Freescale Semiconductor

Order this document
by AN2120/D

Application Note

AN2120

Connecting an M68HC08 Family Microcontroller to an
Internet Service Provider (ISP) Using the Point-to-Point
Protocol (PPP)

By Rene Trenado
SPS Latin America
Tijuana, Baja California, Mexico

Introduction

This application note is based on an M68HCO08 Family microcontroller
(MCU) and implements one of the most popular and accepted Internet
protocols: the point-to-point protocol (PPP) to exchange UDP/IP (user
datagram protocol/Internet protocol) data with other hosts on the
Internet. The source code is written entirely in C, showing much of the
benefits of the M6BHCO08 CPU features to support this high-level
language (HLL) programming and enables it to be easily ported to other
MCUs. The program code occupies less than 6K of memory.

Today the Internet is an integral part of our daily lives. Millions of people
all over the world are familiar with the mediums to obtain and manage
information over the World Wide Web. Those same people feed the
exponential growth of the Internet, enabling new consumer products in
the electronic industry.

The Internet is entering a new era where it impacts our lives at work and
at home, regardless of distance. It is clear that this tendency will effect
the next evolution of the information super highway.

-
A
© Freescale Semiconductor, Inc., 2004. All rights reserved. > -
° Z“freescale

© Motorola, Inc., 2001 semiconducior

For More Information On This Product,
Go to: www.freescale.com

RXZB30
copyright

RXZB30
logo

RXZB30
forward100

4\ Freescale Semiconductor, Inc.

Application Note

The benefits are endless. Imagine the ability to add new product features
remotely, perform device management and remote diagnostics,
integrate an interactive and intuitive browser interface to the electronic
device, and using that interface all over the world. As these consumer
requirements evolve, the integration of the Internet-enabling technology
into new and existing electronic devices will become more of a reality.

Unfortunately, for most electronic devices, implementing the technology
to achieve this networking connectivity based on open Internet
standards isn’t easy. For instance, most household appliances are
based on very low-cost 8-bit microcontroller technology, and chances
are that the host MCU includes neither a network port nor the hardware
resources to support TCP/IP (transmission control protocol/Internet
protocol) and other Internet protocols without disrupting their primary
function.

Implementing an entire Internet communications stack requires
significant memory and processing resources from the microcontroller-
based system. In most cases, adding those resources to the system
surpasses the cost and viability of the main reason why the system was
conceived.

However, different techniques to Web-enable devices have come to life
recently: from implementations of limited TCP/IP functionality in
resource constrained systems, to single-chip stacks, to device object
servers. Each method has its own advantages and disadvantages.

The intention of this application note is to show that a small, resource-
constrained microcontroller can be connected to the Internet when the
appropriate resources and well-suited CPU (central processor unit)
architecture, such as the one of the M68HCO08 Family of MCUs, are put
in place.

For More Information On This Product,
Go to: www.freescale.com

Internet Primer

Freescale Semiconductor, Inc.

Application Note
Internet Primer

(1) ESTABLISH A PPP LINK
-~
(2) PPP/UDP/IPMESSAGES
M68HCO08 FAMILY
MCU-BASED SYSTEM

INTERNET SERVICE PROVIDER (ISP)

A
~ UDP/IP

IP/ICMP DATAGRAMS
PING REQUESTS \

AND RESPONSES
UDP/IP
- OTHER HOSTS
ON THE INTERNET
UDP/IP

Figure 1. Application Note Framework

AN2120

The Internet can be seen as a network of several internetworks (or
networks of networks) operating over a mechanism used to connect
them together. This mechanism relies on the Internet protocol, often
referred as the IP protocol.

To understand how this Internet platform operates, first consider how a
local area network or LAN works. A LAN is basically a group of electronic
devices (or hosts) in relative physical proximity connected to each other
over a shared medium. A host is essentially anything on the network that
is capable of receiving and transmitting information packets on the
network. Regardless of the technology used for networking, all hosts
share a common physical medium. On top of this medium, a commonly
accepted protocol allows all hosts in the LAN to send and receive
information to each other.

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

A LAN works well in practice, especially when a relatively small number
of hosts conforms to it. The larger the number of hosts connected to the
LAN the larger the traffic of data the shared conduit will experience.

Consider this scenario. A company runs a common LAN for its
departments. Human resources (HR) is working on the weekly payroll
while production is programming the manufacturing plan of the day and
engineering is testing the next fancy product the company will launch to
market. It does not make sense for HR to experience the high latency on
the network caused by the manufacturing process or even engineering
testing using the same channel of communication. At the end of the day,
nobody will get paid because HR did not finish the payroll processing.

One solution to this scenario would be to split the company LAN in
different sections, one for each department. Then instead of having just
one network, the company would have three, and data traffic would be
reduced to a specific department only. Although the problem is now
solved, all three LANSs still need to be connected together so they can
share specific information. To interconnect two or more networks, we
need a computer or host that is attached to both networks and that can
forward packets from one network to the other; such a machine is called
a router. Figure 2 shows how a router interconnects two networks.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Internet Primer

NETWORK A

NETWORK B

NOTE:
In a LAN, a router is a member of two networks
at the same time.

Figure 2. LAN Router is a Member of Two Networks Simultaneously

A router listens to data traffic in network A and network B at the same
time. It will detect any transmissions intended for one network to the
other and will forward such data over the appropriate network. According
to the figure, it is assumed that the router is a machine connected to both
networks at the same time. This approach works well in an office
environment where hosts are physically close to each other. However,
when the physical distance becomes an issue, this scheme changes a
bit to define a wide area network or WAN.

In a WAN, connections are typically point-to-point. This means that only
a single computer is connected to another in a remote location. In this
scheme, a conduit is shared between two hosts rather than being shared
by many computers. Consider the diagram in Figure 3.

AN2120

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

ROUTER A

NETWORK A

POINT-TO-POINT
CONNECTION

ROUTERB

NETWORK B

Figure 3. Connecting Two Remote Networks

The Internet is not very different from this scenario. As a matter of fact,
the Internet is a collection of LANs or WANs connected to each other by
routers operating on a worldwide basis. It is mainly composed of two
different kinds of machines: hosts and routers running standard
protocols.

According to Figure 2, assume the fact that network B can be connected
to a network C and in turn be connected to another network in Asia called
network D and so on. Such networks interconnected by routers form an
internet. When different internets are connected together on a worldwide
basis, they form the Internet.

What makes it possible for different computer systems (and in turn
different network platforms) to operate together is a complete suite of
standards and networking protocols commonly referred as Internet
protocols.

Like most networking software, Internet protocols are modeled in layers.
A layered model of a software is often referred to as a stack. The Internet
protocols can be modeled in five layers as shown in Figure 4.

For More Information On This Product,
Go to: www.freescale.com

AN2120

Freescale Semiconductor, Inc.

Application Note
Internet Primer

OSI REFERENCE MODEL INTERNET PROTOCOLS
APPLICATION > HTTP, SMTP, FTP, TELNET
TRANSPORT > TCP UbP
NETWORK > 1P Iﬂ
DATA LINK > ARP PPP SLIP
HARDWARE INTERFACE [| ETHERNET| SERIAL | WIRELESS

Figure 4. OSI Reference Model and Internet Networking Stack

In the Internet protocol stack, every layer adds a header and/or a trailer
to data moving down the stack. For instance, if an application using the
HyperText Transfer Protocol (HTTP), such as a Web browser, wants to
send an HTTP command to a remote host on the Internet, the TCP layer
will add a header intended for its peer TCP at the remote location. The
TCP will move the HTTP command down the stack to the IP layer. In
turn, this layer will add another header to the TCP encapsulated HTTP
packet with information intended to the peer IP layer and so on, as
shown in Figure 5.

HTTP FTP DNS
TCP UDP
IP
PPP || sUIP ARP
'v/ SERIAL ETHERNET

| 5BYTES | |20 BYTES|{20 BYTES|{ n BYTES || DATA || 3BYTES|

Figure 5. Header and Trailer Data Added to an HTTP Message
Traveling Down the TCP/IP Stack

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

Of all the internet family of protocols, the most fundamental is the
Internet protocol (IP). Being the best place to start in the quest of
understanding the Internet, a brief description of the Internet protocol is
included in the next section.

Internet Protocol (IP)

The Internet protocol (IP) is the protocol that makes possible the
transmission of blocks of data, called datagrams, from one host to
another over the Internet.

The primary functions of the IP are:

1. Finding a route for each datagram and getting it to its destination
in an internetwork

2. Fragmenting and reassembling of IP packets
3. Removing old IP packets from the network

The IP protocol defines datagrams or blocks of data plus a header added
that conforms the fundamental units of internet communication. The
header contains the numerical address of both the source and
destination devices connected to the Internet. These types of addresses
are often referred to as IP addresses. IP addresses uniquely identify
each host on the Internet and are used by routers to direct the
datagrams to their destinations. Often, routers do not care about the
payload inside the datagram, since their job is to route the datagram to
its destination as fast as possible.

Routers are machines that are primarily concerned with the Internet
protocol. From the network standpoint, a router is just another host; from
the user standpoint, routers are invisible. The user and the upper layer
of the stack only see one large internetwork. These are the benefits of
the IP protocol.

Fragmentation is another task performed by the IP. Fragmentation is
needed when a packet is too large to fit the network interface below the
IP layer. If a large datagram arrives at the IP layer, IP divides the
datagram into smaller fragments before sending them. When a
datagram fragment arrives, IP must reassemble the entire packet before
passing it to the next upper layer.

For More Information On This Product,
Go to: www.freescale.com

AN2120

Freescale Semiconductor, Inc.

Application Note
Internet Protocol (IP)

A complete IP implementation should include features to support
fragmentation and reassembly. Implementation of such features
requires more CPU bandwidth and more memory resources in RAM and
ROM, not to mention the complexity it adds to the software
implementation. For this reason, this application note does not
implement fragmentation or reassembly. If for any reason the remote
computer sends a fragmented packet to the M68HCO08, the PPP
implementation will reject it and ignore it.

The IP protocol implements a mechanism to remove old datagrams from
the network. On each header of an IP packet, an 8-bit long time-to-live
field indicates the maximum number of routers that this packet must
travel on to reach its destination before it is discarded. This is due to the
fact that unroutable packets could be bouncing all over the Internet,
forever eating valuable bandwidth.

The best way to get a better understanding of the IP protocol is to take
a look at the format of an IP packet. See Figure 6.

VERSION | IHL (4-BIT) | TYPE OF SERVICE TOTAL LENGTH (16-BIT) \
IDENTIFICATION (16-BIT) FLAGS | FRAGMENT OFFSET (13-BIT)
TIME TO LIVE (8-BIT) | PROTOCOL (8-BIT) HEADER CHECKSUM (16-BIT) F IP HEADER
SOURCE IP ADDRESS (32-BIT)
DESTINATION IP ADDRESS (32-BIT) j
OPTIONS/PAYLOAD

Figure 6. Internet Protocol Datagram Layout

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

A brief description of each of the fields found in an IP packet is given in
Table 1.

Table 1. Fields in an IP Packet

Field Description

Indicates the format of the Internet header. Two values are valid for this eld: F our

Version (current IP standard) and six for the future IPv6.

IHL (IP header length) | The length of the Internet header measured in 32-bit words, usually 5

Type of service Specify reliability, precedence, delay and throughput parameters
Total Length Total length of the datagram (header and data) measured in bytes
Identi cation An ID assigned by the sender to aid in assembling fragmented datagrams

One bit indicates fragmentation; another is the "Don't fragment" bit, specifying whether

Flags (3 bits) the fragment may be fragmented. The last bit is reserved.

Fragment offset Indicates a fragment portion
Time to live Indicates the maximum time the datagram is allowed to remain in the Internet
Protocol Indicates the next layer protocol which is to receive the payload of the datagram
Header checksum A checksum of the header only
Source address The sender IP address
Destination address The destination IP address
Options The (_thion gld is v_aria_ble in length and is optional. There may be zero or more
options. This application note does not support options.
Padding If options are present, padding ensures the IP header ends on a 32-bit boundary.
Data Payload of the datagram
An example of an IP datagram is shown in Figure 7. Notice how the IP
packet carries ICMP data of a ping request from 192.168.55.2 to
192.168.55.1.
45 00 00 1C 00 F4 00 00 80 01
A4 99 CO A8 37 02 COA83701
08 00 F6 51 01 00 00 AE
Figure 7. Example of an IP Datagram with ICMP Payload
10

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
UDP Protocol

The IP implementation used by this application note does not use most
of the fields in the IP header. For every incoming datagram, the
implementation checks the version and header length to avoid IP
headers longer than 20 bytes. IP checksums are not checked since a
more robust frame check sequence (FCS) over the entire IP datagram
are computed at the PPP level.

The IP protocol does not provide a mechanism to detect if a datagram
has successfully reached its destination. It does not care if a packet sent
is lost, duplicated, or corrupted. It relies on higher level protocols to
ensure a reliable transmission. That’s precisely the job of the next layer
up the stack, the transport layer, which in the case of TCP/IP includes
UDP and TCP.

UDP Protocol

UDP stands for user datagram protocol, a standard protocol with
assigned number 17 as described by RFC 790 (request for comments).
Its status is recommended, but almost every TCP/IP stack
implementation that is in use in commercial products includes UDP.
Think of UDP as an application interface to IP since applications never
use IP directly. The UDP layer can be regarded as extremely thin with
eight bytes of header, and, consequently, it has low overhead. But it
requires the application layer to take full responsibility for error recovery,
packet retransmissions, and so on.

IP DATAGRAM

UDP DATAGRAM
|<— ——————————————— —>|
IP HEADER UDP HEADER UDP DATA
USUALLY 20 BYTES LONG 8 BYTES LONG VARIABLE LENGTH

Figure 8. UDP as an Application Interface to IP

AN2120

11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

UDP provides no means for flow control or error recovery like his peer
TCP, thus making it an unreliable protocol. Unreliable means that UDP
does not use acknowledgments when a datagram arrives at its
destination, it does not order incoming messages arriving out of
sequence, and it does not provide feedback to control the rate at which
incoming information flows between hosts. Thus UDP messages can be
lost, duplicated, or arrive out of order. This means that it is up to the
application using UDP to make the transfer reliable.

UDP is mainly used for transmitting live audio and video, for which some
lost or out of sequence data is not a big issue and the advantage of
having a transport protocol with low overhead is evident.

The UDP header reflects the simplicity of the protocol in Figure 9.

16-BIT SOURCE PORT 16-BIT DESTINATION PORT
16-BIT LENGTH (UDP HEADER + DATA) 16-BIT CHECKSUM (UDP HEADER + DATA)

PAYLOAD DATA

Figure 9. UDP Packet Format

UDP simply serves as a multiplexer/demultiplexer for sending and
receiving datagrams using ports to direct them to different services at
both ends of the Internet conversation. Notice how the UDP format
specifies two ports; one is the source port and the other is the destination
port.

A port is a 16-bit number, used by the host-to-host protocol to identify to
which higher level protocol or application program it must deliver
incoming messages. In a TCP connection, for instance, a well-known
port is port 80. HTTP servers expect an incoming request from clients
through this port.

Standard applications using UDP include Trivial File Transfer Protocol
(TFTP), Domain Name System (DNS) name server, Remote Procedure
Call (RPC) used by the Network File System (NFS), Simple Network
Management Protocol (SNMP), and Lightweight Directory Access
Protocol (LDAP).

12

For More Information On This Product,
Go to: www.freescale.com

h o
g |

Freescale Semiconductor, Inc.

Application Note
Internet Control Message Protocol (ICMP)

A UDP/IP packet containing a "Hello World!" message is shown in
Figure 10. The packet is being sent from a host with IP address
192.168.55.2 to 192.168.55.1. The source port is 1020 while the
destination port is 11222.

4500 00 28 00 FO 00 00 80 11 97 34 CO A8 37 02
CO A8 37 01 03 FC 2B D6 00 14 DB 63 48 65 6C 6C
6F 20 57 6F 72 6C 64 21

Figure 10. UDP Packet Carrying "Hello World!" Message

Internet Control Message Protocol (ICMP)

AN2120

The Internet control message protocol or ICMP is used to provide
feedback about problems in the communication environment used by
the IP as stated in RFC 792 which describes this protocol. ICMP
provides mechanisms to tell whether the part of the Internet we are
sending datagrams to or want to access is active.

ICMP is always carried by the IP or encapsulated within the IP data
packets. ICMP datagrams will always have a protocol number of 1 inside
the IP header, indicating ICMP. The IP Data field will contain the actual
ICMP message in the layout shown next in Figure 11.

bit 0 8 16 31
IP HEADER

TYPE CODE CHECKSUM
ICMP DATA } VARIABLE

Figure 11. ICMP Message Layout

13
For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

The ICMP message layout is very simple. Implementations of this
protocol should check the type and code fields to determine the nature
of the message. For instance, a type field set to 8 requires an echoreply
from the destination IP. The originator of this ICMP message can then
determine if the host is reachable or not. This is perhaps the most
popular ICMP application used today and is called ping (described next).
After the Code field, the checksum follows and is calculated over the
entire ICMP packet without taking the IP header into account.

This application note implements ICMP support to send and receive ping
messages. The format of a ping message (officially called echo request)
is shown in Figure 12.

Type Identification and Sequence
8 - ECHO REQUEST Two 16-bit elds to aid in matching echoes and replies

0 - ECHO REPLY

Data
Code This data is optional for the originator; however, for an upcoming ping
Always 0 for ECHO messages request, the data must be returned in the reply message.

