29

30

31

32

33

34

S RS Porting to SC140 Projec t-Level
O ptim izations

A lgorithm Changes Function-Level C
O ptim izations

Function
Im plem entation in

Assem bly - 4
Functions

Function
Im plem entation in

A ssem bly - 15
Functions

kb
yt

es

Figure 2. Program Size Versus Development Stage
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 13

Results
Equation 2 links the performance of the group of functions selected for optimization (G1) to the overall
application performance (see also [3]).

S = 1 – P (f –1)
1

f

= P(1 – f) + f
f Equation 2

whereS is the application performance improvement
P is the percentage of the application run-time taken by the G1 functions
f is the optimization factor, which represents the average speed-up factor when one portion of
 reference C code is C-optimized or written in assembly.

Given S, f can be computed as

f = 1 +SP – S
SP Equation 3

In the G.729A project, P = 92% instead of the initially proposed 80% in order to exceed the performance described
in the SRS. The already optimized functions reused from G.729 helped us to reach this goal. Table 20 depicts the
computed values for S and f for the function level C optimization phase and for function implementation in
assembly. It can be seen that the values computed for the optimization factor f are consistent with the values
obtained in G.729 project—2.44 for optimized C and 3.99 for assembly implementation.

Table 20. S and f Computation

Development Stage Speed (MCPS) S f

Porting to SC140 15.07 — —

Function-level C optimization 6.81 2.21 2.47

Function implementation in assembly 4.7 3.21 3.97

Figure 3 shows the evolution of speed versus the effort in man-months.

Function Im plem entation in
Assem bly - 15 Functions

(4.7 M CPS)

Function-Level C Optim izations
(6.81 M CPS)

A lgorithm ic Changes
(15.47 M CPS)

Project-Level Optim ization
(13.82 M CPS)

Porting to SC140
(15.07 M CPS)

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

Effort (m an-m onths)

M
C

PS

P roject Target

Function Im plem entation in
Assem bly - 4 Functions

(5.47 M CPS)

Figure 3. Processing Load Versus Effort
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

14 Freescale Semiconductor

Conclusions
Note that the project target can be reached sooner by implementing fewer functions in assembly. Table 21 shows
the functions in descending order of the time gained per frame.

Table 21. Speed Gain for Assembly Implementations

Function

Cycle Count per Call
Gain per

Call
Calls per

Frame
Gain per
Frame

SumC-Optimized
Version

 Assembly
Version

D4i40_17_fast() 5458 2438 3020 2 6040 6040

Az_lsp() + Chebps() 8827 3861 4966 1 4966 11006

Qua_gain() 2450 1234 1216 2 2432 13438

Syn_filt() 347 184 163 14 2282 15720

Cor_h() 1732 1154 578 2 1156 16876

Levinson() 2023 1252 771 1 771 17647

Pitch_ol_fast() 2838 2197 641 1 641 18288

Autocorr() 1308 921 387 1 387 18675

Get_lsp_pol() 213 121 92 4 368 19043

Pre_process() 937 575 362 1 362 19405

Post_process() 926 575 351 1 351 19756

Pred_lt_3() 424 392 32 8 256 20012

Residu() 203 164 39 4 156 20168

Pitch_fr3_fast() 2584 2512 72 2 144 20312

Only the first four functions, D4i40_17_fast(), Az_lsp(), Chebps() and Qua_gain(), need be implemented in
assembly to gain 1.34 MCPS, which is more than needed to make up the difference of 1.31 MCPS between the best
C implementation and the project target. The four functions represent 17.32% of the optimized C code.

4 Conclusions
The G.729A implementation on the StarCore SC140/SC1400 cores demonstrates how the core architecture can
substantially enhance performance using the optimization techniques and methodologies presented in this
application note. A DSP-intensive C reference code can be sped up 2.4 times by optimizing the C code. If greater
speed is required, assembly implementation can further improve performance by a factor of 4. Applying the
methodology described here proved that speed improvement can gained in conjunction with reduced memory
consumption. On the SC140, the G.729A vocoder speed improved from 15.07 MCPS (ported ITU reference),
which allows only 19 simultaneous channels on a 300-Mhz DSP, to 4.7 MCPS, which allows 63 channels.
Moreover, the memory consumption (code + data) for a single-channel implementation was reduced from 44.23
KB to 37.16 KB.

