
Freescale Semiconductor
Application Note

AN2089
Rev. 2, 11/2004

CONTENTS

1 Wavelet Transform ...2
1.1 Theory ... 3
2 Implementation on StarCore-Based DSPs7
2.1 Lifting ..8
2.2 Integer Lifting ...10
2.3 StarCore Implementation in C Code10
2.3.1 Format of a Tile ...11
2.3.2 Decomposition ..12
2.3.3 Memory Organization ...12
2.4 StarCore Implementation in Assembly Code14
2.4.1 Code Structure and Features14
2.4.2 Memory Use ..14
2.4.3 Parallel Features ..16
2.5 StarCore Implementation in Optimized Assembler 17
3 Summary ...17
4 References ...17

APPENDIXES:
Appendix A
Discrete Wavelet Transform C Code19

Appendix B
Discrete Wavelet Transform - Assembly Code30

Appendix C
Discrete Wavelet Transform Optimized Assembly Code 37

JPEG2000 Wavelet Transform on
StarCore™-Based DSPs
Freescale Semiconductor’s StarCore™-based DSPs have many
features to perform image compression algorithms quickly and
efficiently. This application note presents an example of a
wavelet transform to highlight these features. It describes in
detail how to implement one discrete wavelet transform that is
included in the JPEG2000 image compression standard. One of
the strengths of JPEG2000 is that it offers a large range of
compression features with a unified framework. Among the
capabilities of the JPEG2000 compression standard are:

• Carry out lossy compression at the same performance level
as JPEG.

• Handle bi-level still images.

• Provide high resolution processing, that is, more than 8-bits
per pixel.

• Perform lossless compression within the same unified
framework.

• Provide progression by resolution from lossy images,
including lossless compression.

• Allow region of interest (ROI) compression and
decompression.

• Provide error resilience.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Wavelet Transform
1 Wavelet Transform
Wavelet transformation does not lead to compression itself but converts the data into a more suitable form for later
compression by other components of the standard. Data transformation in image compression serves three primary
purposes:

• Decorrelate the image components. An appropriate transform can decorrelate the image components.
The information in the spatial domain is represented more efficiently in the transform domain because
if the coefficients are totally decorrelated, there is no duplication of information between the
coefficients. However, in practice, complete decorrelation of an input signal can be achieved only if it
is a Gaussian source.

• Quantize the image data within the transform domain. The transform domain is usually better for
quantization because the quantization errors can be distributed to improve perception by the human
visual system (HVS).

• Take advantage of fast algorithms to perform key transforms. The availability of these fast algorithms
has led to the widespread use of certain transforms such as the discrete Fourier transform (DFT) and
the discrete cosine transform (DCT). Here, the term fast is in comparison carrying out a DFT without
the use of the fast Fourier transform (FFT).

A typical image tends to have a predominance of low frequency components. Therefore, it is useful to have a
detailed analysis in the low frequency band and a coarse analysis in the higher frequency bands. This requirement
explains the interest in the wavelet transform. While the DFT and DCT split the frequency spectrum into even
bands of frequencies during analysis, the wavelet transform splits the spectrum so that it provides good frequency
resolution at low frequencies, with associated poor time resolution, and coarse frequency resolution at high
frequencies, with associated fine time resolution. In other words, a large bandwidth in the frequency domain is
coupled with a short window in the time domain and vice versa. Conversely, the windowed DFT and DCT have a
fixed-length window in the time domain, which ensures that the bandwidth in the frequency domain is also fixed.
Figure 1 illustrates these different properties for both the DFT and a typical wavelet transform.

Figure 1. Time-Frequency Resolution of DFT and Wavelet Transform

The DFT and DCT do not allow for non-stationary signal properties. A stationary signal is one where the statistical
properties of the signal remain constant over time, that is, the mean and variance of the signal do not change. The
wavelet transformation has an advantage over both the DFT and DCT transforms because it does allow for non-
stationary signal properties.

� �

fr
eq

ue
nc

y

fr
eq

ue
nc

y

DFT Wavelet Transform

Time Time

Wavelet TransformDFT

F
re

qu
en

cy

F
re

qu
en

cy
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

2 Freescale Semiconductor

Wavelet Transform
In JPEG, the DCT is implemented as a block-based transform to get around the fact that an image is usually not
stationary. An advantage of the wavelet transform over the DCT is that, because it allows for the signal to be non-
stationary, it does not have to be implemented as a block-based transform. Usually a transformation is performed
because each transformed coefficient can be processed independently. A disadvantage of using the DCT for image
processing is that the image must be decomposed into small contiguous blocks that are each transformed
separately. Although the DCT does a fair job of decorrelating the coefficients within a single block, this is not true
across different blocks because the transformation on one block is carried out independently of all other blocks. For
a DCT implemented as a block transform of eight, every eight samples in the input signal are independently
transformed into a new set of eight coefficients. However, a wavelet transform can be carried out across a whole
image, and the decorrelation that it achieves between coefficients is extended throughout the image because, apart
from a simple case called a Haar transform, all other wavelet transforms are lapped transforms. Figure 2 shows the
basis vectors for the (5,3) wavelet transform that is discussed in this application note.

Figure 2. Lapped Transform Nature of the (5,3) Wavelet Transform

The translates of the primary basis vectors (g0 and g1) that form the next two basis vectors (g2 and g3) overlap the
primary basis vectors. Therefore, every group of transformed coefficients has an area of overlap with the original
image samples, which helps to prevent blocking artifacts. Another advantage of the wavelet transform over the
DCT in image processing is that it naturally affords multi-resolution processing.

1.1 Theory
Figure 3 shows an example of a wavelet, which is oscillatory and has an average value of zero that decays to zero
after a finite period. The Fourier transform uses a series of different frequency sine and cosine waves as its basis
functions. In contrast, the wavelet transform uses a series of wavelets as its basis functions. However, this
collection of wavelets is derived by the dilation and translation of a single primary wavelet, as shown in Figure 3,
which is based on one of the Daubechies series of wavelets. Therefore, unlike the Fourier transform with only one
possible set of basis functions, (that is, sine and cosine), there is an infinite number of possible wavelet transforms
because the basis functions can be derived from different primary wavelets. However, wavelets must have the
following properties to serve as a basis for a wavelet transform:

• Be absolutely integrable and square integrable.

• Be composed only of positive frequency components.

• Have a DC component of zero.

g0

g1

g2

g3

Two translates
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 3

Wavelet Transform
Figure 3. Daubechies Wavelet Function and the Corresponding Scaling Function

The wavelet transform is a form of subband coding and can be implemented using filter banks [4] [5]. We assume
that there are only two filters in both the synthesis and analysis phases of the transformation. These filters take the
form of a low-pass and a high-pass, which are quadrature mirror filters (QMF) with respect to one another, that is,
they have frequency responses of the form shown in Figure 4. These filters can be used to analyze a signal and
then resynthesize it as illustrated in Figure 5. Examination of a wavelet in the frequency domain reveals that it has
the form of a band-pass filter. For the low-pass part of the QMF to be constructed, a wavelet cannot be used.
Instead a so-called scaling function is used as the low-pass filter (see Figure 4). Indeed, one method to produce a
wavelet is to develop a low-pass filter of the form of G0 by defining its frequency response. This filter can then be
used as the basis from which to produce the other filters. In Figure 5, H0 and G0 are the low-pass filters, and H1
and G1 are the high-pass filters. The low-pass filters gives rise to the scaling functions and the high-pass filters give
rise to the wavelet functions. If certain rules are followed [6], this method produces orthogonal wavelets with
perfect reconstruction properties.

Figure 4. Quadrature Mirror Filters Used in Wavelet Transformation

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

A
m

pl
itu

de

time

A
m

pl
itu

de

Time 0 50 100 150 200 250
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

A
m

pl
itu

de
A

m
pl

itu
de

Time

Daubechies Wavelet Function Corresponding Scaling Function

High pass filter (G1)Low pass filter (G0)

ð

dB

frequency

(Scaling Function) (Wavelet)

Low-Pass Filter (G0)

(Scaling Function)

High-Pass Filter (G1)

(Wavelet)

Frequency
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

4 Freescale Semiconductor

Wavelet Transform
Figure 5. Two-Channel Subband Analysis and Synthesis Banks

In image processing it is important to have zero phase filters so that if the image is shifted the frequencies maintain
their relative phase in the transform domain. If relative phase is not maintained, distortion occurs particularly to the
areas of the image with sharp changes in frequency, such as edges or lines. This distortion is accentuated with color
images where non-zero phase filtering can shift different colors by different amounts relative to each other. It is
difficult to achieve zero phase using the design method described here, where all the synthesis and analysis filters
are derived from the same low-pass synthesis filter. Therefore, bi-orthogonal wavelets are very popular in image
processing because in these cases, the design method uses two wavelets instead of one. One wavelet is used for
decomposition and a different one is used for reconstruction, making it easier to achieve zero-phase filtering. The
condition of bi-orthogonality ensures that the forward transform is invertible. This is one of the reasons why bi-
orthogonal wavelets have been selected for the JPEG2000 standard. In particular, the (5,3) bi-orthogonal wavelet is
described in this application note.