Figure 12. Ping Message Format or Echo/Echo Reply Message Format

Once the sender sets the type field to 8 (echo request) and the code to O,
it must initialize the identifier and sequence number prior to a ping
execution. Those fields are used when multiple echo requests are sent.
If desired, the ping originator can add optional data to the ICMP packet.
The maximum amount of data should be no more than 64 Kbytes long.
Since this amount also applies to incoming requests, this application
note silently discards such big packets.

14

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Dialing an Internet Service Provider (ISP)

Dialing an Internet Service Provider (ISP)

Once connected to the Internet, a system can send packets of
information to other hosts who are on-line regardless of the physical
location of the destination host. That’s the main job of the IP protocol and
the internetwork infrastructure of routers and gateways that form the
Internet. Each time a system wants to be connected to the Internet it
must have the physical interface to do so. One of the most popular ways
to establish an Internet connection is by using a modem attached to a
phone line with the help of an Internet service provider or ISP. An ISP is
a company that provides access to the Internet and other related
services such as Web site building and hosting. An ISP has the
equipment and the telecommunication line access required to have an
access point to the Internet with a unique IP address.

BACKBONE ROUTER

MC68HC908GC32 SYSTEM

'—
C-I s
T

m/ ROUTER

OF LOCAL ISP

INTERNET

POINT-TO-POINT M/

CONNECTION

B Z ul
DESTINATION HOST

Figure 13. Modem Connection to an Internet Service Provider (ISP)

AN2120

15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

A host first dials to the phone number of the ISP. After the user is logged
in and the password authentication process is done, the ISP assigns a
unique IP address to the dialing host. This unique IP address is often
referred to as point of presence or POP. Since the dialing host now owns
a POP, it is part of the ISP network by means of the ISP router. At that
time, the dialing host is now connected to the Internet.

When the host sends an IP packet to the Internet, the host does not
know where the destination device is; it simply knows its IP address.
When the IP packet reaches the ISP router, the router will try to resolve
the IP address on the ISP local network. This step will be executed by
each router the IP packet travels on.

Point-to-Point Protocol (PPP)

The point-to-point protocol or PPP is the predominant connection type
used today for serial links. PPP is a complete suite of standard protocols
widely adopted by the industry that allows two hosts to interoperate in a
multi-vendor network using a serial link such as RS232.

Accordingly to RFC 1662, PPP uses a HDLC-like framing providing
address and control fields; for PPP these fields are constants OxFF and
0x03. For RS232 interfaces, PPP can be seen as a byte-oriented
asynchronous link with one stop bit, no parity, and with no special
requirements for the transmission rate.

The only absolute requirement imposed by PPP is the provision of a full-
duplex circuit not requiring the use of control signals such as RTS or
CTS. Because signaling is not required, the physical layer can be
decoupled from the data link layer hiding much of the details of the
physical transport.

16

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
PPP Framing

The format of a PPP packet is shown in Figure 14.

Start Flag
Ox7F

Address
OxFF

Control

Code ID
(1 Byte) | (1 Byte)

Checksum
(2 Bytes)

Protocol
(2 Bytes)

Length
(2 Bytes)

Payload
(Variable)

End Flag
Ox7F

0x03

PPP Framing

Description
Link control protocol (LCP)
Password authentication protocol (PAP)
Challenge handshake authentication protocol (CHAP)
Internet protocol control protocol (IPCP)
Internet protocol

Protocol |
0xC021
0xC023
0xC223
0x8021
0x0021

Figure 14. PPP Packet Format and Protocol Identifiers

AN2120

Every frame starts and ends with the Ox7F flag. Since this is a special
flag, no other instances should be placed inside the packet. To avoid
confusion with the link status, this character and other control characters
of the ASCII set inside the frame must be escaped. The control escape
sequence is defined as 0x7D followed by the result of an XOR operation
of the control character with 0x20. This also applies to the 0x7D escape
indicator. The escape sequence must be applied to all bytes in a PPP
frame but the start and stop indicators. After the start flag, two HDLC
constants follow: OxFF and 0x03. The protocol field is always two bytes
long, indicating what type of protocol is contained in the payload and
how it should be treated. For practical purposes, this application note will
treat the code, ID, and length fields as separate fields from the payload,
but, officially, they are part of it.

The code is the type of negotiation packet for LCP, PAP, IPCP, and
CHAP frames. For IP datagrams it is usually 0x45 (when the header
does not include options which is true most of the time). The ID should
be unique for each frame to be negotiated and responses should use
that same ID to tie them up together. An exception to this rule is when a
PPP frame encapsulates an IP datagram. In such a case and for
practical purposes, the ID usually will be the type of service. The payload
is variable and depends on the negotiation options of a request or a
response. In the case of a IP datagram, the size is compatible with the
size field of the PPP frame.

17

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

The payload contains the negotiation options or the rest of the IP packet.
Finally, a 2-byte checksum or frame check sequence (FCS) which is
computed over the entire unescaped packet with the help of a lookup
table defined in RFC 1662.

In a PPP session, both peers have no distinction of who is the server and
who is the client. Both end-points can carry up a negotiation equally.
However, for practical purposes, this application note defines a PPP
server as the end-point located and handled by the ISP and a PPP client
as the end-point that initiates the connection. Another way to define a
PPP server is the end of the link that requires password authentication,
that is the authenticator.

Usually, PPP sessions are started by a client dialing up an ISP. To start
a session, the PPP client must establish, maintain, and terminate a
physical connection with the ISP.

The overall process is illustrated in Figure 15.

PPP CLIENT ESTABLISH A MODEM CONNECTION NETWORK ACCESS SERVER

ESTABLISH A PPP LINK WITH LCP

| -

A

USER AUTHENTICATION

SEND USER ID AND PASSWORD WITH PAP

o[y AUTHENTICATION ACK

A

EXCHANGE NETWORK DATA

4| DATA |HEADER| PPP |—>
——J <—| PPP | HEADER | DATA |———

Figure 15. Creating a PPP Link with an ISP

18

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
PPP Framing

A more in-depth look of the dial up sequence for PPP will show that the
sequence involves the following three steps:

1.

LCP negotiations — Establish and configure link and framing
parameters such as maximum frame size

Negotiate authentication protocols — The authentication
protocols defined for PPP are the challenge authentication
protocol (CHAP) and the password authentication protocol (PAP).
The security level of these protocols ranges from encrypted
authentication (CHAP) to clear text password authentication
(PAP). This application note only supports PAP.

Negotiate network control protocols (NCP) — NCPs are used to
establish and configure different network protocol parameters,
such as IP. This includes negotiating protocol header
compression or |P address assignation.

Before a link is considered ready for use by network-layer protocols, a
specific sequence of events must happen. The LCP provides a method
of establishing, configuring, maintaining, and terminating the
connection.

LCP goes through four phases:

1.

2.

AN2120

Link establishment and configuration negotiation (LCP phase) —
In this phase, link control packets are exchanged and link
configuration options are negotiated. Once options are agreed
upon, the link is open, but not necessarily ready for network-layer
protocols to be started.

Authentication (PAP or CHAP phase) — This phase is optional.
Each end of the link authenticates itself with the remote end using
authentication methods agreed to during phase 1.

Network-layer protocol configuration negotiation (IPCP phase) —
Once LCP has finished the previous phase, network-layer
protocols may be separately configured by the appropriate NCP.

Link termination — LCP may terminate the link at any time. This
usually will be done at the request of a human user, but may
happen because of a physical event.

19

For More Information On This Product,

Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

LCP Negotiations

The link control protocol (LCP) is used to establish the connection
through an exchange of configure packets. LCP negotiations are the first
to take place during the PPP session.

The mechanism for PPP negotiations relies on the packet codes
described in Table 2.

Table 2. Packet Codes

Type Packet Type Defined In Description

0 Vendor speci ¢ RFC2153 Proprietary vendor extensions

1 Con gure-request RFC1661 Con gur ation options the sender desires to negotiate
2 Con gure-ack RFC1661 Con gur ation options the sender is acknowledging

Unacceptable con gur ation options from the con gure-request

3 Con gure-nak RFC1661 packet; acceptable values are included

4 Con gure-reject RFC1661 C]%r; gz;(a)’;iica)zo?’f;tions are not recognizable or are not acceptable
5 Terminate-request | RFC1661 Terminate this link

6 Terminate-ack RFC1661 Terminate acknowledge

7 Code-reject RFC1661 Reception of an LCP packet with an unknown code

8 Protocol-reject RFC1661 Reception of a PPP packet with an unknown protocol eld

9 Echo-request RFC1661 Initiation of a loopback mechanism

10 Echo-reply RFC1661 Response to an echo-request

11 Discard-request RFC1661 Discard this packet for testing and debugging purposes

Figure 16 shows an example of the first LCP packet transmitted by an
ISP.

LCP Packet

0000: 7F FF 03 CO 21 01 71 00 2B 01 04 06 40 05 06 3A 5D 8B B4 02 06 00
0016: 00 00 00 11 04 06 40 17 04 00 64 00 02 03 04 CO 23 13 09 03 08 00
002C: 030A2C 2C 95 7F 7F

NOTE: The figure shows a packet without applying the escape sequence.

Figure 16. First LCP Packet Transmitted by an ISP

20

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
LCP Negotiations

A description of the LCP data is given in Table 3.

Table 3. LCP Data Description

Type N ale(@) Meaning
Framing 7F Start .of packet
FF 03 Framing
Protocol C0 21 LCP protocol
Negotiation code 01 REQ - Request options
ID 71 ID for this packet
Size of packet 00 2B Size of payload starting from negotiation code
01 Option 1, Maximum-Receive-Unit
04 Size of option 1, 4 Bytes
06 40 Option value requested, MRU = 1600
05 Option 5, Magic number
06 Size of option 5, 6 Bytes
3A 5D 8B B4 Value of magic number
02 Option 2, Async-Control-Character-Map
06 Size of option 2
00 00 00 00 Escape no characters
11 Option 17, Multilink-MRRU
04 Size of option 11
Options 06 40 Value
17 Option 23, Link Discriminator for BACP
04 Size of option 17
00 64 Value
00 Option 0, Vendor Speci c
02 Size of option 0
03 Option 3, Authentication-Protocol
04 Size of option 3
C0 23 Value set to PAP
13 Option 19, Multilink-Endpoint-Discriminator
09 Size of option 13
03 08 00 03 0A 2C 2C Value of option 13
Checksum 95 7F Checksum of this packet
Framing 7F End of packet
AN2120

21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

The most common LCP negotiations happening during initial connection
are maximume-receive-unit, protocol-field-compression, magic-number,
authentication-protocol and async-control-character-map, all described
in RFC1661 and RFC1662. This application note tries to force
negotiations to go our way. It first tries to use the default settings
provided by the ISP and goes from there. However, different
implementations should modify the state machine inside
HandleLCPOptions () routine to handle LCP options differently.

Password Authentication Protocol (PAP)

The password authentication protocol is defined in RFC 1334. PAP is
intended primarily for use by hosts and routers that connect to a PPP
network server commonly via dial-up lines, but it might be applied to
dedicated point-to-point links as well. The server can use the
identification of the connecting host or router in the selection of options
for network layer negotiations. The authenticate-request packet format
is shown in Figure 17.

1BYTE 1BYTE 2 BYTES
CODE IDENTIFIER LENGTH
1BYTE LENGTH BYTES
USER ID LENGTH USERID ...
1BYTE LENGTH BYTES
PASSWORD LENGTH PASSWORD

PPP HEADER
7F EF03C023 01 05 00)0A

00 PPP CHECKSUM
04 72 65 6E 65 D9 FA 7F]

Figure 17. PAP Packet Layout and Sample —
User ID ="", Password = "rene"

22

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Internet Protocol Control Protocol

Internet Protocol Control Protocol

PPP Negotiations

After the PPP host has been authenticated, the next phase is the
network-layer protocol. The Internet protocol control protocol (IPCP) is
used to configure the Internet protocol environment to be used in a PPP
link. Options such as IP address, IP compression, primary DNS server,
etc., are negotiated using IPCP.

The format of an IPCP frame is similar to that of LCP: a 1 byte
negotiation code followed by ID, length, and options. Once the IP
protocol has been configured, datagrams from each network can be sent
in both direction over the link. Further details of IPCP are covered in
RFC 1332.

AN2120

All LCP negotiations are performed in a state machine implemented
inside the PPP.C module. When the first LCP packet arrives from the
ISP, the state machine responds with a NAK packet with the same
options the ISP sent us before. This will force the ISP to reply with a
request for the authentication protocol to be used. The negotiation flow
is shown in Figure 18.

23

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

ISP REQ PAP
REQ NOT INCLUDE

LCP NEGOTIATIONS
FROM THE ISP
AUTHENTICATION PROTOCOL
ISP REQ ISP REQ
NAKALL BUT CHAP CHAP NAK ENTIRE
OPTION 3 LCP REQ,
NAK CHAP,
ASK FOR PAP

CHAR MAP
NAK

REQ INCLUDES
AUTHENTICATION PROTOCOL

ISP REQ PAP ISP REQ PAP

ACK PAP, REQ
0x1F CHAR MAP

LOG-IN
LCP ACK NAK

Y

REJECT

SEND USERID ALL PROTOCOLS OTHER THAN
AND PASSWORD LCP, PAP, IPC, OR IP
PAP ACK,
IPCP REG IP
\

IPCP IP
ADDRS ACK

Figure 18. PPP Normal Negotiation Flow

A hexadecimal dump of the LCP, PAP, and IPCP negotiation sequence
is shown in Figure 19. This dump is a recorded PPP session between a

real ISP and the M68HCO08-based application. First, LCP negotiations
are shown in Figure 19.

24

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
PPP Negotiations

(1) First LCP packet sent by the ISP

FF 03 CO 21 01 01 00 30 02 06 00 OA 00 00 03 05 C2 23 80 05 06 00 77 BB 67 07
020802 1104 05DC 13130120 B6 60 C1 67 BB 77 00 CO DC 5E C1

F5 10 00 00 67 40

(2) PPP response from the HC08 (NAK all but option 3 — Password Authentication)
FF 03 C0 21 04 01 00 2B 02 06 00 OA 00 00 05 06 00 77 BB 67 07 02 08 02

1104 05 DC 13 13 01 20 B6 60 C1 67 BB 77 00 CO DC 5E C1 F5 10 00 00 00

00

(3) ISP is forced to negotiate authentication protocol (either CHAP or PAP from
previous NAK frame sent)
FF 03 C0 21 01 02 00 09 03 05 C2 23 80 2A CA

(4) HCO8 respond with NAK to CHAP, we want to use PAP instead
FF 03 C0 21 01 02 00 09 03 05 CO 23 80 2A CA

(5) ISP agrees and reply with a new REQ, this time requesting PAP
FF 03 C021 010300080304 CO023F674

(6) HC-9 ACK PAP
FF 03 CO 21 02 03 00 08 03 04 CO 23 F6 74

(7) HCO08 wants to negotiate the character map to escape
FF 03 C0 21 01 04 00 OA 02 06 FF FF FF FF E4 06

(8) ISP agrees on escape all control characters
FF 03 C0 21 02 04 00 OA 02 06 FF FF FF FF BO 8E

AN2120

Figure 19. LCP Negotiations with an ISP

After ISP agrees to use PAP during the LCP negotiation phase, the
M68HCO08 must send the user ID and password to log into the ISP
network. This process is illustrated in Figure 20.

(9) HCO08 sends PAP Packet to login ISP network
FF 03 C0 23 01 05 00 OA 00 04 72 65 6E 65 D9 FA

(10) ISP Acknowledge User ID and Password
FF 03 C0 23 02 05 00 05 00 67 49

Figure 20. PAP Sequence

25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Now that the M6BHCO08 has been authenticated, the next step is to
configure the network protocols to be used inside the ISP network. Since
we are negotiating with an Internet service provider, IPCP will be used
for sure to negotiate IP. IPCP negotiations follow PAP authentication as
illustrated in Figure 21.

(11) ISP send REQ for IPCP negotiations
FF 03 8021010100 10 02 06 00 2D OF 01 03 06 CO A8 37 01 C2 81

(12) HCO8 reply with a NAK for all options but option 3 - IP address
FF 03 80 21 04 01 00 OA 02 06 00 2D OF 01 6C 65

(13) ISP sends a reply because of the previous NAK sent, this time
with IP address only
FF 03 80 21 01 02 00 OA 03 06 C8 26 16 02 A4 17

(14) HCO8 now as an IP address assigned by the ISP
FF 03 80 21 02 02 00 OA 03 06 C8 26 16 02 A4 17

(15) HCO08 REQ an IP address to complete three way hand shake
FF 03 80 21 01 03 00 OA 03 06 00 00 00 00 CD 63

(16) ISP reply with a NAK containing the pre-assigned IP address
FF 03 80 21 03 03 00 OA 03 06 C8 38 6F 42 41 F2

(17) HCO8 is now On-Line with IP Address: 200.56.111.66
FF 03 80 21 02 03 00 OA 03 06 C8 38 6F 42 66 DE

Figure 21. IPCP Negotiations between an ISP
and the MC68HC08GP32

Serial Line Internet Protocol (SLIP)

This application note also implements the serial line Internet protocol
(SLIP) to communicate directly with hosts acting as routers or gateways.
The SLIP specifies a way to encapsulate raw IP datagrams over a
regular serial communication line. It is a de facto standard not an Internet
standard. However, given its popularity, SLIP is described in RFC 1055.
Because of its simplicity, SLIP is very easy to implement in comparison
with other point-to-point protocols. However, since SLIP specifies only a
way to frame an IP packet, it is far less reliable than PPP since it does
not provide mechanisms for IP addressing or support for multiple
protocols running on top of it. Addressing is a big issue since both ends
of the point-to-point link need to know each other’s IP addresses for
routing purposes.