Use of the StarCore compiler shortened project development time. For example, the C optimization phase of the
G.729A project took 0.35 man-months per MCPS on average, and the assembler implementation phase took 0.87
man-months per MCPS on average. Bit-exactness tests were passed on both the StarCore simulator and the
MSC8101 ADS for all ITU test vectors, as well as an extended set of Freescale internal test vectors.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 15

References
5 References
[1] ITU-T Recommendation G.729 (03/96): Coding of Speech at 8kbit/s Using Conjugate-Structure Algebraic-

Code-Excited Linear-Prediction (CS-ACELP).
[2] ITU-T Recommendation G.729 - Annex A (11/96): Reduced Complexity 8 kbit/s CS-ACELP Speech Codec.
[3] ITU-T G.729 Implementation on StarCore™ SC140/SC1400 Cores, Freescale Semiconductor application

note, AN2094.
[4] CCITT Blue Book. The International Telegraph and Telephone Consultative Committee. CCITT, Geneva,

1989.
[5] A Practical Handbook of Speech Coders, R. G. Goldberg and L. Riek, CRC Press, 2000.

ISBN 0-8493-8525-3.
[6] Vocoder Intelligibility and Quality Test Methods, J. Tardelli and E. Kreamer. IEEE Int. Conf. Acoust. Sp.

Sig. Proc., 1996, pp.1145-1148.
[7] “The Implementation of G.729 Speech Coder on a 16bit DSP Chip for the CDMA IMT_2000 System,” J.

Kim et al. IEEE Trans. on Consumer Electronics, vol. 45, no. 2, May 1999, pp. 443-448.
[8] A New Low Bit Rate Low Delay Algebraic CELP (ACELP) Coder, R. El-Kouatly and S. H. El-Ramly.

Seventeenth National Radio Science Conference, Feb. 22-24, 2000, Minufiya University, Egypt.
[9] ITU-T Recommendation P.810 (02/96). Modulated Noise Reference Unit (MNRU).
[10] SC140 DSP Core Reference Manual, MNSC140CORE, Rev.1, 6/2000.
[11] SC100 C Compiler User's Manual, MNSC100CC, Rev.1.7, 8/2000.
[12] SC100 Assembly Language Tools User's Manual, MNSC100ALT/D, Rev.1.5, 8/2000.
[13] SC100 Application Binary Interface Reference Manual, MNSC100ABI/D, Rev.1.8, 04/2000.
[14] StarCore Multisample Programming Technique, STCR140MLAN document, Rev1, 09/1999.
[15] Efficient Programming Techniques for SC140 (Freescale Semiconductor internal document).
[16] GSM EFR Vocoder on StarCore 140, Dror Halahmi, Sharon Ronen, Yariv Mishlovsky, Assaf Naor,

Shlomo Malka, Amit Gur, Haim Rizi, ICSPAT 1999.
[17] Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Freescale Semiconductor

application note, AN2090.
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

16 Freescale Semiconductor

References
Appendix A
Optimized 32-bit Operations

Code Listing 2. New Form of the 32-bit operations Mpy_32() and Mpy_32_16()

/*===
FUNCTION: Mpy_32()

DESCRIPTION:
Multiply two 32 bit integers (DPF). The result is divided by 2**31
L_32 = (hi1*hi2)<<1 + ((hi1*lo2)>>15 + (lo1*hi2)>>15)<<1

This operation can also be viewed as the multiplication of two Q31 number and
the result is also in Q31.

ARGUMENTS PASSED:

a first number - hi1:lo1
b second number - hi2:lo2

RETURN VALUE:
32 bit long signed integer (Word32) whose value falls in the
range : 0x8000 0000 <= L_32 <= 0x7fff fff0.

PRE-CONDITIONS:
None

POST-CONDITIONS:
None

IMPORTANT NOTES:
None

===*/

static Word32 Mpy_32(Word32 a, Word32 b)
{
#pragma inline
 Word32 L_a, L_b;

 L_a = L_mult_ls(a, extract_h(b));
 L_b = mpysu_shr16(extract_h(a), b);
 L_a &= -2;
 L_b &= -2;
 return L_add(L_a, L_b);
}
/*===*/
/*===

FUNCTION: Mpy_32_16()

DESCRIPTION:
Multiply a 16 bit integer by a 32 bit (DPF). The result is divided
by 2**15

This operation can also be viewed as the multiplication of a Q31
number by a Q15 number, the result is in Q31.

L_32 = (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1

ARGUMENTS PASSED:

a first number - h1:lo1
b second number - lo2
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 17

References
RETURN VALUE:
 32 bit long signed integer (Word32) whose value falls in the
 range : 0x8000 0000 <= L_32 <= 0x7fff fff0.