Consider an example in which there are only two separable wavelet filters, one for low-pass filtering and one for
high-pass filtering. The filters are separable because the horizontal rows in a two-dimensional image can be filtered
separately from the vertical columns. The image can be reduced to a low resolution image (the scaling functions)
and a succession of detail images (the wavelets) by repeatedly applying the filters in both the horizontal and
vertical directions. Figure 6 shows this process for a two-level decomposition. Notice how only the low-pass
results from any particular level are further decomposed. As in Figure 5, the high-pass analysis filter is H1 and the
low-pass analysis filter is H0. Also note that Figure 6 follows the JPEG2000 convention that vertical filtering is
followed by horizontal filtering.

Our example employs the so-called tree structured decomposition using filter banks, in two dimensions, which
Mallat first described [4]. Decimation occurs after each filtering process, which reduces the number of coefficients.
Therefore, it does not matter how many levels of decomposition have taken place; the final number of coefficients
equals the original number of pixels in the image. The recomposition, or decoder, is the inverse of this
decomposition except that G0 replaces H0 and G1 replaces H1 and the decimators are replaced by interpolators.

Figure 7 shows a three-level decomposition of an image. The HH1 band is formed by filtering the image once in
both the horizontal and vertical directions with the high-pass analysis filter, whereas the LH1 band is formed by
low-pass filtering horizontally followed by high-pass filtering vertically. Two-level decomposition is denoted as
xx2 (where x can be either an L or an H) and is formed by taking the LL1 band and repeating the horizontal and
vertical filtering with the appropriate filters. This operation can be repeated to decompose the low-pass portion of
the image further until, in theory, only 1 pixel remains in the lowest level of decomposition. These different
resolution images can be used, through linear combination, to reconstruct the original image.

H0

H1

G0

G1

2 2

22

Analysis SynthesisAnalysis Synthesis
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 5

Wavelet Transform
Figure 6. Two-Level Wavelet Decomposition in Two Dimensions

In fact, each subband represents the whole image even though they are different sizes. Therefore, if an error occurs
in one subband, for example, through quantization, it is not detrimental because the different image representations
in the other subbands help to remove the error.

Figure 7. Subband Passbands for Three-Level Wavelet Analysis

H1

H0

2

2

H0

H0

H1

H1

H1

H0

2

2

H1

H0

2

2

Vertical Filtering

Vertical Filtering

Horizontal Filtering

Image pixels

x[n1,n2]

LL2

LH2

Horizontal Filtering

H1

H0

2

2 HL2

HH2

LH1

HL1

HH1 2

2

2

2

Decimation by 2 Decimation by 2

Vertical Filtering

Horizontal Filtering

Vertical Filtering

Image Pixels
x[n1, n2]

6

28

HH1
(diagonal edges)

LH1
(vertical edges)

HL1
(horizontal edges)

HL2

HH2LH2

HL3

HH3LH3

LL3

128

64

32

32

(Horizontal Edges)

(Diagonal Edges)(Vertical Edges)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

6 Freescale Semiconductor

Implementation on StarCore-Based DSPs
Figure 8 and Figure 9 compare the results of using JPEG2000 (with the (5,3) wavelet transform) and baseline
JPEG (which uses the DCT) on a portion of the ‘Barbara’ image. Here, the image has been compressed by
approximately the same amount for both JPEG and JPEG2000—that is, about 0.38-bits per pixel. To obtain these
pictures, a quantization step size of 0.125 was used for JPEG2000 whereas the JPEG quality setting was twelve. It
is stressed that the compression used to get these pictures is quite severe in comparison to the level of compression
an image would normally be subjected to. The intention is to highlight the differences between the two techniques.
The JPEG compressed image in Figure 8 clearly shows blocking artifacts. The JPEG2000 image in Figure 9, on
the other hand, shows only an overall degraded image rather than specific blocking effects. For details on wavelets
and subband coding theory, consult the two introductory texts listed in the references [5] and [11].

Figure 8. Compression with JPEG –Quality 12

Figure 9. Compression with JPEG2000 –Step 0.125

2 Implementation on StarCore-Based DSPs
Wavelets are either orthogonal or non-orthogonal. For example, Daubechies’ wavelets [6] are orthogonal while
Mallat’s [4] are bi-orthogonal. The Le Gall (5,3) bi-orthogonal wavelet [7] was chosen as the transform to use in all
the experiments undertaken for this application note. This particular wavelet was chosen because it is one of the
transforms in the JPEG2000 specification. In addition, it is relatively simple to implement this wavelet because it is
so short. The implementation described here is based on the JPEG2000 standard [8] in Annex F, section F3.6, the
so-called 1D-SD procedure, (which means 1-dimensional sub-band decomposition). This implementation is for a
wavelet transform that produces lossless compression and uses reversible 1D filtering. Lossless means that the
integer lifting technique is used to carry out the transformation [9].
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 7

Implementation on StarCore-Based DSPs
For an image to be filtered, its boundaries must be extended by an amount that is dictated by the length of the filter.
In this case, symmetric extension is performed so that the extra pixels are the mirror image of the actual image
pixels in both horizontal and vertical directions. This implementation uses tiling to split the image into separate
tiles of size 128 × 128 pixels. Each tile is then transformed independently of any other tile. If the tile sizes become
too small, blocking artifacts becomes a problem. However, a relatively large tile size, 64 × 64 and above, should
not suffer significantly from blocking artifacts. Ease of implementation outweighs blocking considerations. The
wavelet transform is still a lapped transform and are therefore non-stationary within the tile boundaries [2]. This
implementation was tested using the Metrowerks® CodeWarrior® software development tools.

2.1 Lifting
Integer lifting is explained using the Le Gall (5,3) wavelet as an example. The coefficients for the analysis filters
are listed in Table 1, where h0 is the low-pass filter and h1 is the high-pass filter.

The conventional method for performing a wavelet transform is to do a pyramidal decomposition of the input data,
as shown in Figure 6. However, for the lifting method, the low-pass and high-pass filter paths are not completely
independent in that the decomposition is now performed as shown in Figure 10 for a one-dimensional case. As
illustrated, the input data is split into even and odd samples, the so-called lazy transform. Notice that the resulting
samples are superscripted with a zero to denote that they are still at level zero of the decomposition tree. Similarly,
the output samples from each of the low-pass and high-pass streams are denoted with a superscript of 1 to indicate
one level of decomposition.

Figure 10. Dependence of Low-Pass and High-Pass Filter Paths for (5,3) Filter

Table 1. Le Gall (5,3) Analysis Filter Coefficients

Index h0 h1

0 3/4 1

1 1/4 –1/2

2 –1/8 0

-1/4

Input image
pixels

+

+

-

-

1/2

2

2

-1/4

z-1

x[n]

Low-pass

High-pass

even samples
(s0)

odd samples
(d0)

(s1)

(d1)

z-1

1/2

z-1

-1/4

Input image
pixels

+

+

-

-

1/2

2

2

-1/4

z-1

x[n]

Low-pass

High-pass

even samples
(s0)

odd samples
(d0)

(s1)

(d1)

z-1

1/2

z-1

Input Image
Pixels

Low-Pass

High-Pass

Odd Samples
(d0)

(s1)

(d1)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

8 Freescale Semiconductor

Implementation on StarCore-Based DSPs
After the ‘lazy’ transform, filtering takes place as shown and this process can be described by Equation 1 and
Equation 2.

 Equation 1

 Equation 2

Where, n is the sample index for the separate even and odd sample vectors. The s denotes sum and represents the
low-pass output. The d denotes difference and represents the high-pass output. Figure 11 illustrates the process for
the (5,3) filter with a view to implementation. As in JPEG2000, odd symmetrical extension is used when the pixels
at n equal –1 and –2, and have the values for the pixels at n equal +1 and +2 respectively. Similarly, the value for n
equals 6 is the same as the pixel at n equals 4, in this example. In the diagram, the values for the filter multipliers
are placed next to the appropriate path.

Figure 11. Lifting Method for the (5,3) Wavelet Filter

The lifting technique does allow for the even samples to become the low-pass output and the odd samples to be the
high-pass output. However, we store the two output streams separately. The relation between the filter coefficients
in Table 1 and the multipliers shown in Figure 11 is explained with reference to Equation 3 and Equation 4.

 Equation 3

 Equation 4

The coefficients of these two high-pass filtering operations are simply the high-pass filter coefficients. Equation 5
shows how the low-pass filtering operation is undertaken.

s1

n
s0

n

1
4
--- d 1

n 1–
d1

n
+()+=Low-Pass:

d1

n
d0

n

1
2
--- s0

n
s 0

n 1+
+()–=High-Pass:

4
1

4
1

4
1

11

11

- 2
1

- 2
1

- 2
1

- 2
1

- 2
1

- 2
1

1

4
1

- 2
1

4
1

- 2
1

11

x[n]

n -2 -1 0 1 2 3 4 5 6

d[i]

s[j]

Symmetric
extension

High pass output

Low pass output

Image pixel

co-ordinates

4
1

High-Pass Output

Low-Pass Output

ExtensionImage Pixel
Coordinates

d 0[] 1
2
---x 0[]– x 1[] 1

2
---x 2[]–+=

d 1[] 1
2
---x 2[]– x 3[] 1

2
---x 4[]–+=
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 9

Implementation on StarCore-Based DSPs
 Equation 5

As expressed in the last line of this equation, there is a one-to-one correspondence between the low-pass
coefficients and the coefficients of the h0 filter, as required. Therefore, in the analysis phase, the lifting technique
has a direct correspondence with convolution using the filter coefficients given in Table 1 because the input vector,
x[n], is the same for both the lifting and conventional convolution methods. However, this is not the case for
synthesis, which is not discussed in this document.