26

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Serial Line Internet Protocol (SLIP)

SLIP defines the following escape codes to signal frame boundaries:
END (hexadecimal 0xC0) and ESC (hexadecimal 0xDB).

To send an IP datagram packet, the SLIP host commonly sends an END
character, signaling the start of a frame. If any instance of the END code
exists within the IP datagram, a 2-byte sequence of ESC and 0xDC are
sent instead. After the last byte of the datagram has been sent, an END
character is then transmitted as shown in Figure 22.

Since the ESC code is also a special character, a SLIP implementation
should escape this code as well but with this 2-byte sequence: ESC and

O0xDD.
0xDB > 0xDB, 0xDD 0xCO
I N
1BYTE N 1BYTE
0xC0 IP HEADER IP PAYLOAD 0xDB, 0xDC 0xC0
VARIABLE LENGTH \
ESCAPED 0XC0 CODE

Figure 22. SLIP Frame Layout

One major disadvantage of SLIP is that it requires a dial-up script to
negotiate the user ID and authentication with an Internet service
provider. Different ISPs would require different scripts, and any changes
on the script in the ISP side would require appropriate changes on the
client side, thus making it more difficult to implement in a small MCU.
Because of the limitations and lack of features, the SLIP protocol is
expected to be replaced by the point-to-point protocol (PPP).

AN2120

27

For More Information On This Product,
Go to: www.freescale.com

} { Freescale Semiconductor, Inc.

Application Note

UDPI/IP Application

This application note shows how a small and inexpensive
microcontroller such as the MC68HC908GP32 can be connected to the
Internet and still save resources on chip to perform basic operations like
remote monitoring and/or control.

The application is very simple: a small system based on the
MC68HC908GP32 that monitors an external variable by using the 8-bit
analog-to-digital (A/D) builds on chip via a module channel.

In case the A/D reading or some other event is triggered (a pre-fixed A/D
threshold has been reached for example), the MC68HC908GP32-based
system will send a UDP/IP asynchronous notification to a pre-compiled
IP address. This destination IP could be a proxy gateway on the Web, or
a custom UDP/IP terminal working as a standalone application, or in the
form of a Java applet, or an ActiveX control embedded in a Web page.

Application Framework Block Diagram

The application framework is shown in Figure 23. The
MC68HCO08GP32 acts as a message initiator. It waits until program-
defined conditions are meet. A predefine condition could be a security
system signaling that it has been triggered, air conditioner has reached
a pre-defined threshold, door bell, etc. The system will first dial an ISP
to establish a PPP link (1). The ISP will authenticate the system and will
assign a unique IP address. After that, the MC68HC908GP32 will now
be ready to send a natification to the Internet via PPP/UDP/IP (2).

PPP o
LINK - emmmm)
- = B

> DESTINATION

= HOST
UDP/IP ASYNCHRONOUS MESSAGE

Figure 23. Application Framework

28

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Software Operation

Once on the Internet, a message could travel to virtually everywhere in
the planet. With little effort, the UDP datagram could be publicized by a
program running at the destination host.

Software Operation

AN2120

The software implementation has been divided in a series of C modules.
Code reuse/borrowing and expandability are the main intention for such
modularity, so M68HCO08 programmers can borrow and/or modify the
source code to meet specific application needs for other members of the
M68HCO08 Family of MCUs. Or they can build a set of libraries and/or
features to be integrated in future applications in the form of object code
to be linked together during the development process.

These modules are defined by this application note:

* Main C modules
- Main.C
— CommDrv.C
— ModemDrv.C
- PPP.C
— SLIP.C
- IP.C
- UDP.C
- ICMP.C

* Miscellaneous C module
— Delay.C

The software consists of a main routine (the standard C main() function)
that is divided in two in-line portions of code. The first portion initializes
the communications port and all the other software modules of the
system. The second portion is an infinite loop which calls ModemEntry ()
and PPPEntry()functions. This is needed to perform modem handshake
and PPP negotiations, respectively. (SLIP could be used instead of PPP
by calling SLIPEntry() from the main loop.)

29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

NOTE:

The first module we need to inspect is the CommDrv.C. This module is
responsible for the appropriate operation of the serial communications
of the system. It implements a pseudo-standard method of accessing the
serial port hardware. To the application, the serial port can be seen as a
set of "API like" routines that perform straight and logical operations
(OpenComm(), CloseComm(), WriteComm() etc).

The intention of such implementation is to pursue a fixed level of
abstraction to the application code. Abstraction can bring us a lot of
benefits. For instance, code reuse and code maintainability are, among
others some of the strongest justifications of using it. When hardware
changes, the abstraction changes in one portion of the code; changes
are almost transparent to the application or portions of the source code.
For example, changing the baud rate of the serial port or more often
changing the address of the registers (and even the registers) in the
initialization sequence of the serial port would require a change in the
definitions in the header file of the module and/or the source code of the
OpenComm() routine. The benefit, if not obvious, will become evident
after linking. Different methods for abstracting hardware exists today, but
the implementation is well beyond the scope of this application note.

The MC68HC908GP32 defines the interrupt vector table in the upper
section of the FLASH ROM at address OxFFDC to OxFFFF as illustrated
in Table 4. In that space, we need to store each of the FLASH ROM
locations of every interrupt service routines (ISRs) used by the
microcontroller.

30

For More Information On This Product,
Go to: www.freescale.com

AN2120

Freescale Semiconductor, Inc.

Application Note
Software Operation

Table 4. MC68HC908GP32 Interrupt Vector Table

Vector Address Vector Description
17 OxFFDC Timebase module vector
16 OxFFDE Analog-to-digital conversion complete
15 OxFFEO Keyboard scan vector
14 OxFFEZ2 Serial communications transmit vector
13 OxFFE4 Serial communications receive vector
12 OxFFEG6 Serial communications error vector
11 OxFFES8 SPI transmit vector
10 OxFFEA SPI receive vector
9 OxFFEC Timer interface module 2 over o w vector

OxFFEE Timer interface module 2 channel 1 vector

OxFFFO Timer interface module 2 channel 0 vector

OxFFF2 Timer interface module 1 over o w vector

OxFFF4 Timer interface module 1 channel 1 vector

OxFFF6 Timer interface module 1 channel 0 vector
OxFFF8 PLL vector

OxFFFA IRQ vector

OxFFFC Software interrupt vector

OxFFFE Reset

=N W[l O N ©

The CommDrv.C module defines the ISR code for the interrupt
generated each time the SCI receives a byte character. However, this
ISR is compiled by the compiler to generate the object code that the
linker will realize and place it in FLASH ROM. That means that the
source code of the ISR is installed at link time (or design time, if you will)
not at run time. Since the serial port of the MCU in this specific
implementation will be shared between different modules to perform
different tasks at run time, a way must be found to share that ISR with
different modules. For instance, the MCU must dial to an ISP by using a
modem; after the ISP answers, SLIP scripts or PPP negotiations need
to be executed. Modem.C and PPP.C must rely on the CommDrv.C ISR.

One way to achieve the flexibility needed is to forward the ISR to a
location in RAM that points to the ultimate interrupt service handler: in
other words, a pointer to an ISR that turns out to be a pointer to a
function. By using this approach, the programmer has total control of the
incoming flow of characters through the serial port.

31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Listing 1

Actually, the body of the ISR of the CommDrv.C is simple and is shown
Figure 24.

static void CommDrvDefaultProc (register BYTE value) { (void) value; };
static void (* EvtProcedure) (register BYTE value) = CommbDrvDefaultProc;

T Interrupt Service Routine /T
void @interrupt UartRxISR (void) {
SCS1; /I Clear Interrupt flag
EvtProcedure (SCDR); /I Forward ISR to EventProc

}

Figure 24. Body of the SCI ISR

The M68HCO08 CPU has very powerful addressing modes in comparison
with other 8-bit MCUs’ architectures in the market. The ISR definition in
CommDrv uses a powerful indexed addressing mode provided by the
M68HCO08 CPU. The JSR instruction can jump to a subroutine pointed
to by the index register H:X, which allows the program counter to jump
to an effective address with 16-bit resolution.

But for every value-added feature, we must pay a price, and, in this case,
we lose valuable CPU bandwidth. The minimum assembly code needed
to represent the code in Listing 1 is represented in Figure 25.

PSH H

LDA SCS1 ;Read contents of SCS1 register

LDA SCDR ;Store Serial port character on Acc

LDHX 0x45 ;Load Effective 16-bit address of pseudo-ISR
JSR X ;Jump to Event Handler

PUL H

RTI ;Return from Interrupt

Figure 25. Minimum Assembly Code

If we can force the compiler to place * EvtProcedurdregister BYTE
value) pointer in the zero page section of RAM, we can get similar results
from a compiler, but this will depend mainly on the compiler itself and the
context of the development environment used at design time.

The *EvtProcedure pointer becomes initialized at design time by this
construct.

32

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Overview of the Modem Interface

static void (* EvtProcedure) (register BYTE value) = CommDrvDefaultProc;

CommbDrvDefaultProc(js a private function defined in CommDrv which
does nothing but initialize *EvtProcedurepointer and is defined as
follows.

static void CommbDrvDefaultProc (register BYTE value) { (void) value; };

By using the CommEventProc(@unction, an application can "mutate" the
behavior of the SCI ISR, as shown in this application note.

Overview of the Modem Interface

This application note was built around a “Hayes-compatible” external
modem. In the past, when a high-speed modem was considered to be a
9600-baud unit, a company called Hayes Microcomputer Products Inc.
made a modem that was widely accepted by microcomputer users. The
implementation features and the serial commands used by these
modems became a de facto standard in the industry. Given its popularity
and for compatibility reasons, nowadays most modems are “Hayes-
compatible.”

Operation of a Hayes-Compatible Model

AN2120

A Hayes modem is always in two states:
*+ Command mode

* On-line state

When in command mode, instructions can be given to it from the serial
port. For example, we can instruct the modem to dial a number or to
ignore incoming calls by means of simple commands. These commands
are diverted to the modem and are never transmitted.

33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

In the on-line state, once a connection has been established with a
modem of a remote system (for instance, an ISP), the local modem
enters the on-line state and no longer attempts to interpret the data
being sent to it. In other words, every data sent while on-line state is
transmitted to the remote modem regardless of its nature. If the remote
system hangs up or for any other reason the carrier signal is lost while
in on-line state, the modem will revert to local command mode.

When the modem receives a command (in command mode), it returns a
result code. This code can be in the form of either a text string or a
numeric code. A numeric code is more appropriate for embedded
systems, but if we want to control the modem by using a terminal and a
keyboard, a verbose mode or text messages are more preferable. We
can set the type of result code by using a command message.

Table 5 shows the result codes of a Hayes-compatible modem.

Table 5. Result Codes Summary

No. E\éigegliit Description
0 | OK Command executed
1 CONNECT Connection established
2 | RING Ring signal detected
3 | NO CARRIER Carrier signal lost or not detected
4 | ERROR Invalid command, checksum, error in command line,
or command line too long
5 | CONNECT 1200 | Connection established at 1200 bps
6 | NO DIALTONE No dial tone detected
7 | BUSY Busy signal detected
8 | NO ANSWER No response when dialing a system
9 | CONNECT 2400 | Connection established at 2400 bps

34

For More Information On This Product,

Go to: www.freescale.com

AN2120

Freescale Semiconductor, Inc.

Application Note
Operation of a Hayes-Compatible Model

All command messages start with AT, unless otherwise specified.
Several commands can be given in one command line. The Hayes
command set provides comprehensive messages to configure the
modem, dial phone numbers, and answer incoming calls. This
application note implements a way to initiate calls only, but making the
software answer incoming calls should not be that difficult if the
appropriate commands are listened to and issued to the modem.

Although the term “Hayes compatible” is often used in this document,
there is no absolute standard defined. Not all Hayes modems work the
same way. Always refer to the modem documentation provided by the
modem manufacturer.

The software in this application note assumes the configuration and
behavior from the modem listed in Table 6.

Table 6. Default Con guration of Modem
Used in This Application Note

Requirements Hayes Command Required
Character echo in command state disabled ATEO
Modem returns result codes ATQO
Display result codes in verbose form ATVA1
Long space disconnect disabled ATYO
Track the presence of data carrier AT&C1
Hang up and assume command state when an AT&D?
on-to-off transition of DTR occurs

As far as the M68HCO08-based system is concerned, the external Hayes-
compatible modem is just a serial device connected to the SCI. From a
software standpoint, the modem implementation runs on top of the serial
port driver; in other words, it relies on services provided by the CommDrv
module. The wire connections made from the modem to the M68HCO08
system include signal ground, transmitter, and receiver pins.

The modem provides several standard hardware signals for modem
handshaking. Only two have been hardwired to the system, carrier
detect (CD) and data terminal ready (DTR), making a total of five pins to
drive the modem as shown in Table 7.

35

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

Table 7. DB9 Connector Interface to the MC68HC908GP32

DB9 Pin No. Pin Name Description M68HCO08 Pin
1 CD Carrier detect PORTD 1
2 RxD Receiver data SCl receiver
3 TxD Transmitter data SCI transmitter
4 DTR Data terminal ready PORTD 0
5 GND Signal ground System ground

Notice that the SCI on chip drives the transmitter and receiver signals
"directly" from the modem (after an RS232 to CMOS converter) while
two extra GPIO (general-purpose input/output) pins provide the DTR
(data terminal ready) and CD (carrier detect) signals for modem
handshaking. DTR is required to hang up the phone while in on-line state
and return to command mode when an on-to-off transition occurs. A CD
signal can be pooled from the application to know if the modem is in
command mode (CD = 1) or in the on-line state (CD = 0).

The modem driver runs on top of the serial communications routines and
relies on them. Because of this, the modem implementation provides its
own service routine for incoming characters through the serial port, thus
avoiding problems while decoding modem response messages. Once
the modem goes on line, the modem service routine is removed from the
SCI ISR. This allows installation of the appropriate handler for the point-
to-point link (SLIP or PPP) at run time.

The modem service routine simply enqueues (puts into queue) incoming
characters from the serial port. By default the maximum number of
characters that can be stored in the modem queue is 32. This queue
performs as a FIFO (first in, first out) buffer and most of the modem
functions rely on it. A common FIFO like the one used in this application
note has two pointers; one is used to add data to the FIFO while the
other removes queue data. This operation is described in Figure 26.

36

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Operation of a Hayes-Compatible Model

emptySiot
¢ MODEM FIFO

FIFO INITIALIZED

!

dataSlot emptySlot

'

FIFOATRUN-TIME | A T E 0
T — —
RESPONSE FROM MODEM

dataSlot

Figure 26. Implementation of a FIFO for the Modem Interface

Figure 26 shows the two internal pointers that make up a FIFO. At
initialization time, both pointers are equal to zero, thus indicating that the
FIFO is empty. Once a character is received from the SCI, it is stored at
the location pointed to by emptySlot before it becomes incremented by
one. The figure also shows an ATEO reply from the modem stored in the
FIFO following the process just described. Notice how emptySlot now
points to the next free location of the FIFO. The dataS/ot pointer has a
similar behavior. To read a character from the FIFO, the application calls
the ModemGetch()function to retrieve the letter A pointed to by dataSlot,
then it is incremented by one. At this point, dataSlot now points to the
letter T. This process is repeated for every character added to the FIFO
by the modem input routine.

The code to enqueue character in the FIFO is simple and is illustrated in
the next piece of code in Figure 27.

#define MODEM_BUFFER_SIZE 32 // Default size of modem buffer

volatile BYTE mDataSlot = 0; // Points to the next available character
volatile BYTE mEmptySlot = O; /I Points to next available slot of the FIFO

static BYTE *ModemBuffer; /I Pointer to Modem buffer

void ProcModemReceive (BYTE c) {
ModemBuffer [nEmptySlot++] = c; I/l enqueue the character
if (MEmptySlot > MODEM_BUFFER_SIZE) { // Check for FIFO overflow
mEmptySlot = 0; Il the FIFO is circular

Figure 27. Code to Enqueue a Character in the Modem FIFO

AN2120

37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Listing 2

Listing 3

The listing shows the modem service routine that must be called from
the ISR of the SCI driver.

The method just described allows great flexibility while handling the
FIFO. For instance, to retrieve the number of characters stored in the
FIFO, the software only needs to subtract dataSlot from emptySiot.
Another example is the operation to flush the contents of the FIFO will
simply require the statement dataSlot = emptySlot.

The code to dequeue (pull out of queue) a character from the FIFO is
shown in Figure 28.

BYTE ModemGetch (void) {
BYTE c=0;
if (mDataSlot = mEmptySlot) {
¢ = ModemBuffer [mDataSlot];
mDataSlot++;
if (mDataSlot > MODEM_BUFFER_SIZE) mDataSlot = 0;
return(c);
}
else {
return (BYTE)OxO0;
}
}

Figure 28. Code to Dequeue a Character from the Modem FIFO

Two important functions are also defined inside the modem module: the
Transmit() and Waitfor() functions. The first transmits data to the modem
while the second waits for any particular character or a string of
characters before it times out. When used together, both functions
provide support for complex scripts required for SLIP sessions.
Obviously, those scripts will be built in the ROM code, making it difficult
to maintain in some applications.

38

For More Information On This Product,
Go to: www.freescale.com

PPP Module

Freescale Semiconductor, Inc.