PRE-CONDITIONS:
None

POST-CONDITIONS:
None

IMPORTANT NOTES:
None

===*/

static Word32 Mpy_32_16(Word32 a, Word16 b)
{
#pragma inline
 Word32 L_32;

 L_32 = L_mult_ls(a, b);
 return L_32 & -2;
}

/*===*/
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

18 Freescale Semiconductor

References
Appendix B
Stack Consumption Measurement

Code Listing 3. stack_analyzer.pl - Perl Script that Measures the Stack Consumption

Freescale Semiconductor DSP Center Romania

use warnings;
use strict;

Receives as parameter a scalar that represents the name of the module being tested
Returns a reference to a hash table containing the functions form the module
received as parameter
and with their addresses as keys
sub get_map_table
{
 my $module = shift; # Get the first parameter
 my %map_table; # This is the map table that will be filled in this function
 my $fin; # Map file descriptor
Open map file
 open($fin , "../bin/" . $module . ".map") ||
 die("open " . "../bin/" . $module . ".map" . ": $!\n");
Process the whole map file
 while(<$fin>)
 {
Match lines that contain a function name and its address
Such lines appear as follows:
0x00013760 _Syn_filt
0x00013850 _Weight_Az
0x00013b60 _ACELP_Code_A
 if(/^(0x[0-9a-fA-F]{8})\s+_(\w+)\s*$/)
 {
Hash key is the address of the function and data is the function name
 $map_table{ $1 } = $2;
 }
 }
Close map file
 close($fin);
Return a reference to the map table built
 return \%map_table;
}

=head1
The script parses the log file generated by encoder_measure_stack.sc and
decoder_measure_stack.sc simulator scripts.

The output of this script are the maximum values for coder and decoder stack
size.

The script assumes a fixed directory structure. It receives only one parameter
which establishes whether or not the script also runs the simulation.

The log files are similar in structure, thus the same basic block is repeated
twice, once for the coder module and once for the decoder module.
=cut

Get the name of analyzed module
my $module=<$ARGV[0]>;

Run the module tester to extract build number and date
system("runsc100 ../bin/" . $module . ".eld > tmp.txt");

my $fin;
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 19

References
open($fin , "tmp.txt") || die("Cannot create temporary files!!!");

open(my $report_file,">../../../reports/stack_analysis_" . $module . ".txt") || die(
"Cannot create report file!!!");

print($report_file "\nStatistics made for $module :\n\n");

while(<$fin>)
{
 if(/.*build *(\d{4}).*/)
 {
 print $report_file "Build number : $1\n";
 }
 if(/.*time: *(.*)/)
 {
 print $report_file "$1\n\n";
 }
}

close($fin);

unlink("tmp.txt");

Run the module tester to log the stack evolution
system("cd ../bin; simsc100 ../scripts/stack_analyzer_".$module.".sc");

Open the stack log file of the module analyzed
open($fin , "../logs/stack_analyzer_".$module.".log") ||

die("Can't open log file : $!\n");

my $stack_top = 0x0;
my $stack_base = 0xffffffff;

This array will store the function call stack (pc values and not function names)
my @functions;

Parse the log file
The stack pointer for the C code is esp. Typical display line for esp looks like:
esp={00000164264}

First, keep the first value of the stack pointer in the $stack_base
The first occurence of the stack pointer should be at the entrance of
g729a_encode()/g729a_decode()
while(<$fin>)
{
 if (/\s*esp=\{0*([0-9a-fA-F]+)\}\s*/)
 {
 $stack_base = $1;
 $_ = <$fin>;
 /^p:\$([0-9a-fA-F]{8})/;
 $functions[0] = "0x" . $1;
 last;
 }
}

my $max_stack_line;

Find the maximum of the other values => $stack_top
while(<$fin>)
{
 if(/\s*esp=\{0*([0-9a-fA-F]+)\}\s*$/)
 {
 if($1 > $stack_top)
 {
 $stack_top = $1;
 $_ = <$fin>;
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

20 Freescale Semiconductor

References
 /^p:\$([0-9a-fA-F]{8})/;
 $functions[0] = "0x" . $1;
Store the next line in file where the maximum stack pointer appears
 $max_stack_line = tell($fin);
 }
 }
}

Output stack dimension
print($report_file "Maximum stack size for ".$module." is ".($stack_top - $stack_base)."
with the following call stack:\n");

Jump to the line that follows the line that contains the maximum stack pointer
seek($fin , $max_stack_line , 0);

my $function= 1;