2.2 Integer Lifting
To produce integer arithmetic, Equation 1 and Equation 2 are rewritten as follows:

 Equation 6

 Equation 7

To maintain integer arithmetic, truncation must take place where division operations are performed on the integer
numbers, as shown by the operators, which denote rounding down. In Equation 7, one-half is added to avoid
bias because multiplication by one-fourth has occurred, as in Equation 6. Even though this rounding operation is
non-linear, lifting allows reversibility because the inverse is found by reversing the order and changing the signs of
the forward transform [9]:

 Equation 8

 Equation 9

Information is not lost in this process because the sum and difference of two integers are either both even or both
odd, so the least significant bit is the same in both cases. The last bit of the sum can be omitted because the
information is maintained by the difference value. Thus, in the inverse transform of Equation 8 and Equation 9,
the information that was apparently lost in the forward transform is replaced by the sum and difference operations,
respectively.

2.3 StarCore Implementation in C Code
Appendix A provides the C code for implementation on a StarCore DSP. This section describes the design of this
implementation and the actual variables used in the C program. Following are conventions for naming variables:

• Constants start with a letter k.

• Global variables start with a letter g.

Input parameters to the wavelet transform are:

• A pointer to an area of memory containing a tile of image pixels.

• The number of wavelet decomposition levels required.

s 1[] x 2[] 1
4
---d 0[] 1

4
---d 1[]+ +

1
8
---x 0[]– 1

4
---x 1[] x 2[] 1

4
---x 2[]– 1

4
---x 3[] 1

8
---x 4[]–+ + +

1
8
---x 0[]– 1

4
---x 1[] 3

4
---x 2[] 1

4
---x 3[] 1

8
---– x 4[]+ + +

=

=

=

d1

n
d0

n

1
2
--- s0

n
s 1

n 1+
+()–=

s1

n
so

n

1
4
--- d 1

n 1–
d1

n
+() 1

2
---++=

d0

n
d1

n

1
2
--- s0

n
s 0

n 1+
+()+=

s0

n
s1

n

1
4
--- d 1

n 1–
d1

n
+() 1

2
---+–=
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

10 Freescale Semiconductor

Implementation on StarCore-Based DSPs
The result of the wavelet transform is a set of subbands corresponding to the number of decomposition levels
described by Figure 7 on page 6. Figure 12 shows the interface to the wavelet transform code block.

Figure 12. Interface to Wavelet Transform Code Block

The code in this application note assumes that the image is already divided into 128 × 128 pixel tiles and that each
pixel is DC level shifted. We assume that each pixel is 12-bits long so that DC level shifting ensures that the input
to the wavelet transform is in the range –2047 to 2048. As noted earlier, the transform itself does not lead to
compression that transforms a tile of 128 × 128 pixels into 128 × 128 coefficients. Instead, the transform puts the
data into a form that is better for compression by other components of the JPEG2000 standard. The number of bits
in the pixel does not significantly affect the speed of operation in the wavelet transform.

2.3.1 Format of a Tile
In this implementation all images are split into tiles which are 128 × 128 pixels. In the code, these dimensions are
assigned the constant names kTileHeight (the rows of an image tile) and kTileWidth (the columns of an image tile).
A tile is stored in memory as an array of coefficients, kTileWidth × kTileHeight in length. Each tile is allocated the
full array for storage. Sometimes an image is not an exact multiple of tiles in size, which results in tiles at the edges
of the image that are smaller than 128 × 128 pixels. Even in these instances, the program allocates the size of a full
tile array. Consequently, a tile row always starts at offsets 0, kTileWidth, 2 × kTileWidth, and so on. At the end of
each row there is undefined data for the smaller than normal tiles. Similarly, a tile that is smaller in height than
normal contains undefined data in its lower rows, as illustrated in Figure 14. The program is written so that this
undefined data is not processed.

Figure 13. Data Packing in Full Tile

DC level shifted
image pixels Forward

Discrete Wavelet
Transform

(LeGall 5/3)

Divide image
into 128×128

pixel tiles

DC Level
shift the

tile’s pixels

128×128
Transformed

image
coefficients

Code implemented in this application note

KTileWidth (128)

kTileHeight
(128)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 11

Implementation on StarCore-Based DSPs
Figure 14. Data Packing in Partially Full Tile

2.3.2 Decomposition
For each decomposition level, the data passes through the low-pass and high-pass (5,3) filters twice. The
decimation by two is incorporated into the filtering action, as shown in Figure 11. The data is first filtered
vertically into low-pass (L) and high-pass (H) subbands. The resulting subbands are then filtered horizontally into
low-low (LL), low-high (LH), high-low (HL) and high-high (HH) subbands. Each of these final four subbands is
one-fourth of the size of the input data. For smaller than normal tiles, the low band is the only band that is the same
size as the normal tile’s subbands. The first decomposition level processes the original tile. Second and later
decomposition levels reprocess the LL band, recursively. Therefore, a three-level decomposition on a 128 × 128
tile would produce the subbands with the sizes shown in Table 2.

In JPEG2000, the subbands are transmitted with the lowest decomposition level first (three-level in Table 2).
Notice that because of the decimation the number of output coefficients is the same as the number of input
coefficients.

2.3.3 Memory Organization
To minimize memory access and use, our implementation of the JPEG2000 algorithm performs the wavelet
transform using two memory buffers the size of a normal tile. One of these buffers is the original input tile buffer,
and buf in the code points to it. gTempBuf points to the other buffer. We can perform the transform using only
the input buffer, but this makes the code less readable.

Table 2. Sizes of Subbands After Three-Level Decomposition

Decomposition Level Subband Size

1 LH1 64 × 64

HL1

HH1

2 LH2 32 × 32

HL2

HH2

3 LH3 16 × 16

HL3

HH3

LL3

KTileWidth (128)

KTileHeight
(128)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

12 Freescale Semiconductor

Implementation on StarCore-Based DSPs
During vertical filtering, data is copied from the input tile buffer to the temporary tile buffer, and each column is
high-pass and low-pass filtered separately. This vertically filtered data is organized so that the top half of the
temporary buffer contains the low-pass data and the bottom half contains the high-pass data, as shown in Figure
15. The pointer, hBufOffset, is used to locate the high-pass vertically filtered data. The first kTileHeight/2 rows
are low-pass data. The bottom kTileHeight/2 rows are high-pass data. Each buffer is 128 pixels wide by 64 pixels
high. If there is insufficient data to fill the original buffer, the two temporary buffers are under-filled by a similar
amount and aligned to the top and left. The division between the two buffers remains fixed.

Figure 15. Vertical Filtering of the Image Data

The two blocks of vertically filtered low-pass and high-pass data are now filtered separately in the horizontal
direction. The results of these filtering operations are placed back into the original memory buffer, buf, where they
overwrite the original image data as shown in Figure 16. The result of this operation is that buf now contains the
first level of decomposition of the wavelet transform. As shown in Figure 16, buf is now divided into four
buffers, each containing 64 × 64 coefficients.

Figure 16. Horizontal Filtering of the Image Data

The process of vertical and horizontal filtering is repeated recursively with only the LL subband buffer. Again, if
the input data does not completely fill the input tile, the filtered data fills each output subband buffer by a
proportional amount. Subband boundaries are fixed for a tile size of 128 × 128 pixels. Table 3 shows offsets from
the start of the buffer for the different levels of decomposition.

Table 3. Offsets Into Different Subband Buffers

Subband Size Offset

LL3 16 × 16 0 0

LH3 256 1 × 28

kTileWidth

hBufOffsetLow-Pass

High-Pass

gTempBuf

Original Tile

buf

kT
ile

H
ei

gh
t

kTileWidth

Low-Pass

High-Pass

gTempBuf

LL

buf

kT
ile

H
ei

gh
t LH

HL

HH

_hBufOffset

_hBufOffset
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 13

Implementation on StarCore-Based DSPs
2.4 StarCore Implementation in Assembly Code
This section considers how specific StarCore features help to implement the wavelet transform. Assembly code for
the core part of the (5,3) wavelet transform is given in Appendix B for one-level decomposition. Each image pixel
is assumed to be 8-bits long.

2.4.1 Code Structure and Features
The example code in Appendix B includes three nested loops called VERT_LOOP, HORIZ_LOOP and
LEV_LOOP. The HORIZ_LOOP filters a single row of data while VERT_LOOP moves through every row in the
image. These two loops execute the low-pass and high-pass filtering in one direction—that is, either horizontally or
vertically. The HORIZ_LOOP constitutes the one-dimensional wavelet transform kernel and takes ten instruction
cycles. The loop, LEV_LOOP, exists to carry out one complete level of decomposition by ensuring that the whole
process is executed, as shown in Figure 17. The horizontal and vertical filtering of both high-pass and low-pass
outputs from the original image data are completed by this third outermost loop.