Application Note
PPP Module

The PPP implementation runs on top of the hardware interface software.
It provides the appropriate mechanism required for LCP, PAP, and IPCP
negotiations. These negotiations are performed in a fixed state machine
called by the PPPEntry() function. This machine is responsive; it builds
response packets based on the contents of the received ones. This
helps the user to force negotiations to go the desired way.

The PPP module defines two buffers in RAM: the InBuffer[] and
OutBuffer[]. By default, each buffer is 88 bytes long. The InBuffer stores
all incoming packets either from the PPP or SLIP while the OutBuffer
stores the packets for output.

These buffers are defined inside the PPP module because of the
exhaustive use they are exposed to at the PPP level. The buffers are
global since they are used by all the other modules of the stack. Each
module must define a structure describing the data arrangement they
expect. Consider the situation in Figure 29.

Y

Y

0x03, 0x00, 0x21, 0x45 | 0x00, 0x00, 0x1C, 0x54, 0x01, 0x00, 0x00, 0x80, 0x01, OxF7, 0x8B,

/ OXFF

InBuffer [0]
InBuffer [16]

*|p_In->Payload [0]
| *lcmp_header->Type

'

\

0xC0

0xA8, 0x37, 0x01, 0xCO, 0xA8, 0x37, 0x02,) 0x00 0x00, OxFE, 0x51, 0x01, 0x00,0x00, OXAE

Figure 29. How InBuffer is Shared Between Different Protocol Modules

AN2120

— A Ping Response Using PPP, IP, and ICMP

39

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Figure 29 shows an ECHO reply message type as received by the
PPPEntry()function. This function then executes the IP handler which in
turn passes the ip_in pointer to the ICMP handler. Inside this handler the
ICMP data can be accessed using the Payload field by casting a
ICMPDatagram struct defined in Icmp.h.

To fill the InBuffer, each time a character arrives through the serial port,
the SCI ISR should pass the character to the ProcPPPReceive () in the
case of PPP or ProcSLIPReceive() for SLIP. Both functions decode an
entire frame once completed and validated.

The diagram in Figure 30 illustrates this procedure.

CommDrv.C PPP.C
EventPtr » ProcPPPReceive
Interrupt ISR { BYTE InBuffer []
EventPtr(SCDR);
) =
A
SERIAL PORT
> SERVICE ROUTINE SETS PACKET
READY FLAG
e

Figure 30. PPP Module Frames Incoming Packet
and Stores It in InBuffer

ProcPPPReceive() acts as the ISR for each incoming character. Since
the only way for an ISR to communicate with the main thread of
execution is by means of a global variable, the PPP module defines a
global status byte called PPPStatus. When a complete PPP frame is
ready for processing, ProcPPPReceive sets the IsFrame flag. This flag
is pooled by PPPEntry() in the application main loop.

Listing 4. Body of PPPEntry Function shows the body of the
PPPEntry function. Note that this also applies to the SLIP interface
module.

40

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Application Note

PPP Module
void PPPEntry (void) {
if (PPPStatus & IsFrame) { /* Is a PPP packet available for processing? */
witch (*(WORD *)(&InBuffer [2])) { /* Process specific protocol */
case 0xC021:/* LCP Handler */
HandleLCPOptions ();
break;
case 0xC023:/* PAP Handler */
HanldePAPPackets ();
break;
case 0x8021: /* IPCP Handler */
HandlelPCPOptions ();
break;
case 0x0021:/* IP Data Handler */
IPHandler ((IPDatagram *)&InBuffer [4]);
break;
default:
break;
2
PPPStatus &= ~IsFrame;/* Reset IsFrame Flag */
PPPStatus |= ReSync;/* Resynchronize PPP framer */
}
}
Figure 31. Body of PPPEntry Function
Listing 4. Body After a PPP packet is detected, PPPENntry() retrieves the protocol field
of PPPEntry from the packet and then calls the appropriate handler. If new protocols
Function are to be implemented, handlers should be placed inside the switch

AN2120

statement.

Notice how the IsFrame flag is cleared at the end of the packet
processing. This is needed to avoid frame overlapping (when a new
frame is being received before the processing of the previous one
occurs). Clearing the IsFrameflag tells the ProcPPPReceive routine that
it can wait for another PPP packet. To do so, it must check the first
occurrence of a 0x7F character (the start of a PPP packet). That is why
the ReSync flag must be set to True. The ReSync flag commands the
PPP framer to wait for the start of the next incoming packet.

41

For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

Application Note

Internet Protocol Implementation

IP datagrams are handled by a switch statement inside the interface
entry function PPPEntry() or SLIPEntry(). Not much happens at the IP
level: Only the destination IP address is checked to see if the datagram
has been intended to the M68HCO08 IP address.

void IPHandler (IPDatagram *ip) {

/* Compare IP address with datagram received */
if (IPCompare ((BYTE *)&ip->SourceAddress[0]) {
[* Misrouted datagram or broadcast message received */

}

else
switch (ip->Protocol) {

case UDP: /* Call UDP Handler */
UDP_Handler ((UDPDatagram *)&ip->SourceAddress [0]);
break;

case TCP: /*Handle TCP segment */
break;

case ICMP: /* Handle ICMP commands */
IcmpHandler ((IPDatagram *)ip);
break;

default: /* Transport protocol unsupported */
break;

Figure 32. Handler of IP Packets

At reset the IPInit () function must be called to initialize the IP datagram
pointers to the input and output buffers, respectively. The ip_in and
ip_out pointers are global, so other modules can rely on them to build
and send datagrams from scratch. For instance, some ICMP messages
would require access to the TTL field in an IP datagram or, in the case
of UDP and TCP, calculating the pseudo-header involves the source and
destination addresses from the IP header. This is why the UDP
implementation defines a UDPDatagram structure containing the source
and destination IP addresses from the IP header.

42

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Internet Protocol Implementation

The IP implementation checks the protocol field located in the IP header
to call the appropriate protocol handler. Since this application note
describes UDP and some ICMP functionality, only those protocols are
presented with a handler.

In case an ICMP message is received, this code is executed.

switch (ip->Payload [0]) {

case ECHO:
Move ((BYTE *)ip, (BYTE *)ip_out, ip->Length); /* Move ping datagram
to output buffer */

/* Swap source and destination IP addresses on Output Buffer */
ip_out->DestAddress [0] = ip->SourceAddress [0];
ip_out->DestAddress [1] = ip->SourceAddress [1];
ip_out->DestAddress [2] = ip->SourceAddress [2];
ip_out->DestAddress [3] = ip->SourceAddress [3];

ip_out->SourceAddress [0] = ip->DestAddress [0];
ip_out->SourceAddress [1] = ip->DestAddress [1];
ip_out->SourceAddress [2] = ip->DestAddress [2];
ip_out->SourceAddress [3] = ip->DestAddress [3];

ip_out->Payload [0] = ECHO_REPLY; /* This will be the echo reply */

ip_out->Payload [1] = 0; /* Set ICMP Code to 0 */
ip_out->Payload [2] = O; /* Set ICMP checksum field to 0 */
ip_out->Payload [3] = 0; /* during checksum generation */

/* Calculate ICMP checksum */
Value = IPCheckSum ((BYTE *)&ip_out->Payload[0], (ip->Length - 20) >> 1);

ip_out->Payload [2] = (Value >> 8); /* Set ICMP checksum */

ip_out->Payload [3] = (Value & OxFF);

IPNetSend (ip_out); /* Send ICMP packet over IP */
break;

case ECHO_REPLY:
/I Code to handle ping responses
/I goes here

break;

case TRACEROUTE:
break;

default:
break;

Figure 33. Handler of ICMP Packets

AN2120

For More Information On This Product,
Go to: www.freescale.com

43

Freescale Semiconductor, Inc.

Application Note

Summary

An ECHO type message is commonly referred to as a ping request from
a remote host. The handler simply swaps the source and destination IP
addresses and changes the message type to ECHO_REPLY. Before the
packet is sent back through the IP interface (using the IPNetSend

function), a new checksum for the ICMP message must be recalculated.

The UDP implementation is not that different from the ICMP. However,
since almost all UDP processing is done at the application level, the
UDP module supports the use of a CALLBACK for processing incoming
UDP data.

Each time an incoming IP packet containing UDP data is received by the
PPP or SLIP interface, the CALLBACK function specified by
UDPSetCallbackProc () is called from within the UDP handler. The UDP
implementation specifies a default callback procedure in case it is not
specified outside this module. The callback function has this format.

void UDPReceive (BYTE *udp_data, BYTE size_of _data, WORD udp_port) {
/I Do something
}

Because no buffered mechanism is used in the software, the data
pointer passed to the callback function points to the UDP data physically
located inside the section of RAM allocated for InBuffer{]. For this
reason, this data must be processed on the fly. Also there is no risk of
recursivity while executing the callback function because the InBuffer
and the PPP framer have been blocked by the PPPEntry() function.

The M68HCO08 has a powerful instruction set and addressing modes.
With some effort, the source code presented in this application note can
be highly optimized in both speed and size using the M68HC08 CPU
features for the C language (not to mention the optimizations that can be
achieved using assembly language).

Imagine the possibilities, and keep in mind that the MC68HC9O08GP32
has plenty of hardware resources to use in an Internet-enabled
application: an SPI, two 2-channel timers, A/D channels, a timebase
module, a keyboard interface module, and more than half the RAM and
FLASH ROM of the total available.

44

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Summary

Internet programming can be difficult sometimes, especially when the
programmer has little or no experience with the inner aspects of the
TCP/IP protocol suite. This document serves as a good introduction to
such exciting technology. Remember that when the appropriate tools
and utilities are in place, getting the knowledge to create Internet
applications can be achieved easily through experimentation.

The software presented in this document can be used as a reference for
more professional and serious applications. Improving the software
should be easy. Here is a hint: Because buffering is used, adding more
hardware interfaces should be easy. Just code the appropriate framer
for input and output, define a global flag to signal events to the
application main loop, share the InBuffer with the ip_in pointer, and you
are finished.

Perhaps the reader can argue that the buffer approach is slow and
inappropriate for a small MCU, but it has been proven that the M68HCO08
supports it easily. Besides, there is no reason to avoid a byte-by-byte
processing technique. The CPU can process and validate incoming
packets on the fly without storing headers or trailers reducing the amount
of RAM required to store a packet.

The same applies to outgoing packets when there is enough information
on memory to reproduce them. Perhaps this would be the job of a
SOCKET structure running on top of the PPP implementation. It is just a
matter of sitting down, coding, and experimenting with the M68HCO08. A
creative programmer with an Internet-ready M68HCO08 can be a powerful
combination.

AN2120

45

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

U1 u3
Voo MC68HC908GP32 J1 LM78L05

ol — POWER JACK SYSTEM Vg
PAO/KBDO Vin Vout
PA1/KBD1 22 GND
41 Vesa PA2IKBD2 2‘5‘
PA3KBD3
el PA4KBD4 |3

2 D2
PASIKBDS | POWERLED
c10 42| comxFe PAGIKBDS |22

0033pF gy 39 = GND

j‘% AAA PA7/KBD7

all 10kQ
= GND PBO/ADO
16
Vss PBI1/AD1 ;31
31 PB2/AD2
VesaoV
SSAD/ Vrefl PB3/AD3 25

PB4/AD4

v,

0 oo PB5/ADS g
VooaoVee PBOIADG o

PB7/AD7
R5 m
10kQ 0sC1 8-PIN HEADER

[
(&)

=

C4——0.1pF

R4
200

22

= GND

_T_CH _T_C12 J_C13
T0A1 1l

FOTOTWF TOTWF

+

GND

® NG hA WN

00000000

U2
MAX220

C1+ Vi
Lcs o Lo
01pF 3 R 0.1 F

RI
—— W) PCO

10 MQ PC1
X1 PC2
_”] —e PC3
PC4
C1 L i_C2
t5pFs 32768KHz PC5

T 150F co+ 6
i—l PC6 Lo V- c8
T O0ApF 5 15 T O1HF 51

= GND] — C2- GND
RQ

~
@]
=
o
|
~

o

PDO/SS T, Tou 4
PTEOTAD PDIMISO 12 12 R R2, |8 3
104 pTEY/RD ngggﬂsﬁ 15 HRogy Tou L 2
ReseT L 4] PDATICHO (2 10] 1. R1, 13]
RESET PD5IT1CH1 -
c3 PDBIT2CHO g? CoMECTOR
PDIT2CH!

FIEEF

Figure 34. MC68HC908GP32 UDP/IP Implementation

46

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Code Implementation

Application Note
Code Implementation

The source code of this application note is described in Table 8.

Table 8. Code Statistics

Segment Location Org Location End Size in Bytes
Non-initialized data 0x0040 0x0044 4
in zero page RAM
Non-initialized data in 0x0067 0x0128 193
RAM
Program code 0xB000 0xC513 5395
Program initialized 0x0045 0x0066 33
RAM
Text string and 0xC53E 0xC7C8 650
constants
Vector table OxFFDC OxFFFF 35
Total RAM 230
Total ROM 6080
AN2120
47

For More Information On This Product,

Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Application Note
Main.C

Application Main Function

#include <iogp20.h>
#include "CommbDrv.h"
#include "ModemDrv.h"
#include "ppp.h"
#include "UDP.h"
#include "IP.h"
#include "SLIP.h"

/l#define USE_SLIP /I Uncomment this line if SLIP is to be used
BYTE RemoteServer [4] = {200, 168, 3, 11}; /I Remote Server to send notifications
const char * ModemCommand [] = { /I Array of modem initialization commands
"ATZ\r", /I Reset Command
"ATEO\r", // Disable Echo
"AT&C1\r", I/l Track presence of data carrier
"AT&D3\r" /I Reset modem when an on-to-off transition
of DTR ocurres
3
I‘ * *
Function : ModemHandler
Parameters : Code - Numeric response code from a Modem dial command
Date : January 2001
Desc : This function handles the numeric responses from a dial command

issued to the modem

* *kkkkkkkk * * * * *kkkkkkkk * * * 7(/

void ModemHandler (BYTE Code) {

switch (Code) {

case '0" /I OK
break;
case '1" /l CONNECT

#ifdef USE_SLIP
CommEventProc (ProcSLIPReceive);// Install SLIP Serive

[Iroutine
#else
ModemBuffFlush (); [/ Flush contents of Modem Buffer
if (ModemGetch () '= 0x7F) { /] Test for PPP packets
Waitfor (":", 100); /l Wait for "Username:" of ISP script
PPPSendVoidLCP (); /I ForcePPPtransactionsinsteadof
/I scripts
}
48

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

CommEventProc (ProcPPPReceive); I Install PPP service routine
#endif
break;
case 2" /I RING
break;
case '3" /I NO CARRIER
break;
case '4": /l ERROR
break;
case '6" /I NO DIAL TONE
break;
case '7" /I BUSY
break;
case '8" /I NO ANSWER
break;
case '9" /I CONNECT 2400
break;
default: /I TIME OUT, NO RESPONSE FROM MODEM RECEIVED!
break;
}
}
Function : UDPReceive
Parameters : Data of UDP packet,

size - size of data in bytes
RemotelP - sender IP address
port - UDP port number

Date : January 2001

Desc : This function is executed each time a UDP packet is received
and validated.

Kkkkkk Kkkkkk x/

void UDPReceive (BYTE *data, BYTE size, DWORD RemotelP, WORD port) {

switch (port) { /I Select the port number of the UDP packet
case 1080: /' If port number equals 1080 then reply
/I with ADC channel 0
ADSCR &= 0x00; /I Get an A/D lecture
while (1(0x80 & ADSCR));
udp_out->Payload [0] = ADR,; /l Format UDP payload

UDPSendData ((BYTE *)&RemotelP, 11222, 0, 1);// Send UDP reply
break;

AN2120

49

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

case 1081: // Port = 1081, reply with ADC chl
ADSCR &= 0x01;
while (1(0x80 & ADSCR));
udp_out->Payload [0] = ADR,;
UDPSendData ((BYTE *)&RemotelP, 11222, 0, 1);

break;
case 1082: /I Data through UDP port 1082
/l Do something here
break;
case 1083: // Data through UDP port 1083
break;
}

}

/

Function : LinkTask

Parameters : None

Date : January 2001

Desc : This function synchronize the phone line with the PPP
link.

Fekkkk Fekkkk /
void LinkTask (void) {
if (PPPStatus & LinkOn) && (IModemOnLine())) {// PPP Link ON while Phone is

// on-hook!
PPPStatus &= ~LinkOn; I/l Clear PPP link flag
PORTC = 0x00;
CommEventProc (ProcModemReceive); /I Install Modem handler
}

}

I‘ * *

Function : ApplicationTask

Parameters : None

Date : January 2001

Desc : This function checks channel 2 of the A/D and sends a warning

message to a remote server using UDP if a conversion is higher than
hexadecimal 0x35.