Parse the log file to detect where the stack pointer decreases and store the value
of program counter
A function can appear more than one time in the array
while(<$fin>)
{
 if (/\s*esp=\{0*([0-9a-fA-F]+)\}\s*/)
 {
 if($1 < $stack_top)
 {
 $stack_top = $1;
 $_ = <$fin>;
 /^p:\$([0-9a-fA-F]{8})/;
 $functions[$function++] = "0x" . $1;
 }
 }
}

close($fin);

my $function_name0="";
my $function_name1;
my $map_table = get_map_table($module);

chop($module);

Iterate the function array to search the function name corresponding to each address
foreach $function (@functions)
{
For each address iterate the map table
 foreach my $function_address (sort keys %$map_table)
 {
If the current function has a lower address store its name.
Otherwise quit the loop because the function name was identified and is stored in
$function_name1
 if(hex($function) >= hex($function_address))
 {
 $function_name1 = $$map_table{ $function_address };
 }
 else
 {
 last;
 }
 }
If the name of the previous function differs from the current one display the
current function name
 unless($function_name0 eq $function_name1)
 {
 print($report_file $function_name1 . "\n");
 $function_name0 = $function_name1;
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 21

References
 }
If g729a_encode()/g729a_decode() is reached, quit
 if($function_name1 eq "g729a_" . $module)
 {
 last;
 }
}

Close the report file
close($report_file);

Code Listing 4. Simulator Command File for Encoder Stack Measurement

; Clear environment
display off
break off
output off
input off

; Display esp in unsigned format
radix u esp
display on esp

load encoder.eld

; Increment cnt1 and execute stack_analyzer_frame_start.sc macro
; when entering g729a_encode()function
break #1 _g729a_encode i1
break #2 _g729a_encode x ../scripts/stack_analyzer_frame_start.sc

; Execute stack_analyzer_frame_end.sc macro after exiting g729a_encode()function
break #3 _frame_end x ../scripts/stack_analyzer_frame_end.sc

; Stop the simulation after 10 frames
break #4 cnt1==11

; Write the esp to log file when it is modified
break #5 w esp s

; Temporarily disable breakpoint 5. This breakpoint should be enabled only
; when executing g729a_encode()function. This is done by the two macros.
break #5 d

log s ../logs/stack_analyzer_encoder.log -o

go
quit
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

22 Freescale Semiconductor

References
Code Listing 1. Simulator Command File for Decoder Stack Measurement
; Clear environment
display off
break off
output off
input off

; Display esp in unsigned format
radix u esp
display on esp

load decoder.eld

; Increment cnt1 and execute stack_analyzer_frame_start.sc macro
; when entering g729a_decode()function
break #1 _g729a_decode i1
break #2 _g729a_decode x ../scripts/stack_analyzer_frame_start.sc

; Execute stack_analyzer_frame_end.sc macro after exiting g729a_decode()function
break #3 _frame_end x ../scripts/stack_analyzer_frame_end.sc

; Stop the simulation after 10 frames
break #4 cnt1==11

; Write the esp to log file when it is modified
break #5 w esp s

; Temporarily disable breakpoint 5. This breakpoint should be enabled only
; when executing g729a_decode()function. This is done by the two macros.
break #5 d

log s ../logs/stack_analyzer_decoder.log -o

go
quit

Code Listing 5. stack_analyzer_frame_start.sc

; Enable breakpoint 5 when entering g729a_encode() or g729a_decode() function
break #5 e
go

Code Listing 6. stack_analyzer_frame_end.sc

; Disable breakpoint 5 when leaving g729a_encode() or g729a_decode() function
break #5 d
go
ITU-T G.729A Implementation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 23

Document Order No.: AN2151

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. Metrowerks and CodeWarrior are registered trademarks of
Metrowerks Corp. in the U.S. and/or other countries.All other product or service names are the
property of their respective owners.

© Freescale Semiconductor, Inc. 2001, 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 1
1/2005

	1 G.729A Basics
	1.1 Encoder Differences Between G.729A and G.729
	1.2 Decoder Differences Between G.729A and G729
	1.3 Data Table Differences Between G.729A and G729
	1.4 Processing Load Estimation

	2 Implementation Methodology
	2.1 Porting ITU G.729A Reference Code to the SC140
	2.2 Project-Level Optimizations
	2.3 Algorithmic Changes
	2.4 Function-Level C Optimizations
	2.5 Assembly Implementation

	3 Results
	4 Conclusions
	5 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