2.4.2 Memory Use
The discrete wavelet transform, high-pass filtering may cause an increase of up to 1-bit in the length of the output
coefficients during each level of decomposition. (In particular, this occurs when there is a sequence of alternating
maximum and minimum values). For example, the input of an 8-bit pixel can produce the output of up to 11-bits in
length with three levels of decomposition on the high-pass path. The low-pass filtering does not cause any increase
in coefficient length. This high-pass phenomenon has led to the use of word arithmetic rather than byte arithmetic
to allow for possible growth in coefficient length. Therefore, in the example given in assembly code, the image
pixels are assumed to be loaded into memory as words rather than bytes. Therefore, this assembly code can be used
to process images with pixels up to 13-bits long, which is useful because many camera manufacturers offer 12-bit
pixel length in their products.

In this example, the horizontal filtering is carried out before the vertical filtering. A key feature of this assembly
code version of the transform is the use of register offsets so that the output from the horizontal low-pass and high-
pass filters is stored in transposed form. Subsequent vertical low-pass and high-pass filtering is carried out with the
same assembly code as the horizontal filtering, as illustrated in Figure 17. In this figure, a block of 8 × 8 image
data undergoes one level of decomposition. There are two main stages to the process:

• Horizontal filtering. In this stage, the image data is high-pass and low-pass filtered before being stored
into two separate areas of memory. In the assembler, the output areas are pointed to by r1 for the high-
pass coefficients, and r2 for the low-pass coefficients. Because the filtering operation includes

HL3 512 2 × 28

Subband Size Offset

HH3 768 3 × 28

LH2 32 × 32 1024 1 × 210

HL2 2048 2 × 210

HH2 3072 3 × 210

LH1 64 × 64 4096 1 × 212

HL1 8192 2 × 212

HH1 12288 3 × 212

Table 3. Offsets Into Different Subband Buffers (Continued)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

14 Freescale Semiconductor

Implementation on StarCore-Based DSPs
decimation by two, the output from each of the horizontal filtering operations occupies only one-half
of the area of the original image. In Figure 17, only the first row of image data is shown to be filtered,
by way of example. Each output of both the low-pass and high-pass filters is displaced by the number
of rows in the image data from one another (eight bytes in this example). This transposes the output so
that the coefficients corresponding to a horizontal row of input data are now effectively arranged in
memory so that they are vertical, as shown. This is repeated for all rows of image data.

• Vertical Filtering. After all the rows of the image data are horizontally filtered, the vertical filtering of
the low-pass and high-pass coefficients occurs separately. Because the original image data (stored at
the label location ‘im1’ in the assembler code) is no longer needed, the output from the vertical
filtering operation can overwrite the original image data. The most memory required at any one time is
twice the tile size (2 × 8 × 8 bytes in this case). Since a transposition of the data has taken place, the
vertical filtering can use the same assembly code that was used for the horizontal filtering. In Figure
17, the first memory area, denoted by im1, is conveniently reshaped, and the output is lined up so that
a row corresponds to the original horizontal row of data (but decimated by two). Of course, in reality,
the memory is actually one continuous collection of bytes.

Figure 17. Transposing Horizontal Output Prior to Vertical Filtering

transpose
11 12 13 14 15 16 17 18

12
13
14

11

n i

x[n]

12
13
14

11

s[i]

h[i]

Low-Pass
Filtering

High-Pass
Filtering

im1

r1

r2

r1+n1

r2+n1

12
13
14

11

s[n]
Horizontal Decomposition Stage

n21 31 41 51 61 71 81
11 12 13 14

r1=im1

21

41

31

LL

LH

11
21

41

31

12 13 14

HH

HL

i
transpose

High
pass

filtering

Low
pass

filtering

Vertical Decomposition Stage

Low-Pass
Filtering

High-Pass
Filtering

Low-Pass
Filtering

Transpose

Transpose
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 15

Implementation on StarCore-Based DSPs
2.4.3 Parallel Features
In the assembler, the MAC instruction is not used for the wavelet transform, which is the main difference between
the lifting algorithm and its convolution counterpart. A great deal of parallelism can be obtained without the MAC
units. The two address arithmetic units can simultaneously perform two parallel address calculations. Additionally,
the four MAC and Bit Field Units (BFUs) can perform simple addition, subtraction, and shifting operations in
parallel with the address calculations. The two separate pairs of memory data and address buses can read or write
up to two words of data to memory in the same instruction cycle. The following code line shows the parallel set up
of two data registers with memory.:

move.w (r0)-,d0 move.w (r6)-,d11

In the outer loop (LEV_LOOP), the T bit in the status register (SR) is used for conditional execution of sets to
determine whether to carry out the vertical filtering stage on the previously high-pass filtered data or on the
previously low-pass filtered data. The following example, taken from the code, shows how such a decision can be
made and provides an example of parallelism within the set. A move instruction is performed simultaneously with
an addition to one of the address registers.

ift move.w #H_OUT,r0adda #HALF_PIXEL,r1,r1

The numerous registers are a key feature of a StarCore processor, which provide a great amount of flexibility.
Therefore, there is no need to store and transfer memory addresses repeatedly to address registers because there are
sufficient numbers (up to sixteen) of them to allow one register to be dedicated to a particular area of memory.
Notice that there are sixteen available in this example because modulo addressing is not used. In addition to the
address registers, there are sixteen data registers, which give further flexibility to the program.

Lastly, the core part of the algorithm is optimized and comprises the inner loop. In this loop, although only ten
instruction cycles are used, four separate output coefficients are calculated in parallel and written to memory. These
output coefficients include two low-pass filter outputs and two high-pass filter outputs. This is achieved once again
by making use of the many address and data registers available. As shown in Figure 18, the samples are processed
either wholly or partially up to five at a time creating a very efficient way of processing the input because it does
not require repeatedly storing and retrieving the samples from memory. The even samples in particular, are
involved directly in the production of two high-pass outputs and a low-pass output.

Figure 18. Samples Processed in Parallel to Produce Four Output Coefficients

h[1] produced in
previous loop

4
1

4
1

1

1
- 2

1

- 2
1

- 2
1

1

4
14

1

- 2
1

1

x[n]

n 4 5 6 7 8

High-Pass Output

Low-Pass Output

Image Pixel

Co-ordinates

h[2] h[3]

s[2] s[3]

Samples Processed in Parallel

High-Pass Output

Low-Pass Output

Image and Pixel
Coordinates
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

16 Freescale Semiconductor

Summary
2.5 StarCore Implementation in Optimized Assembler
Appendix C presents a version of the wavelet transform in highly-optimized assembler code. In this version, the
inner loop is unrolled once more so that eight samples are dealt with at once. Additionally, the middle loop code for
handling the symmetric extension is unrolled to handle eight samples at the start of a row and eight samples at the
end of the row. This version of the transform further improves processing speed by making even more use of the
many data and address registers. As few as 15 cycles are required to process 8 samples and produce 4 low and 4
high pass output coefficients. However, the image tile size must be divisible by 16. The wavelet code takes
approximately 62,000 clock cycles to transform a 128 × 128 pixel tile. Processing time is 0.026s to complete a
color 1M pixel image with YUV:422 format. This is just over 8 times as fast as the C version of the code.

Note: The skipls function must be inserted before the inner loop if the number of decomposition levels
reduce the size of the subband to as little as 16 × 16. The inner loop is not required and the skipls
operator ensures that it is not executed. However, a solution is to repeat the outer and middle loop
program code without the inner loop after the standard code (given in the Appendix C).

3 Summary
The wavelet transform C code requires approximately 510,000 cycles to process one 128 × 128 pixel tile.
Processing time is about 0.2 seconds to complete a 1 M color-pixel image. These measurements assume that the
pixels are all 12 bits. The StarCore processor operates at a clock speed of 300 MHz. The C code in Appendix A is
ANSI C code, and it was fully optimized by the Metrowerks CodeWarrior compiler in speed and size to produce
these performance figures. Modifying the code to work with any image size is fairly straightforward. In addition to
the C code, two different versions of the assembler code for the wavelet transform are included to highlight the
benefits of StarCore’s parallel architecture. In particular, the core wavelet algorithm is optimized so that only 15
instruction cycles are required to produce eight output coefficients. We hope this application note provides
sufficient explanation to implement the Le Gall (5,3) reversible discrete wavelet transform, which is included in the
JPEG2000 standard. Helpful textbooks dealing with wavelet transforms are cited in references [5], [10], and [11].

4 References
[1] JPEG2000 – The New Wave in Image Compression, P. Ogunbona, I. Kharitonenko, and P. John, (CCTV

Magazine, pp. 36–38, Jan. 2000).

[2] Lecture Notes on Wavelet Transforms, Ambikairajah E., (University of New South Wales, 2000).

[3] Lecture notes on Digital Image Processing, D. Taubman, (University of New South Wales, 2000).

[4] “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” S. Mallat, IEEE
Trans. Pattern Recognition And Machine Intelligence, Vol.11, No.7, pp. 674–693 (Jul., 1989).

[5] Wavelets and Subband Coding, M. Vetterli and J. Kovaèeviæ, (Prentice Hall: 1995).

[6] “Orthonormal Bases of Compactly Supported Wavelets,” I. Daubechies, Communications on Pure and
Applied Mathematics, Vol. XL1, pp. 090-996, 1988.