* *kkkkkkkk * * * * *kkkkkkkk * * * 7(/

void ApplicationTask (void) {

ADSCR &= 0x02; /I Test A/ID channel 2
while (1(0x80 & ADSCRY)); /I Wait for A/D conversion
if (ADR > 0x35) { /I If sample is above 0x35

/I Send a potification

50

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

if {ModemOnLine ()) {

NoOperation;

}

Application Note

Code Implementation

/I Test if Modem on-line

// Modem Not on-line,
/I we can re-dial here

UDPSendData ((BYTE *)&RemoteServer, 8010, "Warning from HCO08!" , 18);

M T]

IIMAIN

T T
void main(void) {

InitPLL ();

CONFIG1 = (BYTE)Ox0B;

CONFIG2 = (BYTE)0x03;

PORTC =0;
DDRC = OxFF;

IPInit ();

#ifdef USE_SLIP

#else

#endif

AN2120

SLIPInit ();
IPBindAdapter (SLIP);

PPPInit ();
IPBindAdapter (PPP);

UDPSetCALLBACK (UDPReceive);

Modemlnit ();
ModemBindBuff (PPPGetinputBuffer());
CommEventProc (ProcModemReceive);

OpenComm (BAUDS_2400,
ENABLE_RX |
ENABLE_TX |
ENABLE_RX_EVENTS);

{

BYTE Res = 0;

BYTE index;

for (index = 0; index <= 3; index++) {

/l Set PortC to O
/I Set PortC direction to output

/' Init PLL to 4.9152MHz

/I LVI operates in 5-V mode,
/I STOP instruction enabled
/I COP Module Dissabled

/I Initialize IP

I/ Initialize SLIP implementation
/I Send IP packets using SLIP format

/Il Initialize PPP interface

/I Send IP packets using PPP format

/I Set Callback for incoming UDP data

/I Modem Init

/I Set Modem Buffer for command reception

Il re-direct incoming SCI characters to the
/I modem interface
// Open the serial port
// Enable SCI Rx and Tx modules

/I Enable Rx IRQs
/I Create some stack variables
I/l Create two temp vars in the stack

[/l Loop through Modem initiazation

/I commands

transmit (ModemCommand [index]); // Transmit modem command

Res = Waitfor ("OK", 30);

if (Res) {

/I Wait for OK

/I Invalid response received

/I Do something here

/I Oscillator enabled to operate during stop mode
/I Use internal data bus clock as source for the SCI

For More Information On This Product,
Go to: www.freescale.com

51

4\ Freescale Semiconductor, Inc.
Application Note
ModemReset (); /l Reset modem
index = 0; // Loop again
}

}
Res = ModemDial ("6842626"); // Dial ISP
ModemHandler (Res); // Handle Modem response
}
Enablelnterrupts;
for (;;) { /I Application Loop

#ifdef USE_SLIP
SLIPEnNtry(); /I Poll SLIP packets

#else

LinkTask (); /I Synchronize PPP link with Modem

PPPENtry (); I/ Poll for PPP packets

#endif

ApplicationTask (); // Call application
}
}
CommDrv.C

Serial Communications Interface Driver

/ * *kk * * * *

File Name : CommDrv.c

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : July 2000

Current Revision : 0.0

Notes : This file contains the code to drive the serial port

#include "CommbDrv.h"

static void CommDrvDefaultProc (register BYTE value);
static void (* EvtProcedure) (register BYTE value) = CommDrvDefaultProc;

/ * * *

Function : CommbDrvDefaultProc
Parameters :

Date : July 2000

Desc :

52

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

static void CommDrvDefaultProc (BYTE value) {

(void)value;
}
/
Function : UseDefaultCommProc
Parameters :
Date : July 2000
Desc :

* * *

void UseDefaultCommProc (void) {
Disablelnterrupts;

EvtProcedure = CommDrvDefaultProc;

Enablelnterrupts;

}

/

Function : OpenComm
Parameters :

Date : July 2000
Desc :

* * *

ik /

void OpenComm (register BYTE BaudRate, register CommOptions Options) {

SCBR = BaudRate;
SCC1 = 0x40;
SCC2 = Options;

}

/I Set the baud rate
// Enable baud rate generator //

[** * R T *

Function : CloseComm
Parameters :
Date : July 2000

Desc :

*kkdkk * *kkdkk

void CloseComm (void) {

}

AN2120

i)

Application Note
Code Implementation

For More Information On This Product,

Go to: www.freescale.com

53

Freescale Semiconductor, Inc.

Application Note

[** * *kkkkkkkhkkkkk *% * * *kkkkkkkk * *%

Function : AssignCommEventProc
Parameters :

Date : July 2000

Desc :

*

* * *

void CommEventProc (EventProc Proc) {
Disablelnterrupts;
EvtProcedure = Proc;
Enablelnterrupts;

/I Disable Interrupts
I Install service handler
/I Enable interrupts

}

Function : WriteComm
Parameters :

Date : July 2000
Desc :

void WriteComm (BYTE c) {

/l Write char to SCI data register
/I Wait until character gets transmited

SCDR =c¢;

while (I(SCS1 & 0x80));

}

Function : ReadComm
Parameters :

Date : July 2000
Desc :

BYTE ReadComm (void) {
while (I(SCS1 & 0x20));
return SCDR;

}

/ * * *

Function : WriteCommStr

54

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

Parameters :
Date : July 2000

Desc :

* *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkkkk *% *% * 7(/

void WriteCommStr (char* string) {
while (*string) {
SCDR = *string++;
while (/(SCS1 & 0x80));

}

}

Function : CommRx

Parameters :

Date : July 2000

Desc :

void @interrupt UartRxISR (void) {
SCS1; /I acknowledge this IRQ
EvtProcedure (SCDRY); /I Fordward the character to a service routine

}

SLIP.C

Serial Line Internet Protocol Implementation Module

U T]

File Name : SLIP.C

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : September 2000

Current Revision : 0.0

Notes : This file contains the code for the SLIP module
e

AN2120

55

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

#include "CommdRV.h"
#include "slip.h"
#include "IP.h"
#include "lcmp.h"
#include "udp.h"

static BYTE

BYTE

SLIP module */
static volatile BYTE
management */

*SLIP_Packet;
SLIPStatus = 0;

FrameSize = 0;

I‘ * * *

Function : ProcSLIPReceive

Parameters : A Byte character to stream in a SLIP Packet
Date : August 2000

Desc :

Application Note

/l'local pointer to the SLIP buffer */

/I status and control byte of the

/I provides internal control for SLIP buffer

This function process a BYTE following SLIP popular

specification. The Async event on input driver should

call this function (usually the COMM ISR).
/

void ProcSLIPReceive (BYTE c) {

if (SLIPStatus & IsFrame) return;

if (SLIPStatus & ReSync) {// Ignore incoming data until a start of

/I packet is found
if (c 1= 0xCO0) {
return;

}
SLIPStatus &= ~ReSync;

FrameSize = 0;

}

if (SLIPStatus & ISESC) {
switch (c) {
case ESC_END:

/I Clear the synchronization flag to stream
/I incoming packet in SLIP buffer
// FrameSize records size of incoming
/I packets

/I 1s the byte received a control char?
/1 if so decode it

/I Store Special char on Input Buffer

SLIP_Packet [FrameSize++] = SLIP_END;

break;

case ESC_ESC:

/I Store Special char on Input Buffer

SLIP_Packet [FrameSize++] = SLIP_ESC,;

break;

default:
break;

/I SLIP Protocol violation

56

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

SLIPStatus &= ~ISESC; Il Clear the special control character flag
}
else {
switch (c) {
case SLIP_ESC: I/ Special ESC Character received
SLIPStatus |= ISESC;
break;
case SLIP_END: /I Special END Character received
if (FrameSize > 0) { /I Avoid zero length packets
SLIP_Packet [FrameSize] = 0;// Append a NULL character
SLIPStatus |= IsFrame; /I Signal Frame availability
/I Extra control processing can be done here
[* ... */
}
break;
default: /I Data of Packet received
SLIP_Packet [FrameSize++] = c;// Store Byte
/I Avoid & discard large SLIP packets
if (FrameSize > (SLIP_MAX_SIZE)) {
FrameSize = 0;
/I Resynchronize SLIP packet reception
SLIPStatus |= ReSync;
}
break;
}
}
}
/ SRRk S
Function : SLIPInit
Parameters : None
Date : September 2000
Desc : Initialize the SLIP Module
void SLIPInit (void) {
SLIPStatus |= ReSync;
SLIP_Packet = (BYTE *)ip_in;
}
/ . .
Function : ProcSLIPSend
Parameters : Buffer: a pointer to a buffer containing the IP packet to send
len: the size of the SLIP packet
Date : September 2000
AN2120

57

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
Application Note
Desc : Sends a BYTE array of len length following the popular SLIP format

* kol wxxf
void ProcSLIPSend (BYTE *ptr, BYTE len) {

WriteComm (SLIP_END); /I Write start of SLIP frame
while (len--) { /I Send all buffer in SLIP format
switch (*ptr) { /I check to see if is a special character
case SLIP_END:
WriteComm (SLIP_ESC); Il escape special character

WriteComm (ESC_END);
break;

case SLIP_ESC:
WriteComm (SLIP_ESC); /I escape special character
WriteComm (ESC_ESC);

break;
default:
WriteComm (*ptr); /I send raw character
}
ptr++; /I continue with next character send
}
WriteComm (SLIP_END); // Write END of SLIP frame
}
/ P P
Function : SLIPEntry
Parameters : None
Date : August 2000
Desc : SLIP Module Entry, Applications should call SLIPEntry
frequently in the main loop or in portions of the app
code.

x * /
void SLIPEntry (void) {
if (SLIPStatus & IsFrame) {
if (IPCompare (&ip_in->DestAddress[0])) {

/* Misrouted datagram or broadcast message received */
/* Do extra processing here */

}
else {
switch (ip_in->Protocol) { [* Select protocol handler */
case UDP:
UDP_Handler ((UDPDatagram *)&ip_in->SourceAddress[0]);
break;
case TCP:
break;

58

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

case ICMP:
IcmpHandler ((IPDatagram *)ip_in);
break;
default:
break;
}
}
SLIPStatus &= ~IsFrame; /* Acknowledge datagram processing */
SLIPStatus |= ReSync; [* Synchronize packet reception */
}
}
PPP.C

Point-to-Point Protocol Implementation

o
File Name : PPP.C

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : September 2000

Current Revision : 0.0

Notes : This file contains the code for the PPP module
i
#include <iogp20.h>

#include <string.h>

#include "CommbDrv.h"

#include "ppp.h"

#include "IP.h"

#include "Udp.h"

#include "ICMP.h"

const char * User = "MyName"; /I Username of ISP account
const char * Password = "MyPassword"; /l Password of username
[** ** Private Functions *** Rk |

static void HandleLCPOptions (void);

static void HandleIPCPOptions (void);

static WORD PPPfcs16 (WORD fcs, BYTE *cp, int len);
static void RejectProtocol (BYTE *InBuffer);

AN2120

59

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

NI Protected ROM Data /I
static const BYTE PPPData [] = {
0xff,0x03,0xc0,0x21,0x02,0x01,0x00,0x04,0x00,0x00

h

static const BYTE LCPTerminate[] = {
0xff,0x03,0xc0,0x21,0x05,0x04,0x00,0x04,0x80,0xfe

h

static const unsigned short fcstab[256] = {

0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1l, Oxaf5a, Oxbed3, Oxca6ce, Oxdbeb, Oxe97e, Oxf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, Oxbfdb, Oxae52, Oxdaed, 0xcb64, Oxfoff, Oxe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
Oxad4a, Oxbcc3, 0x8e58, 0x9fd1, Oxeb6e, Oxfae7, Oxc87c, O0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
Oxbdcb, Oxac42, 0x9ed9, 0x8f50, Oxfbef, Oxea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
Oxcedc, Oxdfc5, Oxed5e, Oxfcd7, 0x8868, 0x99e1, Oxab7a, Oxbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14al, 0x0528, 0x37b3, 0x263a,
Oxdecd, 0xcf44, Oxfddf, Oxec56, 0x98e9, 0x8960, Oxbbfb, Oxaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
Oxefde, Oxfec7, Oxcchc, 0xddd5, Oxa96a, Oxb8e3, 0x8a78, 0x9bfl,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0Oxffcf, Oxee46, Oxdcdd, Oxcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, Oxa7l1a, 0xb693, 0xc22¢c, Oxd3a5, Oxel3e, 0xfOb7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, Ox7cff,
0x9489, 0x8500, 0xb79b, 0xa612, Oxd2ad, 0xc324, Oxflbf, Oxe036,
0x18c1, 0x0948, 0x3bd3, 0x2ab5a, 0x5ee5, 0x4féc, O0x7df7, Ox6¢7e,
0xab0a, 0xb483, 0x8618, 0x9791, Oxe32e, Oxf2a7, Oxc03c, Oxd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, Ox7eef, 0x4c74, Ox5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xdObd, 0xc134,
0x39c3, 0x284a, 0xladl, 0x0b58, 0x7fe7, Ox6e6e, 0x5¢f5, Ox4d7c,
0xc60c, 0xd785, Oxe51e, 0xf497, 0x8028, 0x91al, 0xa33a, 0xb2b3,
Ox4a4d4, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, Oxf59f, Oxe416, 0x90a9, 0x8120, O0xb3bb, 0xa232,
0x5ac5h, 0x4b4c, 0x79d7, 0x685e, Ox1lcel, 0x0d68, 0x3ff3, Ox2e7a,
0xe70e, 0xf687, Oxc4lc, 0xd595, Oxal2a, Oxb0a3, 0x8238, 0x93b1,
0x6b46, Ox7acf, 0x4854, 0x59dd, 0x2d62, Ox3ceb, 0x0e70, 0x1ff9,
Oxf78f, Oxe606, 0xd49d, 0xc514, Oxblab, 0xa022, 0x92b9, 0x8330,
0x7bc7, Ox6ade, 0x58d5, 0x495c¢, 0x3de3, 0x2c6a, Oxlefl, Ox0f78

|3

M public R A M Data /T

volatile BYTE PPPStatus = 0;

BYTE InBuffer [PPP_BUFFER_SIZE + 1];/// Input Buffer for PPP data
BYTE OutBuffer[PPP_BUFFER_SIZE + 1];/// Output Buffer for PPP
data

NI Protected R A M Data /T
static BYTE *PPP_Packet = InBuffer;

static volatile BYTE FrameSize = 0;

static EventProc PPPEnNtryProc;

60

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

I‘ * *

Function :

Parameters :

Date :

Desc :

* * *kkkkk *

PPPInit
None
September 2000

Initialize the PPP Module

Fkkkkkkk

* *kkkkk r\/

void PPPInit (void) {
PPPStatus |= ReSync;

}

Function : PPPGetinputBuffer

Parameters : None

Date : September 2000

Desc : Returns a PPP Input Buffer pointer to caller

*kkkkk

Kkkkkkkkkkk x/

BYTE *PPPGetInputBuffer (void) {
return &InBuffer[0];

}

/ P— P——

Function : PPPGetOutputBuffer

Parameters : None

Date : September 2000

Desc : Returns a pointer to PPP Output Buffer to caller

/

BYTE *PPPGetOutputBuffer (void) {
return &OutBuffer[0];

}
I‘ *kkkkk *kkkkk
Function : PPPfcs16
Parameters : fes: current fcs

cp: pointer to PPP data
AN2120

Application Note
Code Implementation

For More Information On This Product,

Go to: www.freescale.com

61

4\ Freescale Semiconductor, Inc.

Application Note

len: size of PPP data
Date : September 2000

Desc : Calculate a new fcs given the current fcs and the new data.

/
static WORD PPPfcs16 (WORD fcs, BYTE *cp, int len) {
while (len--)
fcs = (fcs >> 8) ~ festab[(fes » *cp++) & Oxff];
return (fcs);

}
I‘ * * *
Function : public PPPGetChecksum
Parameters : cp: A pinter to the PPP Packet
len: Size of PPP Packet
Date : September 2000
Desc : Returns the Checksum of the PPP Packet pointed by cp

* * /
WORD PPPGetChecksum (register unsigned char *cp, register int len) {
return ~PPPfcs16(PPPINITFCS16, cp, len);

}

/

Function : ProcPPPReceive

Parameters : A Byte character to stream in a PPP Packet

Date : August 2000

Desc : This function process a BYTE following HDLC - PPP

specifications. The Async event on input driver should
call this function (usually the COMM ISR).

/

void ProcPPPReceive (register BYTE c) {

PPPStatus |= ByteRXx;
if (PPPStatus & IsFrame) return;

if (PPPStatus & ReSync) {
if (c 1= OX7E) return;
PPPStatus &= ~ReSync;
FrameSize = 0;

}

if (PPPStatus & ISESC) {
PPP_Packet [FrameSize++] = 0x20 " c;

62

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

PPPStatus &= ~ISESC;

}
else {
switch (c) {
case ESC: /I Special ESC (0x7D) Character received
PPPStatus |= ISESC;
break;
case END: /I Special END (0x7E) Character received
/I Avoid cero length packets (Ox7F - Ox7F
/I conditions);
if (FrameSize > 0) {
PPP_Packet [FrameSize] = 0;
PPPStatus |= IsFrame;// Signal Frame availability
}
break;
default:
PPP_Packet [FrameSize++] = c;
if (FrameSize > (PPP_BUFFER_SIZE - 6)) {
FrameSize = 0;
PPPStatus |= ReSync;
}
break;
}
}
}
/
Function : PPPSend
Parameters : Buffer: A pointer to a buffer containing the PPP packet to send
len: the size of the PPP packet
Date : September 2000
Desc : Sends a BYTE array of len length following HDLC - PPP specifications

void ProcPPPSend (BYTE *Buffer, BYTE len) {
WORD Checksum = 0;

AN2120

Checksum = PPPGetChecksum (Buffer, Buffer[7] + 4);
Buffer [Buffer[7]+4] = Checksum & OxFF;
Buffer [Buffer[7]+5] = (Checksum >> 8) & OxFF;

WriteComm (Ox7E);

while (len--) {
if ((signed char)*Buffer < (signed char)0x20) {
WriteComm (0x7D);
WriteComm (*Buffer » 0x20);
}else {

63

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

switch (*Buffer) {

case OX7E:
WriteComm (0x7D);
WriteComm (OX5E);
break;
case 0x7D:
WriteComm (0x7D);
WriteComm (0x5D);
break;
default:
WriteComm (*Buffer);
break;
}
}
Buffer++;
}
WriteComm (OX7E);
}
/ x .
Function : public PPPFrameSize
Parameters : None
Date : August 2000
Desc : Returns the size of the current available PPP packet

stored in InBuffer. Caller should call this function
if needed only when the IsFram flag has been signaled.

* * /
BYTE PPPFrameSize (void) {
return FrameSize;

}

/

Function : protected HandleLCPOptions

Parameters : None

Date : August 2000

Desc : State Machine that implements LCP packet negotiation

* * /
static void HandleLCPOptions (void) {

BYTE *dest = OutBuffer; /I A pointer to the options of output buffer
BYTE *ptr = (BYTE *)&InBuffer[8]; Il A pointer to the options of input buffer
64

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.

Application Note
Code Implementation

switch (InBuffer [4]) {

[/++++++++++++++H
case TERMINATE: /[Server Terminate-Request received
Move (InBuffer, OutBuffer, InBuffer[7]+6);
OutBuffer [4] = TERMINATE_ACK;
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);
PPPStatus &= ~LinkOn;
break;

[[++++++++ -+
case REQ:

T T
IIII1 Server requesting option 2 ///////

i
if ((InBuffer [8] == 0x02) && (InBuffer [7] <= 0x0A)) {

if ((InBuffer [10] == OXFF) &&
(InBuffer [11] == OxFF) &&
(InBuffer [12] == OxFF) &&
(InBuffer [13] == OxFF)) {

InBuffer [4] = ACK;
ProcPPPSend (InBuffer, InBuffer [7] + 6);
return;

} else

T T T
111111 Server requesting first options, reject all but 3 ///////
T T T
if ((InBuffer [8] != 0x03) && (InBuffer [7] > 9)) {
BYTE OptionsSize;

BYTE Option;

BYTE Size;
Move (InBuffer, OutBuffer, 8)// Move LCP header to output buffer
OutBuffer [4] = REJ; /I Output will be a reject packet

dest +=8; /I Offset output pointer to
/I LCP options
OptionsSize = InBuffer[7] - 4; // Get size of LCP

I/ options
while (OptionsSize > 0) { Il 1s there options to
Il process?
Option = *ptr; /I Get option nhumber

Size =*(ptr + 1); // Get size of this option
OptionsSize -= Size; // Reduce the amount of
/I OptionsSize

if (Option == 3) { /I'1s this option 3?
/I (authentication protocol)

AN2120

65
For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

ptr += Size; // Remove this option in
// output packet

/I Set New Packet size

OutBuffer [7] = OutBuffer [7] - Size;

}
else {

/I Copy this option to the output buffer

while (Size--) {

*dest++ = *ptr++;
}
}

}

} else

T e T
/111l Server Request CHAP protocol, We reply with
/Il a suggestion of the PAP protocol instead
T T T
if ((InBuffer [8] == 0x03) && (InBuffer [10] == 0xC2)) {
InBuffer [4] = NAK; /I NAK CHAP protocol
InBuffer [10] = OxCO; Il We suggest PAP instead
// Send the NAK reply
ProcPPPSend (InBuffer, InBuffer[7]+6);
return;
} else

T T
111 Server Request PAP protocol /T
/11" We Acknowledge this reply and then we start negotiating
/11ll] the Async-Control-Char..., Here we send both packets!!!
I T T
if ((InBuffer [8] == 0x03) && (InBuffer [10] == 0xCO0)) {
Move (InBuffer, OutBuffer, InBuffer[7]+6);
OutBuffer[4] = ACK;
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

OutBuffer[4] = REQ;
OutBuffer[5] = OutBuffer [5] + 1;
OutBuffer[7] = Ox0A;
OutBuffer[8] = 0x02;
OutBuffer[9] = Ox06;
OutBuffer[10] = OxFF;
OutBuffer[11] = OxFF;
OutBuffer[12] = OxFF;
OutBuffer[13] = OxFF;
}
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);
break;

[[+++++++++
case ACK:

66

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

I T]
/Il Server Acknowledge Async Control /111111111
T T T
if (InBuffer [8] == 0x02) {
SendPAPPacket (REQ, InBuffer[5] + 1, User, Password);
}

break;

[[++++++++++++
case NAK:
break;

[[++++++++++++ bbb
case REJ:
break;

[+

case TERMINATE_ACK: /l Terminate ACK!
PPPStatus &= ~LinkOn;

break;

}

return;

[** * *kkkkkkkhkkkkk *% * *hkkkkkkhkkhhkkkhkk *% * *

Function : protected HandleIPCPOptions
Parameters : None
Date : August 2000

Desc : State Machine that implement IPCP packet negotiation

static void HandlelPCPOptions (void) {
BYTE *dest = (BYTE *)&OutBuffer[8];
BYTE *ptr = (BYTE *)&InBuffer[8];
BYTE FrameSize;

BYTE Option;

BYTE Size;

switch (InBuffer [4]) {
case REQ:
if ((InBuffer [8] != 0x03) && (InBuffer [7] > 0x0A)) {
OutBuffer [0] = OxFF; // Build a IPCP header
OutBuffer [1] = 0x03;
OutBuffer [2] = 0x80; // Set IPCP protocol
OutBuffer [3] = 0x21;
OutBuffer [4] = REJ; /I This will be a
/I REJ packet for now
OutBuffer [5] = InBuffer [5];
FrameSize = InBuffer[7] - 4;
[T Ignore all but option #3 /111111

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

67

4\ Freescale Semiconductor, Inc.

Application Note

while (FrameSize > 0) {
Option = *ptr;
Size = *(ptr + 1);

FrameSize -= Size;

if (Option == 3) {
ptr += Size;
/ISet New Packet size
OutBuffer [7] = InBuffer [7] - Size;

}
else {
while (Size--) {

*dest++ = *ptr++;
}

else {
/I Acknowledge IP Address //
Move (InBuffer, OutBuffer, InBuffer[7]+6);
OutBuffer [4] = ACK;

ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

/I Now Request IP address to complete 3-way handshake
OutBuffer [4] = REQ; /l Request command
OutBuffer [5] = OutBuffer [5] + 1; // PacketID=1D + 1
OutBuffer [10] = 0; // IP address is set
/I to 0 so ISP server

OutBuffer [11] = 0; // can assing us one
OutBuffer [12] = 0;
OutBuffer [13] = 0;

}

ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

break;

case ACK:
if (InBuffer [8] == 3) { /I Reply of the only IPCP
/l Request we can send
IPAddress [0] = InBuffer [10]; // ISP assigned IP
IPAddress [1] = InBuffer [11];
IPAddress [2] = InBuffer [12];
IPAddress [3] = InBuffer [13];

PORTC = OxFF;
PPPStatus |= LinkOn; // PPP Link is now up

break;

case NAK:
if ((InBuffer [8] == 0x03) && (InBuffer [7] <= 0x0A)) {
/Il Request IP Address //ll
Move (InBuffer, OutBuffer, InBuffer[7]+6);
OutBuffer [4] = 0x01;

68

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

}
break;
case REJ:
break;
}
}
/
Function : public PPPSendPAPPacket
Parameters : Action: REQ, REJ, NAK
ID: Sequence number of PPP packet
user: User name for login
password: Password in plain text
Date : September 2000
Desc : Formats a PAP packet on Output Buffer. This function

supports the type field for future implementation of
the PPP module in server mode.
*kkkkkhkkhhkkhhkkihk ** * *kkkkkhkkhhkkhhkkkk *% * 7(/
void SendPAPPacket (BYTE Action, BYTE ID, char* user, char* password) {
OutBuffer [0] = OxFF;
OutBuffer [1] = 0x03;
OutBuffer [2] = 0xCO; /I Format PAP packet header
OutBuffer [3] = 0x23;
OutBuffer [4] = Action;
OutBuffer [5] = InBuffer [5] + 1; /l Increment ID
OutBuffer [6] = O;
OutBuffer [7] = strlen (user) + strlen (password) + 6;// Set length of PAP

OutBuffer [8] = strlen (user); /I Set length of

/l Username
Move (user, &OutBuffer [9], strlen (user)); /l Store Username
OutBuffer [9 + strlen (user)] = strlen (password); /I Set length of

Il password
Move (password, &OutBuffer [10 + strlen (user)], strlen (password));
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6); // Send PAP packet

}

/ p— p—

Function : Move

Parameters : Ssrc: A pointer to the data to copy
dest: A pointer to the destination location
numBYTEs: Number of bytes to copy

Date : September 2000

Desc : Copies a block of numBYTES bytes from src pointer

AN2120

69

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

to dest pointer

* *

Fkkkkk * *% * * *kkkkkkkk *% *% * * /

void Move (BYTE *src, BYTE *dest, register numBYTES) {

if (numBYTEs <=0) return;
if (src <dest) {
src += numBYTEs;
dest += numBYTEs;
do {
*--dest = *--src;
} while (--numBYTEs > 0);

} else
do {
*dest++ = *src++;
} while (--numBYTEs >0);
}
Function : protected RejectProtocol
Parameters : InBuffer -> A pointer to the buffer that has the PPP
Packet to reject
Date : August 2000
Desc : Rejects the a PPP packet based on its Protocol field

Stored on InBuffer

static void RejectProtocol (BYTE *InBuffer) {

OutBuffer [0] = OxFF;

OutBuffer [1] = 0x03;

OutBuffer [2] = 0xCO;

OutBuffer [3] = 0x21;

OutBuffer [4] = 0x08;

OutBuffer [5] = 20;

OutBuffer [6] = O;

OutBuffer [7] = InBuffer[7] + 6;

Move (&InBuffer[2], &OutBuffer[8], InBuffer [7] + 2);
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

}

/

Function : protected PPPSendVoidlLcp

Parameters : None

Date : September 2000

Desc : Sends a void LCP packet with no options to the PPP Server.
70

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

This will force the server to reply with his options to
negotiate. Some ISPs require scripts to stablish a connection thus
a void LCP packet will try to force the server to negotiate PPP.

* * * * * * /

void PPPSendVoidLCP (void) {
WORD Checksum;

Move (PPPData, OutBuffer, PPPData[7] + 6);
ProcPPPSend ((BYTE *)OutBuffer, OutBuffer[7] + 6);

}

/

Function PPPTerminate

Parameters : None

Date : September 2000

Desc : Terminates a PPP link by sending a terminate LCP packet

*

*kk * Kkkkkk x/

void PPPTerminate (void) {
Move ((BYTE *)LCPTerminate, OutBuffer, 10);
ProcPPPSend (OutBuffer, 10);

}

/ P—— P——

Function : PPPEnNtry

Parameters : None

Date : August 2000

Desc : PPP Module Entry, Applications should call PPPEntry

frequently in the main loop or in portions of the app
code.

*kkkkk

*hkkhkkkkkk *% * *kkkkkkkhkkkkk *% *% * 7(/

void PPPEntry (void) {

AN2120

if (PPPStatus & IsFrame) {
switch (*(WORD *)(&InBuffer [2])) {

case LCP_PACKET:
HandleLCPOptions ();
break;

case PAP_PACKET:
if (InBuffer [4] == 0x02) {// Authentication OK

NoOperation;
}
break;
case IPCP_PACKET: /I lPCP Handler
HandlelPCPOptions ();
break;

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

71

Freescale Semiconductor, Inc.

Application Note

}

case IP_DATAGRAM: /[IP Data Handler
if (IPCompare ((BYTE *)&InBuffer [20])) {
/I Misrouted datagram or broadcast
/I message received

else
switch (InBuffer [13]) {

case UDP:
UDP_Handler ((UDPDatagram *)&InBuffer[16]);
break;

case TCP:
break;

case ICMP:
IcmpHandler ((IPDatagram *)&InBuffer[4]);
break;

default:
break;

break;

default:
RejectProtocol (InBuffer);// Cannot handle this type of packet
break;
/l End of switch statement

PPPStatus &= ~IsFrame;
PPPStatus |= ReSync;

}

ModemDrv.C

/I End of if IsFrame

Modem Support Routines

U T
File Name : ModemDrv.C

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : December 2000

Current Revision : 0.0

Notes : This file contains the functions required to handle an external modem
I T

#include <iogp20.h>

72

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

#include "CommbDrv.h"
#include "ModemDrv.h"

#define MODEM_BUFFER_SIZE 32 /I Size of Modem Buffer

#define DTR_ON PORTD &= OxFE; /I DTR Pin is PORTDO, Macro to set it ON
#define DTR_OFF PORTD |= 0x01; /l Macro to set DTR OFF

#define DTR_PIN (PORTD & 0x01) /I DTR Pin = Pin 0 of PORT D

/I Byte pointers of the ring buffer (FIFO)

volatile BYTE mDataSlot = 0; /I Points to the next available character
volatile BYTE mEmptySlot = 0; /I Points to next available slot of the FIFO
static BYTE *ModemBuffer; /! Pointer to Modem buffer

Function : Modeminit

Parameters : None

Date : December 2000

Desc : Initializes the ring buffer & clears the DTR pin

*kkkkkkkhkkkhkkkhkk *% * *kkkhkkkhkkkhkkkhkk *% * 7(/

void Modeminit (void) {

mDataSlot = O; /I Initialize FIFO Modem pointers
mEmptySlot = 0;
DDRD |= 0x01; /I DTR pin set to output
DTR_OFF,; /I DTR Off

}

Function : ModemBuffFlush

Parameters : None

Date : January 2001

Desc : Flushes the receiving FIFO (ring buffer)

*kkkhkkkhkkhhkkkhkk *% * *kkkkkkkkkkkkk *% *% * 7(/

void ModemBuffFlush (void) {
mDataSlot = mEmptySlot;

}

Function : ModembDial

Parameters : A string containing the phone number to dial
Date : December 2000

AN2120

73

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Desc : It sets the modem response mode to numeric (instead of verbose),
then it dials a phone number & sets the DTR pin. This function
returns a numeric code describing a response from the modem or
a timeout. Applications should handle this reaponse code.

Foxkkk Foxkkok /

BYTE ModembDial (char * Number) {

signed char delayCount = 80;

transmit ("ATVO\r");
if ('Waitfor (0", 30)) {
return -1;

/I Force a numeric response from modem
/' Wait for an OK response

}

DTR_ON;

transmit ("ATDT");
transmit (Number);
transmit ("\r");
ModemBuffFlush ();

// Set DTR to ON
/I Dial the ISP number

/I Flush contents of buffer
/I Wait for a reply
while (('ModemBuffNotEmpty()) && (--delayCount > 0)) {

Delay (250);
}
if (delayCount) {
return ModemGetch (); /I Return the numeric response to caller
}
return -1; /I No response received from modem
}
Function : ModemHangUp
Parameters : None
Date : December 2000
Desc : This function clears DTR to force the modem to hang up if

it was on line and/or make the modem to go to command mode.

/

void ModemHangUp (void) {

DTR_ON; /I Make a DTR transition to hang-up
Delay (40); /I Wait a couple of miliSeconds
DTR_OFF; // Finish the DTR transition

}

74

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

/

Function : ModemOnLine

Parameters : None

Date : January 2001

Desc : Returns the status of the CD (carrier detect) signal.

Kkkkkkkkkkk Kkkkkkkkk x/

BYTE ModemOnLine (void) {

return (PORTD & 0x02) ~ 0x02; /l Return the status of the CD line
}
I‘ * * * * *
Function : ModemBindBuff
Parameters : A pointer to a buffer in RAM
Date : January 2001
Desc : Binds the FIFO capabilities of this module to a buffer

in RAM.

/
void ModemBindBuff (BYTE *IpInBuffer) {

ModemBuffer = IpInBuffer;

ModemBuffer [0] = 0;

}

/

Function : ModemReset
Parameters : None

Date : January 2001
Desc : Resets the Modem

Kkkkkk Kkkkkkkkkkk x/

void ModemReset (void) {

Modemlnit ();
}
Function : ModemBuffNotEmpty
Parameters : None
Date : January 2001
Desc : Returns True if modem buffer NOT empty, false otherwise.
AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

75

4\ Freescale Semiconductor, Inc.

Application Note

BYTE ModemBuffNotEmpty (void) {
return !|(mDataSlot == mEmptySilot);

}

/

Function : ModemInBufferCount

Parameters : None

Date : January 2001

Desc : Returns the number of characters available in the Modem

Queue.
* * /
BYTE ModemInBufferCount (void) {
if ((mEmptySlot - mDataSlot) >= 0)
return (BYTE)(mEmptySlot - mDataSlot);

else {
return (BYTE)((mEmptySlot + MODEM_BUFFER_SIZE) - mDataSlot);
}
}
I‘ * * *
Function : Waitfor
Parameters : A string to wait for
A Time out value
Date : January 2001
Desc : Returns True if Modem response matches the String argument,

False otherwise. Time is the number of times the Delay funtion
will be called from within the waiting loop.
* *kkkkkkkk * ** * * *kkkkkkkk * * * * /
BYTE Waitfor (char *String, BYTE Time) {
BYTE c=0;
BYTE Offset = 0;

while (Time-- > 0) {

Delay (100); /' Wait =~ 150 mSec
while (ModemBuffNotEmpty()) { /l Wait for characters
¢ = ModemGetch (); /I Extract a character from FIFO
if (c == String [Offset]) { //Is C a part of the string?
Offset++; /I Compare with next character
if (String [Offset] == 0) { // is this the end of string?
return True; / match = True
}
}
else /I ¢ does not belong to String
Offset = 0; /I Reset String pointer
}

76

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

}
return False;
}
Function : ProcModemReceive
Parameters : A character received from the SCI
Date : November 2000
Desc : Stores incoming characters in the Modem Queue

* *kkkkkkkhkkkhkkkhkk *% * *kkkkkkkhkkkhkkkkkk *% * 7(/

void ProcModemReceive (BYTE c) {
ModemBuffer [mnEmptySlot++] = c;
if (MEmptySlot > MODEM_BUFFER_SIZE) {
mEmptySlot = 0;

}
}
Function : ModemGetch
Parameters : None
Date : November 2000
Desc : Dequeue a previously stored character in the Modem Queue.