[7] “Subband Coding of Digital Images Using Symmetric Short Kernel Filters and Arithmetic Coding
Techniques,” D. Le Gall, and A. Tabatabai, IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 761–765, (New York: NY, 1988).

[8] JPEG 2000 Image Coding System, JPEG2000 Final Committee Draft Version 1.0, 16th Mar., 2000.
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 17

References
[9] “The Lifting Scheme: a Custom-Design Construction of Biorthogonal Wavelets,” W. Sweldens, Applied
Computing Harmonic. Analysis, vol. 3, no. 2, pp. 186–200, 1996.

[10] “Wavelets in Image Communication: Advances in Image Communication,” Vol. 5, Chapter 3, Wavelet
Transform an Image Coding, Ed. Barland M., (Elsevier: 1994).

[11] Wavelets and Filter Banks, G. Strang and T. Nguyen, (Wellesley-Cambridge Press: 1996).
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

18 Freescale Semiconductor

Appendix A
Appendix A
Discrete Wavelet Transform C Code

This program carries out the separable 2-D transform of image tile components using the LeGall (5,3) wavelet
transform.

Code Listing 1. Discrete Wavelet Transform C Code

/***
 Copyright (C) 2000, Freescale Semiconductor, Inc., All Rights Reserved
 This copyright notice does not imply publication.

 FILENAME: dwt.c

 DESCRIPTION: Discrete Wavelet Transform
 This program carries out the separable 2-D transform
 of image tile components using the LeGall (5,3) wavelet
 transform.

 It Implements Annex E of the Final Committee Draft of the
 JPEG 2000 standard, Part 1, 16 March 2000.

 It assumes a standard tile size of 128x128 pixels. In this
 particular example, the data from image.h is used for
 processing.

**/

#ifndef __DWT_H
#include "dwt.h"
#endif

/*---------------------*/
/* Function prototypes */
/*---------------------*/
/* Transform */

static void
TileTransformInPlace (
 Coeff buf [], /* Input buffer - must be kTileWidth by */
 /* kTileHeight in size */
 const Uint rows, /* Rows in input buffer */
 const Uint cols, /* Columns in input buffer */
 const Uint numLevels /* Number of levels of decomposition */
);

/* Wavelet */

static void
FilterBlock_Rows (
const Coeff src [], /* Source block */
 const Uint rows, /* Number of rows in a block */
 const Uint cols, /* Number of columns in a block */
 const Uint srcRowStep, /* Step width between rows */
 Coeff dstLow [], /* Destination block - low pass */
 Coeff dstHigh [] /* Destination block - high pass */
);
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 19

Appendix A
static void
FilterBlock_Cols (
 const Coeff src [], /* Source block. */
 const Uint rows, /* Number of rows in block.*/
 const Uint cols, /* Number of columns in block. */
 const Uint rowStep, /* Step width between rows. */
 Coeff dstLow [], /* Destination block - low pass. */
 Coeff dstHigh [] /* Destination block - high pass. */
);

static void
Filter_5_3_Stepped (
 const Coeff src [], /* Incoming array for filtering.*/
 const Uint n, /* Number of elements in src */
 const Uint srcStep,
 /* Number of array elements between successive source values.*/
 Coeff dstLow [], /* Destination array for low-pass coefficients */
 Coeff dstHigh [], /* Destination array for high-pass coefficients*/
 const Uint dstStep /* Number of array elements between successive */
 /*destination values. Must be equal for both destination arrays.*/
);

/*---------------------*/
/* global variables */
/*---------------------*/

Coeff gTempBuf [kTileWidth * kTileHeight];

/***

 FUNCTION NAME: Main

 VALUE RETURNED: none

 FUNCTION(S) CALLED: TileTransformInPlace.

 DESCRIPTION
 This function calls TileTransformInPlace
 The code has been hardcoded to provide 3 levels of decomposition
 for this application note.

**/

void main(void)
{

 TileTransformInPlace (gBuf, kRows, kCols, LEVELS);

}

/*--------------------*/
/* In place transform */
/*--------------------*/

/***

 FUNCTION NAME: TileTransformInPlace
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

20 Freescale Semiconductor

Appendix A
 INPUTS:
 Coeff buf[] Input buffer (Must be kTileWidth by kTileHeight in size.)
 const Uint rows Rows in input buffer.
 const Uint cols Columns in input buffer.
 const Uint numLevels Number of levels of decomposition.
 If numLevels is 0 then element 0 of the subbands (LL) will contain the contents
 of the iput tile.
DESCRIPTION:
 Transform tile into sub-bands, in place.
 Initialising bands
 The array of subbands is 1 + 3 * (numLevels - 1)
 elements long. Element 0 is the LL band, resolution 0. Elements 1-3
 are HL, LH and HH of resolution 1, in that order. Elements 4-6 are HL,
 LH and HH of resolution 2. And so on. Resolutions correspond to
 numLevels.

 Each array of coefficients for each band must be initialised. The array memory
 must exist, but values are don’t care. Elements corresponding to
 the highest resolution (resolution numLevels) must be exactly
 kTileWidth/2 wide and kTileHeight/2
 high. Elements for the second highest resolution must be exactly half
 as big. And so on. Elements for resolution 0 are the same size as
 resolution 1.

 On completion, the input buffer is partitioned into sub-bands. Resolution
 numLevels partitions buf into quarters, each kTileWidth/2 by
 kTileHeight/2. The 2nd, 3rd and 4th quarters contain the LH, HL and
 HH sub-bands. The first quarter is partioned again into quarters. This
 continues until resolution 1, where the 1st quarter contains the LL sub-band
 (resolution 0).

 If the rows or cols (or both) is less than kTileWidth or
 kTileHeight, data will be packed to the top and left boundaries of each
 quarter.
**/

static void
TileTransformInPlace (
 Coeff buf [],
 const Uint rows,
 const Uint cols,
 const Uint numLevels
)
{
 /* counters */
 Uint i;

 /* Real variables */

 const Uint maxWidth = kTileWidth >> 1;

 Uint width = kTileWidth;

 Uint hBufOffset = maxWidth * kTileHeight;
 Uint _hBufOffset = hBufOffset >> 1;

 Uint lrows, hrows;
 Uint lcols, hcols;
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 21

Appendix A
lrows = rows;
 lcols = cols;
 hcols = cols;

 for (i = numLevels; i > 0; i--)
 {
 Coeff * hBuf;
 Coeff * lhBuf;
 Coeff * hlBuf;
 Coeff * hhBuf;

 /* Do High / Low filtering */
 hBuf = gTempBuf + hBufOffset;
FilterBlock_Cols (
 buf,
 lrows,
 lcols,
 width,
 gTempBuf,
 hBuf
);

 /* Update values */
 hrows = lrows >> 1;
 lrows -= hrows;

 /* Do L -> LL / LH filtering */
 lhBuf = buf + _hBufOffset;

 FilterBlock_Rows (
 gTempBuf,
 lrows,
 lcols,
 width,
 buf,
 lhBuf
);

 /* Do H -> HL / HH filtering */
 hlBuf = buf + hBufOffset;
 hhBuf = buf + hBufOffset + _hBufOffset;

 FilterBlock_Rows (
 hBuf,
 hrows,
 hcols,
 width,
 hlBuf,
 hhBuf
);

 /* Update values */
 width >>= 1;
 hcols = lcols >> 1;
 lcols -= hcols;

 /* Clean up buffer offsets */
 hBufOffset >>= 2;
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

22 Freescale Semiconductor

Appendix A
 _hBufOffset >>= 2;
 }
}

/***

 FUNCTION NAME: filter_5_3_odd

 INPUTS:

 int x Central input sample. X(i), where i is odd.
 int xp Previous input sample, X(i-1).
 int xn Next input sample, X(i+1).
 (note that xp and xn may be exchanged without error, which
 is useful for symmetric extension)

 VALUE RETURNED: int, resulting filtered value.

 DESCRIPTION:
 Compute the result for the odd sample of the input, i.e.
 high pass filter.
**/
INLINE
int filter_5_3_odd (int x, int xp, int xn);

INLINE
int filter_5_3_odd (int x, int xp, int xn)
{
 return x - ((xp + xn) >> 1);

 /* (xp + xn - 1) / 2, round up, is given by adding +1 before dividing. */
}

/***

 FUNCTION NAME: filter_5_3_even

 INPUTS:

 int x Central input sample. X(i), where i is even.
 int yp Previous output sample of odd filter, Y(i-1).
 int yn Next output sample of odd filter, Y(i+1).
 (note that yp and yn may be exchanged without error which
 is useful for symmetric extension)

 VALUE RETURNED: int, resulting filtered value.
 DESCRIPTION:
 low pass filter of input even samples
**/

INLINE
int filter_5_3_even (int x, int yp, int yn);

INLINE
int filter_5_3_even (int x, int yp, int yn)
{
 return x + ((yp + yn + 2) >> 2);

 /* (yp + yn + 2) / 4, round down, is correct since >> rounds down. */
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 23

Appendix A
}

/***

 FUNCTION NAME: filter_5_3_stepped

INPUTS:
 const Coeff src Incoming array for filtering.
 const Uint n Number of elements in src.
 const Uint srcStep Number of array elements between successive source values.
 Coeff dst_low[] Destination array for high-pass coefficients.
 Minimum length n/2 (round up).
 Coeff dst_high[] Destination array for high-pass coefficients.
 Minimum length n/2 (round down).
 const Uint dstStep Number of array elements between successive destination values.
 Must be equal for both destination arrays.