Returns a null character if the Queue is empty
kkkkkkkkkkhkhkhkkhkk ** * *kkkkkkkkkkkkhk ** *% * * /
BYTE ModemGetch (void) {
BYTE c=0;
if (mDataSlot = mEmptySlot) {

¢ = ModemBuffer [mDataSlot];

mDataSlot++;

if (mDataSlot > MODEM_BUFFER_SIZE) mDataSlot = 0O;

return(c);
}
else {
return (BYTE)Ox00;
}
}
Function : transmit
Parameters : A string to transmit to the Modem
Date : November 2000
Desc : Any data passed to this function will be sended to the Modem.
Applications can build complex scripts by calling transmit and
AN2120

77

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

Waifor functions however, its up to the application to control
the appropriate flow of data when the Modem is on command mode
and on-line mode.
* * /
void transmit (char *data) {

Delay (250);

while (*data) {
WriteComm (*data++);

}

IP.C

Internet Protocol Implementation
PHITTTTHTTHITT T

File Name : IP.C

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : September 2000

Current Revision : 0.0

Notes : This file contains the Internet Protocol variables & support routines
I T

#include "IP.h"

#include "PPP.h"
#include "SLIP.h"

extern BYTE InBuffer [PPP_BUFFER_SIZE + 1]; // Input Buffer for PPP data

extern BYTE OutBuffer[PPP_BUFFER_SIZE + 1];

BYTE IPAddress[4] = {220, 1, 141, 149}; // Default IP Address

static volatile char IPAdapter = PPP; /I Default interface for IP output
IPDatagram *ip_in; /I A pointer to received IP datagrams
IPDatagram *ip_out; /I Global buffer for IP packet output
/

Function : IPInit

Parameters : None

Date : September 2000

Desc : Initializes the IP module pointers

78

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Code Implementation

* *kkkkkkkhkkhhkkkhkk *% * *kkkkkkkhkkkhkkkhkk *% * 7(/

void IPInit (void) {
ip_in = (IPDatagram *)&InBuffer [4];
ip_out = (IPDatagram *)&OutBuffer [4];

}

/ P—— PE——
Function : Bind adapter

Parameters : Interface: A Byte ID

Date : September 2000

Desc : Selects the output format of an IP packet

/
void IPBindAdapter (INTERFACE Interface) {

IPAdapter = Interface; /I switch to different output interface
}
/
Function : IPNetSend
Parameters : ip: A pointer to a IP datagram to transmit
Date : November 2000
Desc : Sends a IP datagram over the interface specified

* * * * * * /

void IPNetSend (IPDatagram* ip) {

static WORD Id = OxFO; //'ID to be used in IP datagrams
ip_out->Version_HLen = 0x45; /l Header Forma=IPv4, Length =5
ip_out->Service =0; /I Always zero
ip_out->LengthUpper =0; // High byte of datagram Length
ip_out->ID = htons(ld++); /l Merge IP ID
ip_out->Frag =0; /I No flags nor enable fragmentation
ip_out->TTL = 0x80; /I Time to live set to default
ip_out->Checksum =0; /I Clear checksum to avoid

/I miscalculations
/I Get checksum of entire datagram

ip_out->Checksum = htons(IPCheckSum ((BYTE *)ip_out, 10));
switch (IPAdapter) { /I Select the adapter to output the IP datagram
case PPP: // Output through PPP adapter

OutBuffer [0] = 0xff; /I Frame PPP packet

OutBuffer [1] = 0x03;

OutBuffer [2] = 0x00; /I This is a IP datagram, set
/ protocol type

OutBuffer [3] = 0x21;

AN2120

For More Information On This Product,
Go to: www.freescale.com

79

4\ Freescale Semiconductor, Inc.

Application Note

ProcPPPSend (OutBuffer, OutBuffer [7] + 6);

break;
case SLIP: // Output through SLIP interface
ProcSLIPSend ((BYTE *)ip_out, ip_out->Length);
break;
case ETHERNET: // Send datagram over ethernet
break;
default:
break;
}

}

[P P—

Function : IPCompare

Parameters : Ip: A pointer to a IP address to compare

Date : November 2000

Desc : Compares an IP address to the default IP address defined

in this module

* * /
BYTE IPCompare (BYTE *IPOne) {
if (IPOne [0] != IPAddress[0]) return (BYTE)OxO00;
if (IPOne [1] != IPAddress[1]) return (BYTE)OxO00;
if (IPOne [2] != IPAddress[2]) return (BYTE)OxO00;
if (IPOne [3] != IPAddress[3]) return (BYTE)Ox00;

return (BYTE) 0x01;

}
I‘ * *
Function : IPChecksum
Parameters : Data: A pointer to an array of Words
Size: Size of the array
Date : August 2000
Desc : Obtains the IP checksum of an array of 16-bit words of size "Size"

* *kkkkkkkk * *% * * *kkkkkkkk * * * 7(/

DWORD IPCheckSum (BYTE* Data, WORD Size) {
unsigned long Sum =0;

while (Size-->0) {
Sum += ((unsigned long)((*Data << 8) + *(Data+1)) & OxFFFF);

80

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

Data+=2;
}

Sum = (Sum >> 16) + (Sum & OxFFFF);
Sum += (Sum >> 16);

return (WORD) ~Sum;

UDP.C
User Datagram Protocol Implementation

U]

File Name : UDP.c

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : December 2001

Current Revision : 0.0

Notes : This file contains the code to handle and create UDP transport
packets.

I
#include "IP.h"

#include "UDP.h"

#include "Ppp.h"

#define UDP_HEADER_LENGTH 8
static WORD UDPLocalPort = 1080; /I Default UDP port (can be set to anything)

static void UDPDefaultCallBack (BYTE *data, BYTE size, DWORD RemotelP, WORD Port);
static UDPCALLBACK UDPCallback = UDPDefaultCallBack;

UDPDatagram *udp_in; // Pointer to incoming UDP packet
UDPDatagram *udp_oult; /I Pointer for output UDP packet
Function : UDPSetCallbackProc

Parameters : Proc: A pointer to a function to callback each time a UDP/IP
packet is received from the Internet

Date : December 2000

Desc : Sets the callback function to call each time a UDP packet is received
over the physical interface

AN2120

81

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

*

*kkkkkkkk * *% * * *kkkkkkkk *% *% * * /

void UDPSetCALLBACK (UDPCALLBACK Proc) {

Disablelnterrupts;
UDPCallback = Proc;
Enablelnterrupts;

/

* *

Function : UDPDefaultCallBack

Parameters: None

Date : December 2000

Desc : The default callback available after RESET not accesible

from outside this module

*

*kkkkkkkk * *% * * *kkkkkkkk * * * 7(/

static void UDPDefaultCallBack (BYTE *data, BYTE size, DWORD RemotelP, WORD Port) {

}

1*

* *kkkhkkkhkkkkk *% * * *kkkkkkkk * *% * *

Function : UDPBInd

Parameters : Port: local port to use in UDP packets to transmit

Date : November 2000

Desc : Specifies the local port to use for sending UDP

packets over IP

. . /

void UDPBind (WORD Port) {

}

UDPLocalPort = Port; /I Set source UDP port

/

Function : UDP_Checksum

Parameters : udp: A pointer to the start of a udp/ip packet (0x45)

Date : November 2000

Desc : Calculates the pseudo-header checksum of a UDP packet

* * /

WORD UDP_Checksum (BYTE* udp) {
DWORD Checksum = 0;

82

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Checksum = IPCheckSum (&udp[12], (8 + udp[25]) >> 1);

Checksum = ~Checksum + 0x11;

Checksum += udp [25];

Checksum = (Checksum >> 16) + (Checksum & OXFFFF);
Checksum += (Checksum >> 16);

return (WORD)~Checksum;

}

Function : UDPHandler

Parameters : udp: a pointer to the udp (struct UDPDatagram) packet received
Date : November 2000

Desc : Invokes the callback proc so the application can handle the

UDP data received

Hekkkok Hekkkkk /
void UDP_Handler (UDPDatagram *udp) {

udp_in = udp;

udp_in->Payload [udp_in->Length - UDP_HEADER_LENGTH] = 0x00;

UDPCallback (// Invoque the CALLBACK function
(BYTE *)udp_in->Payload,
udp_in->Length - UDP_HEADER_LENGTH,
*((DWORD *)&udp_in->SourcelP),
udp_in->DestPort);

}
Function : UDPSendData
Parameters: BYTE Ip[]: The IP address of the remote host
Port: UDP port of the remote host
Payload: Data to send
Size: Number of bytes to send to remote host
Date : November 2000
Desc : Sends data (payload) over UDP to a remote host specified by IP [] using

Port as the destination UDP port.

Foxkkok * /
void UDPSendData (BYTE Ip[], WORD Port, BYTE* Payload, BYTE size) {
WORD Checksum = 0;

ip_out->DestAddress [0] = Ip [0]; I/ Store source and destination
ip_out->DestAddress [1] = Ip [1]; // IP addresses
ip_out->DestAddress [2] = Ip [2];

ip_out->DestAddress [3] = Ip [3];

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

83

4\ Freescale Semiconductor, Inc.

Application Note

ip_out->SourceAddress [0] = IPAddress [0];
ip_out->SourceAddress [1] = IPAddress [1];
ip_out->SourceAddress [2] = IPAddress [2];
ip_out->SourceAddress [3] = IPAddress [3];

udp_out = (UDPDatagram *) &ip_out->SourceAddress;
/I Insert Data Payload if available as an argument
if (Payload)
Move (Payload, &udp_out->Payload[0], size);
/I Format payload as a null terminated string
udp_out->Payload[size] = 0x00;
if (size % 2) { /I Pad the payload

size++;

}

udp_out->Length = size + UDP_HEADER_LENGTH; // Calculate the UDP length
ip_out->Length = size + UDP_HEADER_LENGTH + 20;// get IP packet length
ip_out->Protocol = UDP; // Protocol set to UDP
udp_out->SourcePort = htons(UDPLocalPort);// Set source and destination ports
udp_out->DestPort = htons(Port);
udp_out->LengthUpper = 0; Il Packet cannot be longer than 256
Il bytes
/I (in this implementation)
udp_out->Checksum = 0; /I Set checksum to 0
Checksum = UDP_Checksum ((BYTE *)ip_out); // Obtain the packet checksum
udp_out->Checksum = htons (Checksum);

IPNetSend (ip_out); /I Send the packet to the IP layer

ICMP.C
Internet Control Message Protocol Module Implementation

W

File Name : ICMP.c

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : January 2001

Current Revision : 0.0

Notes : This file contains the code to handle and create ICMP messages

84

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

M T T T
#include "IP.h"
#include "ICMP.h"

/

Function : ICMPPIng

Parameters : IP Address to ping

Date : September 2000

Desc : Sends a ICMP ECHO message to a remote host

* * * * * * /

void lcmpPing (BYTE Ip[]) {
WORD Value;
static BYTE Seq = OxAB;

ip_out->SourceAddress [0] = IPAddress [0];// Ping will have our source address
ip_out->SourceAddress [1] = IPAddress [1];
ip_out->SourceAddress [2] = IPAddress [2];
ip_out->SourceAddress [3] = IPAddress [3];

ip_out->DestAddress [0] = Ip[0]; /I Set destination IP address

ip_out->DestAddress [1] = Ip[1];

ip_out->DestAddress [2] = Ip[2];

ip_out->DestAddress [3] = Ip[3];

ip_out->Payload [0] = ECHO; / ICMP message type set to ECHO

ip_out->Payload [1] = 0; /[l ICMP code must by set to zero

ip_out->Payload [2] = 0; Il reset checksum

ip_out->Payload [3] = 0;

ip_out->Payload [4] = 1; // set ID of ICMP message
ip_out->Payload [5] = 0;

Seq++;
ip_out->Payload [6] = (Seq >> 8) & OxFF; // set sequence number of ICMP Msg
ip_out->Payload [7] = Seq & OxFF;

ip_out->Protocol = ICMP; /I P datagram will carry ICMP data
ip_out->Length = 28; /I ECHO message doesn't include data

Value = IPCheckSum ((BYTE *)&ip_out->Payload|[0], (ip_out->Length - 20) >> 1);

ip_out->Payload [2] = (Value >> 8); // obtain ICMP checksum
ip_out->Payload [3] = (Value & OxFF);
IPNetSend (ip_out); /I Net send to IP layer
}
AN2120

Application Note
Code Implementation

For More Information On This Product,

Go to: www.freescale.com

85

Freescale Semiconductor, Inc.

Application Note

/

Function :

Parameters :

Date :

Desc :

ICMP_Handler
IP Datagram containing ICMP data
September 2000

Handles incoming IP datagrams according to the TYPE field
of the ICMP message contained in the input IP datagram

i k|

void IcmpHandler (IPDatagram* ip) {

WORD Value;

>>1);

switch (ip->Payload [0]) {

case ECHO:
/* Move ping datagram to output buffer */
Move ((BYTE *)ip, (BYTE *)ip_out, ip->Length);

/* Swap source and destination IP addresses on Output Buffer */
ip_out->DestAddress [0] = ip->SourceAddress [0];
ip_out->DestAddress [1] = ip->SourceAddress [1];
ip_out->DestAddress [2] = ip->SourceAddress [2];
ip_out->DestAddress [3] = ip->SourceAddress [3];

ip_out->SourceAddress [0] = ip->DestAddress [0];
ip_out->SourceAddress [1] = ip->DestAddress [1];
ip_out->SourceAddress [2] = ip->DestAddress [2];
ip_out->SourceAddress [3] = ip->DestAddress [3];

ip_out->Payload [0] = ECHO_REPLY;/* Echo reply */
ip_out->Payload [1] = 0; /* Set ICMP Code to 0 */
ip_out->Payload [2] = 0; /* Set ICMP checksum to 0

during checksum generation */
ip_out->Payload [3] = 0;
Value = IPCheckSum ((BYTE *)&ip_out->Payload[0], (ip->Length - 20)

/* Calculate ICMP checksum */

ip_out->Payload [2] = (Value >> 8);/* Set ICMP checksum */
ip_out->Payload [3] = (Value & OxFF);

IPNetSend (ip_out); /* Send ICMP packet over IP */
break;
case ECHO_REPLY: /I Code to handle ping responses
/I goes here
NoOperation;
break;
case TRACEROUTE:
break;
default:
break;

86

For More Information On This Product,
Go to: www.freescale.com

PLL.C

Code of InitPLL Function

Freescale Semiconductor, Inc.

W

File Name : Pll.c

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : September 2000

Current Revision : 0.0

Notes : This file contains the code of the InitPIl function

T

#include "pll.h"

[** *

*hkkkkkkkkk *% *% *

Function : InitPII

Parameters : None

Date : September 2000

Desc : Initializes the PLL to operate at 4.91520 MHz

#asm
xdef _InitPLL

_InitPLL:
BCLR 5,0x36 ;turn off PLL so it can be initialized
MOV #0x00,0x38 ;Set multiplier for 4.9152MHz
MOV #0x96,0x39 ;see manual for calculations
MOV #0x80,0x3A ;Set range select
BSET 7,0x37 ;Allow automatic acquisition & tracking
BSET 5,0x36 :turn PLL back on

HERE:
BRCLR 6,0x37,HERE :Wait for PLL to lock
BSET 4,0x36 ;Select PLL as Source

#endasm

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

87

Freescale Semiconductor, Inc.

Application Note

Delay.C

Source Code of Variable Delay() Function

[**

File Name : Delay.c

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : July 2000

Current Revision : 0.0

Notes : This file contains the code for a variable Delay function

#include "delay.h"

e e /

BYTE delayCounter;

/
Function :

Parameters :

Date :

Desc :

Delay

A Byte containing the number of times __Delay will be

called
July 2000

This function blocks the CPU in multiples of _Delay times

/

void Delay (register BYTE times) {

_Delay();
}
/ x x
Assembly Function : __1msDelay
Parameters : None
Date : July 2000
Desc : This function blocks the CPU in multiples of 1.3mSecs
delayCount specifies the time base
__1msDelay = delayCounter x 1.3 mSec
* * /
#asm
xref.b _delayCounter
xdef __ Delay
88

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

BUSFREQ: EQU 2
_1msDelay:
PSHA ;2 cycles
LDA #BUSFREQ 2
DLLoop: DBNZA DLSub]
BRA DLDone 3
DLSub:
MOV #$FF,_delayCounter ;4
Here:
DBNZ _delayCounter,Here ;5
BRA DLLoop 3
DLDone: PULA 2
RTS 4
Function : _Delay
Parameters : A Byte containing the number of times a base delay will be
called
Date : July 2000
Desc : This function blocks the CPU in multiples (Acc value) of
delay times
__Delay:
JSR _1msDelay
DBNZA _ Delay
RTS
#endasm

CommDrv.H
Header File for SCI Driver

U T

File Name : CommDrv.h

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : July 2000

Current Revision : 0.0

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

89

4\ Freescale Semiconductor, Inc.

Application Note

Notes : This file contains comm port specific definitions

s
#ifndef _H_COMMDRV_
#define _H_COMMDRYV_

#include "Notation.h"

#define BAUDS 2400 3 // 8 Divisor
#define BAUDS_4800 2 // 4 Divisor
#define BAUDS_9600 1 // 2 Divisor
#define BAUDS_19200 O // 1 Divisor

typedef enum {

ENABLE_RX = 0x04, /I enable receiver

ENABLE_TX = 0x08, [/l enable transmitter
ENABLE_RX_EVENTS = 0x20, /I enable receiver interrupts
ENABLE_TX_EVENTS = 0x80 /I enable transmitter interrupts

} CommOptions;

#define SCC1 *((BYTE *)0x13) /I Status and contro registers
#define SCC2 *((BYTE *)0x14)

#define SCS1 *((volatile BYTE *)0x16)

#define SCDR *((volatile BYTE *)0x18)

#define SCBR *((BYTE *)0x19)

extern void @interrupt UartRxISR (void); I/l export ISR
I API Functions to Export /[T

void OpenComm (register BYTE BaudRate, register CommOptions Options);
void CloseComm (void);

void CommEventProc (EventProc Proc);

void WriteComm (BYTE c);

void WriteCommStr (char* string);

BYTE ReadComm (void);

void UseDefaultCommProc (void);

#endif

PPP.H
Header File for PPP Implementation

U]

File Name : PPP.h

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : September 2000

90

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Current Revision : 0.0
Notes : Definitions for the PPP implementation

T
#ifndef __PPP_H
#define __ PPP_H 1

#include "Notation.h"

#ifndef NULL
#define NULL 0
#endif

#define ESC 0x7D
#define END OX7E

#define REQ 1
#define ACK

#define NAK

#define REJ

#define TERMINATE
#define TERMINATE_ACK

mmbwm

typedef struct {
WORD Framing;
WORD Protocol;
BYTE Request;
BYTE Id;
BYTE LengthHigh;
BYTE Length;
BYTE FirstOption;
BYTE FirstOptionLength;
BYTE Param;
BYTE Data;

} PPPFrame;

#define PPPINITFCS16 Oxffff /* Initial FCS value */
#define PPPGOODFCS16 0xfOb8 /* Good final FCS value */

[T Functions to Export /11T

void PPPInit (void);

BYTE *PPPGetinputBuffer (void);

BYTE *PPPGetOutputBuffer (void);

void ProcPPPReceive (register BYTE c¢);

void ProcPPPSend (BYTE *Buffer, BYTE len);

WORD PPPGetChecksum (register unsigned char *cp, register int len);
void SendPAPPacket (BYTE Action, BYTE ID, char* user, char* password);
void Move (BYTE *src, BYTE *dest, register numBYTES);

void PPPEntry (void);

void PPPTerminate (void);

void PPPSendVoidLCP (void);

extern volatile BYTE PPPStatus;

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

91

Freescale Semiconductor, Inc.

Application Note

#define ISESC 0x01
#define ReSync 0x04
#define IsFrame 0x08
#define ByteRx 0x10
#define LinkOn

extern BYTE IPAddress[4];
#define PPP_BUFFER_SIZE
#define LCP_PACKET
#define PAP_PACKET
#define CHAP_PACKET
#define IPCP_PACKET
#define IP_DATAGRAM

#endif

SLIP.H

// Previous character received was a ESC char
/I Re Synchronize to avoid inconplete IP frame reception
Il A full packet
/I Receive a Byte
0x20 /[PPP Linkis On

88

0xC021
0xC023
0xC223

0x8021
0x0021

Header File for SLIP Implementation

U T

File Name : SLIP.h

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California

Date Created : June 2000

Current Revision : 0.0

Notes : Definitions for the SLIP implementation

T

#ifndef __ SLIP_H
#define __ SLIP_H1

#include "Notation.h"
#ifndef NULL

#define NULL 0
#endif

#define SLIP_MAX_SIZE
#define SLIP_END

#define SLIP_ESC
#define ESC_END

88

0xCO //300 octal
0xDB //333 octal
0xDC //334 octal

92

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

#define ESC_ESC 0xDD //335 octal
extern BYTE SLIPStatus;

void SLIPInit (void);

void ProcSLIPSend (BYTE *ptr, BYTE len);
void SLIPEntry (void);

void ProcSLIPReceive (BYTE c);

#define ISESC 0x01 /I Previous character received was a ESC char

#define ReSync 0x04 /I Re Synchronize to avoid inconplete IP frame reception
#define IsFrame 0x08 Il A full packet

#define ByteRx 0x10 /I Receive a Byte

#endif

ModemDrv.H

Header file for Modem driver

#ifndef __ MODEMDRV_H
#define__ MODEMDRV_H 1

#include "Notation.h"

void ProcModemReceive (BYTE c);

void ModemBindBuff (BYTE *IpInBuffer);
void Modeminit (void);

BYTE ModembDial (char * Number);

void transmit (char *data);

void ModemHangUp (void);

BYTE ModemOnLine (void);

BYTE ModemBuffNotEmpty (void);

void ModemBuffFlush (void);

BYTE ModemInBufferCount (void);
BYTE Waitfor (char *String, BYTE Time);
BYTE ModemGetch (void);

BYTE ModemInBufferCount (void);

void ModemReset (void);

#endif

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

93

4\ Freescale Semiconductor, Inc.
Application Note
IP.H

Internet Protocol Implementation de nitions
W
File Name : IP.h
Author : Rene Trenado
Location : Freescale Applications Lab, Baja California
Date Created : September 2000
Current Revision : 0.0
Notes : Definitions for the IP implementation
e
#ifndef __IP_H
#define __IP_H
#include "Notation.h"
typedef struct {

BYTE Version_HLen;

BYTE Service;

BYTE LengthUpper;
BYTE Length;

WORD ID;
WORD Frag;
BYTE TTL;

BYTE Protocol;
WORD Checksum;
BYTE SourceAddress [4];
BYTE DestAddress [4];
BYTE Payload [64];

} IPDatagram;

extern IPDatagram *ip_in;
extern IPDatagram *ip_out;

typedef enum { RAW_SERIAL =1, SLIP, PPP, PARALLEL, ETHERNET } INTERFACE;
#define TCP 0x06
#define UDP 0x11
#define ICMP 0x01

extern BYTE IPAddress[4];
W

IP Exported Functions
T T]

BYTE IPCompare (BYTE *IPOne);
DWORD IPCheckSum (BYTE *Data, WORD Size);
94

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

void IPBindAdapter (INTERFACE Interface);
void IPInit (void);

#endif

UDP.H

UDP Header Definitions

U

File Name : UDP.h

Author : Rene Trenado

Location : Freescale Applications Lab, Baja California
Date Created : December 2001

Current Revision : 0.0

Notes : This file contains definitions needed by the UDP module.

W
#ifndef __ UDP_H
#define __UDP_H

#include "Notation.h"

typedef struct {
BYTE SourcelP [4];
BYTE DestinationlIP [4];
WORD SourcePort;
WORD DestPort;
BYTE LengthUpper;
BYTE Length;
WORD Checksum;
BYTE Payload[54];

} UDPDatagram;

extern UDPDatagram *udp_out;

typedef void (* UDPCALLBACK)(BYTE *data, BYTE size, DWORD RemotelP, WORD Port);

void UDPSetCALLBACK (UDPCALLBACK Proc);
void UDP_Handler (UDPDatagram *udp);
WORD UDP_Checksum (BYTE* udp);

void UDPBind (WORD Port);

void UDPSendData (BYTE Ip[], WORD Port, BYTE* Payload, BYTE size);

#endif

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

95

4\ Freescale Semiconductor, Inc.
Application Note
ICMP.H

ICMP Header De nitions
W
File Name : Icmp.h
Author : Rene Trenado
Location : Freescale Applications Lab, Baja California
Date Created : January 2001
Current Revision : 0.0
Notes : This file contains Icmp module specific definitions
e
#ifndef __ ICMP_H
#define _ ICMP_H
#include "Notation.h"
typedef struct {

BYTE Type;

BYTE Code;

WORD Checksum;

WORD Identifier;

WORD SeqgNumber;
} ICMPDatagram;

#define ECHO 8
#define ECHO_REPLY 0
#define TRACEROUTE 30

void IcmpHandler (IPDatagram *ip);
void lcmpPing (BYTE Ip[]);

#endif

PLL.h
Header Definitions for the PLL.c Module

#ifndef __ PLL_H
#define _ PLL_H

extern void InitPLL (void);

#endif

96

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Delay.h
Header Definitions for Delay() Function Support

#ifndef __Delay H
#define _ Delay H

#include "Notation.h"
extern void Delay (register BYTE Time);

#endif

Notation.h
Notation Used in the Source Code

#ifndef __ NOTATION_H
#define_ NOTATION_H 1

#define BIG_ENDIAN

#if defined(BIG_ENDIAN)

#define htons(A) (A)
#define htonl(A) (A)
#define ntohs(A) (A)
#define ntohl(A) (A)

#elif defined(LITTLE_ENDIAN)

#define htons(A) ((((A) & OxFF00) >> 8) |\
(((A) & OX00FF) << 8))

#define htonl(A) ((((A) & OXFF0O00000) >> 24) | \
(((A) & 0XOOFF0000) >> 8) | \
(((A) & 0XO000FF00) << 8) | \
(((A) & OXO00000FF) << 24))

#define ntohs htons
#define ntohl htohl

#else

#error "User Must define LITTLE_ENDIAN or BIG_ENDIAN!!I"
#endif

#define DWORD unsigned long

#define BYTE unsigned char
#define WORD unsigned int

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

97

4\ Freescale Semiconductor, Inc.

Application Note

#define False 0
#define True 1

typedef void (*EventProc)(BYTE c);

typedef struct {
unsigned char bO;
unsigned char b1;
unsigned char b2;
unsigned char b3;
unsigned char b4;
unsigned char b5;
unsigned char b6;
unsigned char b7;
} TByteBiIts;
typedef union {
unsigned char Value;
TByteBits Bits;
} TByte;
#define AppLoop while(1)
#define Enablelnterrupts _asm("CLI\n"); //[Enable interrupts
#define Disablelnterrupts _asm("SEINn"); //Enable interrupts
#define NoOperation _asm("NOP\n"); // No operation
#endif
CommDrv.C

Serial Communications Interface Driver for the PC

#include <dos.h>
#include "CommbDrv.h"

static void CommbDrvDefaultProc (BYTE value);
static void (* EvtProcedure) (BYTE value) = CommDrvDefaultProc;

static void interrupt UartISR (void);
static void interrupt (*IsrOriginal)();

static Word Port = COM1,;
static Byte IRQMask;

i
/I Assigns an Event Handler for Comm Driver
T T
void InitCommbDriver (void) {
EvtProcedure = CommDrvDefaultProc;

}

98

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

WORD CommpPort (void) {
return Port;
}

T T
/I Assigns an Event Handler for Comm Driver
T T
void CommEventProc (EventProc Proc) {
disable ();
EvtProcedure = Proc;
enable ();

T T

/I Default Event Handler for Comm Driver

T T

static void CommDrvDefaultProc (BYTE value) {
(void) value;

}

I T
void OpenComm (Word CommPort, BYTE Bauds) {

disable ();
Port = CommPort;

/I Configura el puerto "CommPort" a 9600,n,8,1
outportb (Port + LCR, LATCH_DIVISOR);
outportb (Port + DIVISOR_BAJO, Bauds);
outportb (Port + DIVISOR_ALTO, 0x0);
outportb (Port + LCR, 0x03);

outportb (Port + MCR, HABILITA_INT);
outportb (Port + IER, RX_ENABLE | MODEM_STATUS);

if (Port == COM1) {
IsrOriginal = getvect (COM1_ISR);
setvect (COM1_ISR, UartISR); }
else {
IsrOriginal = getvect (COM2_ISR);
setvect (COM2_ISR, UartISR); }

IRQMask = inportb (PIC_IMR);

outportb (PIC_IMR, (Port == COM1) ? (IRQMask & OxEF):(IRQMask & 0xF7));

enable ();

}

void CloseComm (void) {

if (IPort) return;

AN2120

Application Note
Code Implementation

For More Information On This Product,
Go to: www.freescale.com

99

4\ Freescale Semiconductor, Inc.

Application Note

outportb (Port + MCR, 0);
outportb (Port + IER, 0);
outportb (PIC_IMR, IRQMask);

if (Port == COML1) {
setvect (COM1_ISR, IsrOriginal); }
else {
setvect (COM2_ISR, IsrOriginal); }
}

void WriteComm (Byte c) {
while (!(inportb(Port + LSR) & 0x20));
outportb (Port + THR, c);

void WriteCommStr (char * string) {
while (*string) {
WriteComm (*string++);

void interrupt UartISR (void) {

switch (inportb (Port + lIR) & OXFE) {
case 0x00: //Modem Status
/ if a change in CD line
if (inportb (Port + MSR) & 0x08) {
outportb (Port + MCR, inportb (Port + MCR) | 0x02); // Set
RTS line to high

}
else {
outportb (Port + MCR, inportb (Port + MCR) & ~0x02); //
Clear RTS line to high
}
break;
case 0x04: //IRx Char
EvtProcedure (inportb (Port + RBR));
break;
}
outport (PIC_ICR, 0x20);//Ack this IRQ
}
100

For More Information On This Product,
Go to: www.freescale.com

CommDrv.H

Freescale Semiconductor, Inc.

Serial Communications Interface De nitions f or the PC

#ifndef _ COMM_H
#define __ COMM_H1

#include "Notation.h"

#define COM1 0x3F8
#define COM2 0x2F8
#define COM4 Ox2E8

#define RBR

#define THR

#define DIVISOR_BAJO
#define DIVISOR_ALTO
#define IER

#define IIR

#define LCR

#define MCR

#define LSR

#define MSR

#define LATCH_DIVISOR
#define HABILITA_INT

#define RX_ENABLE
#define TX_ENABLE
#define MODEM_STATUS

#define PIC_ICR

#define PIC_IMR

#define COM1_ISROx0C
#define COM2_ISROx0B
#define COM4_ISROx08 + 9

#define ASCII 0
#define BINARY 1

0 /I Receive Buffer

0 /I Transmitter Buffer

0 /I Latch divisor low

1 /I Latch divisor high

1 /I Interrupt Enable Register
2 /I Interrupt ID Register

3 /l Line Control Register

4 /l Modem Control Register

5 I/l Line Status Register

6 /I Modem Status Register

128
8
1 /IRXRDY Enable IRQ
2 /[Tx Biuffer Empty IRQ
8 //Modem handshake lines have changed

0x20 /I PIC address
0x21 /I PIC IRQ Mask Register
/I COM1 Vector Table Index
/I COM2 Vector Table index
/I COM2 Vector Table index

M Functions to Export /T

void InitCommbDriver (void);

void OpenComm (Word CommPort, BYTE Bauds);
void OpenComm (Word CommPort, BYTE Bauds);

void CloseComm (void);

void CommEventProc (EventProc Proc);

void WriteComm (Byte c);

void WriteCommStr (char * string);

WORD CommpPort (void);

#define BAUDS_2400
#define BAUDS_4800

#define BAUDS_9600 0x0C
#define BAUDS_19200 0x06

AN2120

0x30
0x18

Application Note
Code Implementation

For More Information On This Product,

Go to: www.freescale.com

101

} { Freescale Semiconductor, Inc.

Application Note

#define BAUDS_38400 0x03

#endif

102

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Code Implementation

AN2120

103

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Application Note

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

-

Z“ freescale*

sewoonductor

For More Information On This Product,

Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Introduction
	Internet Primer
	Internet Protocol (IP)
	UDP Protocol
	Internet Control Message Protocol (ICMP)
	Dialing an Internet Service Provider (ISP)
	Point-to-Point Protocol (PPP)
	PPP Framing
	LCP Negotiations
	Password Authentication Protocol (PAP)
	Internet Protocol Control Protocol
	PPP Negotiations
	Serial Line Internet Protocol (SLIP)
	UDP/IP Application
	Application Framework Block Diagram
	Software Operation
	Listing 1

	Overview of the Modem Interface
	Operation of a Hayes-Compatible Model
	Listing 2
	Listing 3

	PPP Module
	Listing 4. Body of PPPEntry Function

	Internet Protocol Implementation
	Summary
	Code Implementation
	Main.C Application Main Function
	CommDrv.C Serial Communications Interface Driver
	SLIP.C Serial Line Internet Protocol Implementation Module
	PPP.C Point-to-Point Protocol Implementation
	ModemDrv.C Modem Support Routines
	IP.C Internet Protocol Implementation
	UDP.C User Datagram Protocol Implementation
	ICMP.C Internet Control Message Protocol Module Implementation
	PLL.C Code of InitPLL Function
	Delay.C Source Code of Variable Delay() Function
	CommDrv.H Header File for SCI Driver
	PPP.H Header File for PPP Implementation
	SLIP.H Header File for SLIP Implementation
	ModemDrv.H Header file for Modem driver
	UDP.H UDP Header Definitions
	PLL.h Header Definitions for the PLL.c Module
	Delay.h Header Definitions for Delay() Function Support
	Notation.h Notation Used in the Source Code
	CommDrv.C Serial Communications Interface Driver for the PC