 DESCRIPTION:
 Apply a (5,3) lifting filter to an array.
 This function works with non-contiguous arrays.
**/

static void
Filter_5_3_Stepped (
 const Coeff src [],
 const Uint n,
 const Uint srcStep,
 Coeff dst_low [],
 Coeff dst_high [],
 const Uint dstStep
)
{
/* Use rolling pass to avoid memory accesses. */
 /*
 Loop is centred around odd values. Current odd value is i.
 X is input array.
 Y is interleaved output array.
 Y(i), Y(i+2), ... are odd values (high coefficients).
 Y(i-1), Y(i+1), ... are even values (low coefficients).
 In practice, Y is stored to separate data arrays.
 */

 int x_odd; /* X(i) */
 int x_even_a; /* X(i-1) */
 int x_even_b; /* X(i+1) */
 int hi_a; /* Y(i-2) */
 int hi_b; /* Y(i) */
 int lo; /* Y(i-1) */

 /* Initial pass using symmetry. */
 const Uint src2Step = srcStep << 1;

 x_even_b = src [src2Step];
 /* this will be x_even_b in pass 1 also. */

 x_odd = src [srcStep];
 /* this will be x_odd in pass 1 also. */

 x_even_a = src [0];
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

24 Freescale Semiconductor

Appendix A
 hi_b = filter_5_3_odd (x_odd, x_even_a, x_even_b);
 /* for pass 1, this is also hi_a. */

 hi_a = hi_b;

 /* Main body */
 {
 /*
Main pass
 At start of loop, we have Y(i-2) and Y(i) (odd).
 Store Y(i).
 We calculate Y(i-1) (even) and store.
 Increment i (by 2). Current Y(i) is undefined.
 Load X(i), X(i+1) and calculate Y(i).
 Re-loop.
 */

 Uint i = 1;
 Uint srcOffset = srcStep; /* i * srcStep; */
 Uint dstOffset = 0; /* (i * dstStep)/2 */

 while (1)
 {
 /* Store */
 /* dst_high [i >> 1] = hi_b; */
 dst_high [dstOffset] = hi_b;

 /* Calculate Y(i-1) */
 lo = filter_5_3_even (x_even_a, hi_a, hi_b);
 /* dst_low [i >> 1] = lo; */
 dst_low [dstOffset] = lo;

 /* Increment and check termination. */
 i += 2;
 srcOffset += src2Step;
 dstOffset += dstStep;
 if (i >= (n-1))
 break;

/* Shuffle and reload */
 hi_a = hi_b;
 /* x_odd = src [i]; */
 x_odd = src [srcOffset];
 x_even_a = x_even_b;
 /* x_even_b = src [i+1]; */
 x_even_b = src [srcOffset + srcStep];
 hi_b = filter_5_3_odd (x_odd, x_even_a, x_even_b);
 }

 /* final pass using symmetry */
 if (n & 0x01) /* odd n */
 {
 /*
 i == n
 Useful values at termination:
 x_odd == X(i-2) == X(n-2)
 x_even_a == X(i-3) == X(n-3)
 x_even_b == X(i-1) == X(n-1)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 25

Appendix A
 hi_b == Y(i-2) == Y(n-2)
 Using symmetry:
 X(n-1) == X(n-1)
 X(n) == X(n-2)
 X(n+1) == X(n-3)

 We need:
 For Y(i-1): Y(i-2), Y(i), X(i-1).
 For Y(i): X(i), X(i-1), X(i+1).
 X(n), X(n-1), X(n+1)
Note however:
 For Y(i-2): X(i-2), X(i-3), X(i-1).
 X(n-2), X(n-3), X(n-1).
 X(n), X(n+1), X(n-1).
 So Y(i) = Y(i-2).
 */

 /* Calculate Y(i-1) and store. */
 lo = filter_5_3_even (x_even_b, hi_b, hi_b);
 /* dst_low [i >> 1] = lo; */
 dst_low [dstOffset] = lo;
 }
 else /* even n */
 {
 /*
 i == n-1
 Useful values at termination:
 x_odd == X(i-2) == X(n-3)
 x_even_a == X(i-3) == X(n-4)
 x_even_b == X(i-1) == X(n-2)
 hi_b == Y(i-2) == Y(n-3)
 Using symmetry:
 X(n-1) == X(n-1)
 X(n) == X(n-2)
 X(n+1) == X(n-3)

 We need:
 For Y(i-1): Y(i-2), Y(i), X(i-1).
 For Y(i): X(i), X(i-1), X(i+1).
 All we are missing is X(i) == X(n-1).
 We don’t need X(i+1) == X(n) == X(n-2), since we have this already.
 */

 /* Load X(i) */
 /* x_odd = src [i]; */
 x_odd = src [srcOffset];

 /* Calculate and Store Y(i) */
 hi_a = filter_5_3_odd (x_odd, x_even_b, x_even_b);
 /* dst_high [i >> 1] = hi_a; */
 dst_high [dstOffset] = hi_a;
/* Calculate Y(i-1) and store. */
 lo = filter_5_3_even (x_even_b, hi_b, hi_a);
 /* dst_low [i >> 1] = lo; */
 dst_low [dstOffset] = lo;
 }
 }
}

JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

26 Freescale Semiconductor

Appendix A
/***

 FUNCTION NAME: FilterBlock_Rows

 INPUTS:
 const Coeff src Source block.
 const Uint rows Number of rows in block.
 const Uint cols Number of columns in block.
 const Uint srcRowStep Step width between rows.
 Coeff dstLow[] Destination block - low pass.
 Coeff dstHigh[] Destination block - high pass.

DESCRIPTION:
 Filter the rows of a block.

 src is treated as a two dimensional array with rows starting every
 srcRowStep elements. Element 0 is row 0, column 0.

 The filter is applied over elements 0..(col-1) for each of
 rows.

 Destination blocks are considered to be in the same format, but with
 each row being only half as wide (srcRowStep/2).
 srcRowStep should be divisible by 2.
**/

static void
FilterBlock_Rows (
 const Coeff src [],
 const Uint rows,
 const Uint cols,
 const Uint srcRowStep,
 Coeff dstLow [],
 Coeff dstHigh []
)
{
 const Uint dstRowStep = srcRowStep >> 1;
 Uint srcStart = 0;
 Uint dstStart = 0;
 Uint i;

 for (i = 0; i < rows; i++)
 {
 Filter_5_3_Stepped (
 src + srcStart,
 cols,
 1,
 dstLow + dstStart,
 dstHigh + dstStart,
 1
);

 srcStart += srcRowStep;
 dstStart += dstRowStep;
 }
}

/***
FUNCTION NAME: FilterBlock_Cols
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 27

Appendix A
 INPUTS:
 const Coeff src Source block.
 const Uint rows Number of rows in block.
 const Uint cols Number of columns in block.
 const Uint rowStep Step width between rows.
 Coeff dstLow[] Destination block - low pass.
 Coeff dstHigh[] Destination block - high pass.

DESCRIPTION:
 Filter the columns of a block.

 src is treated as a two dimensional array with rows starting every
 rowStep elements. Element 0 is row 0, column 0.

 The filter is applied over elements 0..(row-1) for each of
 columns.

 Destination blocks are considered to be in the same format as src.
 Destination blocks will have only half as many rows as source blocks.
**/

static void
FilterBlock_Cols (
 const Coeff src [],
 const Uint rows,
 const Uint cols,
 const Uint rowStep,
 Coeff dstLow [],
 Coeff dstHigh []
)
{
 Uint i;

 for (i = 0; i < cols; i++)
 {
 Filter_5_3_Stepped (
 src + i,
 rows,
 rowStep,
 dstLow + i,
 dstHigh + i,
 rowStep
);
 }
}

/***
 Copyright (C) 2000, MARC, Freescale, Semiconductor, Inc., All Rights Reserved
 This copyright notice does not imply publication.

 FILENAME: dwt.h

 DESCRIPTION:
 Contains definitions and types for discrete wavelet transform.

**/
#ifndef __DWT_H
#define __DWT_H
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

28 Freescale Semiconductor

Appendix A
#endif

#define INLINE static
#define LEVELS 3

/*--------------------*/
/* Standard Types */
/*--------------------*/

typedef unsigned int Uint;

typedef short int Coeff;

/*--------------------*/
/* Standard Constants */
/*--------------------*/

enum
{
 kTileWidth = 128,
 kTileHeight = 128,
 kRows = 128,
 kCols = 128
};

/*--------------------*/
/* Include files */
/*--------------------*/

#include <stdio.h>

/* DC shifted 12 bits image tile of size 128x128 */
#ifndef __IMAGE_H
#include "image.h"
#endif

/***
 Copyright (C) 2000, MARC, Freescale Semiconductor, Inc., All Rights Reserved
 This copyright notice does not imply publication.

 FILENAME: image.h

 DESCRIPTION:
 Contains image data for testing dwt.c

**/
#ifndef __IMAGE_H
#define __IMAGE_H
#endif

Coeff gBuf[kRows*kCols] =
{
 insert image data.
};
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 29

Appendix B
Appendix B
Discrete Wavelet Transform - Assembly Code

Code Listing 2. Discrete Wavelet Transform Assembly Code

;**
; Star*Core benchmarks
;**
; FILENAME : wave_5_3.asm
; AUTHOR : Sue Twelves
;**
;**
; ALGORITHM : 1 level decomposition of the 5,3 wavelet transform
;
;**

;
; Constants Used:
;
; H_OUT : $500 initial address of high pass output.
; L_OUT : $650 initial address of low pass output.
;
; COLUMN_DIV : 2 number of samples in a row (number of columns) divided by four
; less the first 4 and last 4 for symmetric extension. The division
; by 4 is due to the parallel nature of the algorithm where four
; samples are dealt with simultaneously.
; ROW : 16 number of rows in image
;
; Input/Output location:
; high output initial address: H_OUT
; low ouput initial address: L_OUT
;
; registers used:
; d0 through d9, r0,r1,r2,r3,r4,r5,r6
;
; r0 points to the input x(n)
; r1 points to the high pass output h(i), it is updated by an offset with the number of rows
; r2 points to the low pass output s(i), it is updated by an offset with the number of rows
; r3 points to the next contiguous high pass output memory location
; r4 points to the next contiguous low pass output memory location,
; r6 points to the next input x(n+4) for parallel processing
; n0 contains 2, due to the decimation by 2 after low and high pass filtering
; n1 contains the number of rows and provides the offset for both r1 and r2
;
; assumptions:
; Number of columns and rows are powers of 2.
; Only one level of decomposition is carried out.
;
;**

COLUMN_DIV equ 2
ROW equ 16
HALF_PIXEL equ 256
QUART_PIXEL equ 128
SAMP_BLOCK equ 8
H_OUT equ $500
L_OUT equ $650

; Input data
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

30 Freescale Semiconductor

Appendix B
org p:$0
jmp $1000

org p:$200
 im1: dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00
dcw $02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$00,$00,$00,$00

 dcw $09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$00,$00,$00,$00

org p:$1000

init:
; r0 -> input x(n),
; r6 -> x(n+4)
; r1 -> output h(i) (high pass)
; r2 -> output, s(i).
; point r3 -> h(i) too
; point r4 -> s(i) too
; r5 contains the number of rows for processing - it controls the number of times
; the middle loop is carried out - this changes depending on which stage of the
; decomposition the algorithm is at. Every time a low or high pass filter has
; completed it’s task, the number of outputs is halved (decimation), therefore,
; the number of subsequent samples for a filtering operation is also halved.

; set up the vertical and horizontal filter loops and memory pointers

move.l #im1,r0
move.w #H_OUT,r1
move.w #L_OUT,r2 dosetup0 LEV_LOOP
move.w #1,d8
move.w #ROW,r5 dosetup1 VERT_LOOP
move.w #2,n0
move.w #2,d9 dosetup2 HORIZ_LOOP
move.w #ROW,n2 doen0 #3
move.w #2,d7
move.w #3,n3
move.w #5,n1

; This loop ensures that one level of wavelet decomposition is undertaken.
skipls test

LEV_LOOP
kernel: loopstart0

tfra r2,r4
doen1 r5
[tfra r0,r6 tfra r1,r3
]
adda #SAMP_BLOCK,r6
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 31

Appendix B
; need to process every row in the image
VERT_LOOP

; This is the outer loop to go around all the rows in the image.
; Need to do symmetrically extended bits first

loopstart1

; only go around the inner loop (n/4) - (2x4) because 1st and last 4 values
; in a row is dealt with separately because of symmetric extension.
; point r3 to h(i+1) and r4 to s(i+1)
; d11 = x(n+4) d1 = x(n+2) d10 = x(n+3)

[adda #2,r3 move.w (r0+n0),d1
]
[adda #2,r4 move.w (r6)-,d11
]

; r6 -> x(n+8)
; put x(n) into d0
; put x(n+2) into d2
; add x(n+2)+x(n+4)

[doen2 #COLUMN_DIV move.w (r6)+n1,d10
]
[

move.w (r0)+,d0 iadd d1,d11
]

; calculate x(n) + x(n+2)
; calc 0,5(x(n+2) + x(n+4))
; d3 = x(n+1)
; r0 -> x(n+4)

[tfr d1,d2 iadd d0,d1
asr d11,d11 move.w (r0)+n3,d3

]

; calc 0.5(x(n) + x(n+2))
; calc x(n+3) - 0.5(x(n+2)+x(n+4))
; d10 = second high pass output h[i+1]

[asr d1,d1 sub d11,d10,d10
tfr d9,d12 tfr d8,d4

]

; d3 now holds the high pass output, h[i]

sub d1,d3,d3

; calc x(n+1) - 0.5(x(n)+x(n+2))
; in first case, h[-1] = h[0] (symmetric extension), therefore,just divide by 2
; to calculate the low pass output, but first add 1 to prevent bias
; d3 = high pass output h[-1] = h[0]
; d4 = h[0] + 1
; add 2 for second low pass output to prevent bias (because need to divide by 4)
; d10 = h(i)+h(i+1)+2
; need to store these in the buffer high pass output area of memory.
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

32 Freescale Semiconductor

Appendix B
; update pointer to high pass memory so that it is offset by the numbe
; of rows to ensure that the horizontal output is transposed to become
; vertical ready for the vertical filtering operations.

[iadd d3,d4 move.w d3,(r1)+n2
iadd d10,d3

]
[asr d4,d4 move.w d10,(r1)+n2

iadd d3,d12
]

; calc x(0) + 0.25(h[-1]+h[0])+0.5, i.e. s(0) and put into d4
; calc 0.25(h[0]+h[1])+0.5, put into d12
; get ready for next inner loop:
; d3 updated to h(i+1)
; d1 updated to x(n+4)

[iadd d0,d4 tfr d10,d3
move.w (r0)+n0,d1 asrr #2,d12

]

; calc x(n+2) + 0.25(h[i]+h[i+1])+0.5, put into d12
; need to store these in low pass output areas of memory.
; update pointer to low pass memory so that it is offset by the number
; of rows, see comment above

[move.w d4,(r2)+n2
iadd d2,d12

]

; d2 updated to x(n+4) too

[move.w d12,(r2)+n2 tfr d1,d2
]

; Situation before inner loop, now got:
; x(n+4) in d1 - need for calculation of h[i+2]
; h[i+1] in d3 - need for calculation of s[i+2]
; r0 points to x(n+4)
; r6 points to x(n+8)

; for every row in the image low and high pass filter the samples
skipls test2

HORIZ_LOOP
loopstart2

; d0 = x[n+2]

[
move.w (r0)-,d0 move.w (r6)-,d11

]

; add x[n] to x[n+2] and multiply by a half
; set d4 = x[n+1]

[iadd d0,d1 iadd d0,d11
move.w (r6)+n1,d10 move.w (r0)+n3,d4

]

[asr d1,d1 asr d11,d11
]

JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 33

Appendix B
; calc x03 - 1/2(x(n)+x(n+2))

[sub d1,d4,d4 sub d11,d10,d10
]

; update d1 to x(n+4) for the next loop as x(n)
; d4 now holds h(n) i.e. current high pass output
; calc 1/4(h(n-1)+h(n)) + 1/2

[iadd d4,d3 move.w d4,(r1)+n2
move.w (r0)+n0,d1

]

; add 2 inside the loop to get addition of a half when divided by 4.

[iadd d9,d3 iadd d10,d4
move.w d10,(r1)+n2

]
; divide by 1/4 - truncation gives desired result

[asrr #2,d3 iadd d9,d4
]

; calc s(n) by adding x(n) + 1/4(h(i-1) + h(i) +2), d3 = s(n)
; d4 = 0.25(2 + h(i) + h(i+1))

[iadd d2,d3 tfr d1,d2
asrr #2,d4

]

; move h(i) and s(i) to respective outputs
; add offset of number of rows to low pass output pointer, r2
; update d3 to h(n) for next time around the loop as h(n-1)

[move.w d3,(r2)+n2 iadd d0,d4
tfr d10,d3

]
move.w d4,(r2)+n2

loopend2

; now deal with last value for high pass and low pass using odd symmetric
; extension - the value of x(n+2) now equals x(n) assuming even number of
; samples in a row.
; h(i-1) is in d3
; r0 -> x[n]
; d1 = x[n] and x[n+2] = x[n], symmetric extension
; h[i] = x[n-1] - x[n] = x[n+1] - 1/2(x[n] + x[n+2])
; set d4 = x[n+1]

test2:

[
move.w (r0)-,d0 suba #2,r6

]

[iadd d0,d1 move.w (r0)+n3,d4
move.w (r6)+n1,d10

]

JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

34 Freescale Semiconductor

Appendix B
[asr d1,d1 sub d0,d10,d10
]

sub d1,d4,d4

[iadd d4,d3 move.w d4,(r1)+n2
iadd d10,d4

]

[iadd d9,d3 iadd d9,d4
move.w d10,(r1)

]

;calc 1/4(h(i-1) + h(i) + 2)
;set r1 -> the next contiguous high pass area of memory

[asrr #2,d3
tfra r3,r1 asrr #2,d4

]

;calc s(i) by adding x[n]

[iadd d2,d3 iadd d0,d4

]

; move s(i) to output
;set r2 -> next contiguous low pass area of memory

move.w d3,(r2)+n2
[move.w d4,(r2)

tfra r4,r2
]
loopend1

; clear the test bit in the status register: allows a conditional jump to be made
; when d7 is decremented to zero - this allows the outer loop to be performed three
; times - first on the input image and then separately on the resulting low and high
; pass output coefficients.
; In this case, the low pass filtering always precedes the high pass filtering,
; therefore, the reduction in loop counts is carried out in low pass set up line.

bmclr #0001,sr.l
move.l #im1,r1
nop
deceq d7
nop

; r0 -> the previous high pass output (i.e. new input for filtering)
; r1 -> midway through the original image memory area (i.e. new output)
; r1 will fill the HH subband
; r2 -> 3/4 way through the original image memory area
; r2 will fill the HL subband

ift [move.w #H_OUT,r0 adda #HALF_PIXEL,r1,r1
]

; set up for low pass band filtering
; r0 -> the previous low pass output (i.e. new input for filtering)
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 35

Appendix B
; r1 -> the start of the original image memory area (i.e. new output)
; r1 will fill the LH subband
; r2 -> 1/4 way through the original image memory area
; r2 will fill the LL subband

iff move.w #L_OUT,r0 asra r5
iff asra n2

adda #QUART_PIXEL,r1,r2

loopend0

test: stop
out
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

36 Freescale Semiconductor

References
Appendix C
Discrete Wavelet Transform Optimized Assembly Code

Code Listing 3. Discrete Wavelet Transform - Optimized Asssembly Code

;***
; Star*Core benchmarks
;***
; FILENAME : wave_5_3_opt.asm
; AUTHOR : Sue Twelves
; ALGORITHM : 1 level decomposition of the 5,3 wavelet transform
;
;***
;
; Constants Used:
;
; H_OUT: $500 initial address of high pass output.
; L_OUT: $650 initial address of low pass output.
;
; COLUMN_DIV: 2 number of samples in a row (number of columns) divided by 8 less the
; first 8 and last 8 for symmetric extension. The division by 8 is
; due to the parallel nature of the algorithm where loop unrolling
; has allowed 8 samples to be dealt with simultaneously.
; ROW: 32 number of rows in image
; HALF_PIXEL : half the number of pixels in the image tile
; QUART_PIXEL: quarter the number of pixels in the image tile
; SAMP_BLOCK: number of samples dealt with in parallel with the loop unrolling
;
; Input/Output location:
; high output initial address: H_OUT
; low ouput initial address: L_OUT
;
; registers used:
; d0 through d15, r0,r1,r2,r3,r4,r5,r6, n0,n1,n2,n3
;
; r0 points to the input x(n)
; r1 points to the high pass output h(i), it is updated by an offset with the number of rows
; r2 points to the low pass output s(i), it is updated by an offset with the number of rows
; r3 points to the next contiguous high pass output memory location
; r4 points to the next contiguous low pass output memory location,
; r5 contains the number of rows for processing - it controls the number of times
; the middle loop is carried out
; r6 points to the next input x(n+4) for parallel processing
; n0 contains 2, due to the decimation by 2 after low and high pass filtering
; n2 contains the number of rows and provides the offset for both r1 and r2
; n1 and n3 contain the offsets needed for updating registers used during the
; loop unrolled stages.
;
; assumptions:
; Number of columns and rows are powers of 2.
; The number of samples in a row/column is divisible by 16.
; Only one level of decomposition is carried out.
;
;***
COLUMN_DIV equ 2
ROW equ 32
HALF_PIXEL equ 1024
QUART_PIXEL equ 512
SAMP_BLOCK equ 8
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 37

Appendix C
H_OUT equ $100
L_OUT equ $800

; Input data

org p:$0
jmp $1000

org p:$200
im1: dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

38 Freescale Semiconductor

Appendix C
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02
dcw
$02,$03,$04,$05,$06,$07,$08,$09,$08,$00,$00,$00,$02,$03,$04,$05,$06,$07,$08,$09,$00,$00,$00,$00,$02,$
03,$04,$05,$06,$07,$08,$09
dcw
$09,$08,$07,$06,$05,$04,$03,$02,$03,$00,$00,$00,$09,$08,$07,$06,$05,$04,$03,$02,$00,$00,$00,$00,$09,$
08,$07,$06,$05,$04,$03,$02

org p:$1000

init:

; r0 -> input x(n),
; r6 -> x(n+4)
; r1 -> output h(i) (high pass)
; r2 -> output, s(i).
; point r3 -> h(i) too
; point r4 -> s(i) too
; r5 contains the number of rows for processing - it controls the number of times
; the middle loop is carried out - this changes depending on which stage of the
; decomposition the algorithm is at. Every time a low or high pass filter has completed
; its task, the number of outputs is halved (decimation), therefore, the number of
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 39

Appendix C
; subsequent samples for a filtering operation is also halved.

; set up the vertical and horizontal filter loops and memory pointers

move.l #im1,r0
move.w #H_OUT,r1
move.w #L_OUT,r2 dosetup0 LEV_LOOP
move.w #1,d8
move.w #ROW,r5 dosetup1 VERT_LOOP
move.w #2,n0
move.w #2,d9 dosetup2 HORIZ_LOOP
move.w #ROW,n2 doen0 #3
move.w #2,d7
move.w #3,n3
move.w #5,n1

; This outer loop ensures that one level of wavelet decomposition is undertaken.
; It allows the middle and inner loops to be used 3 times, once for horizontal high and
; low pass filtering on the whole image and then again for vertical high and low pass filtering on the
; resultant low and high pass horizontal filtered portions separately.

skipls test
LEV_LOOP
kernel: loopstart0

tfra r2,r4
doen1 r5
[tfra r0,r6 tfra r1,r3
]
adda #SAMP_BLOCK,r6

; need to process every row in the image
; This is the middle loop to go around all the rows in the image.
; Need to do symmetrically extended bits first
; In this case the loop has been unrolled once so that 8 initial samples
; in a row are dealt with before the inner loop and the 8 last samples in a row
; are dealt with outside the loop. Therefore, this code assumes that the number
; of samples in a row are divisible by 16.

VERT_LOOP

loopstart1
[adda #2,r3 move.w (r0+n0),d1
]
[adda #2,r4 move.w (r6)-,d11
]
[doen2 #COLUMN_DIV move.w (r6)+n1,d10
]
[

move.w (r0)+,d0 iadd d1,d11
]
[tfr d1,d2 iadd d0,d1

asr d11,d11 move.w (r0)+n3,d3
move.w #1,d8

]
[asr d1,d1 sub d11,d10,d10

tfr d9,d12 tfr d8,d4
move.w (r0)+n0,d8 move.w (r6)-,d13

]
[sub d1,d3,d3 move.w (r0)-,d6

move.w (r6)+n1,d14 tfr d8,d11
]

JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

40 Freescale Semiconductor

Appendix C
[iadd d3,d4 move.w d3,(r1)+n2
iadd d10,d3 move.w (r0)+n3,d15
iadd d6,d8 iadd d6,d13

]
[asr d4,d4 move.w d10,(r1)+n2

iadd d3,d12 asr d8,d8
asr d13,d13

]
[iadd d0,d4 tfr d10,d3

asrr #2,d12 sub d8,d15,d15
]
[move.w d4,(r2)+n2 sub d13,d14,d14

iadd d2,d12 iadd d15,d3
move.w d15,(r1)+n2

]
[move.w d12,(r2)+n2 move.w (r0)+n0,d1

iadd d9,d3 iadd d14,d15
]
[asrr #2,d3 iadd d9,d15

move.w d14,(r1)+n2 tfr d1,d2
]
[iadd d11,d3

asrr #2,d15
]
[move.w d3,(r2)+n2 iadd d6,d15

tfr d14,d3
]

move.w d15,(r2)+n2

; Note that if the same code is needed to go down to the second level of decomposition, skipls
; is needed here because with a 16x16 tile, the inner loop is not required as the symmetric extension
; parts of the code deal with 8+8 samples at either end of a row. If the skipls command is not used,
; the inner loop will execute once. It is possible to get around this requirement by just including
; a sequence of code after this program which does not include the inner loop, in other words it will
; only deal with the 16x16 tile size.
; skipls test2

; for every row in the image low and high pass filter the samples
; only go around the inner loop (samples/8) - (2x8) because 1st and last 8 values
; in a row is dealt with separately because of symmetric extension.

HORIZ_LOOP
loopstart2

[
move.w (r0)-,d0 move.w (r6)-,d11

]
[iadd d0,d1 iadd d0,d11

move.w (r6)+n1,d10 move.w (r0)+n3,d4
]
[asr d1,d1 asr d11,d11

move.w (r0)+n0,d8 move.w (r6)-,d13
]
[sub d1,d4,d4 sub d11,d10,d10

move.w (r0)-,d6 move.w (r6)+n1,d14
tfr d8,d12

]
[iadd d4,d3 move.w d4,(r1)+n2

iadd d6,d13 move.w (r0)+n3,d15
iadd d6,d8
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 41

Appendix C
]
[iadd d9,d3 iadd d10,d4

move.w d10,(r1)+n2 asr d13,d13
move.w (r0)+n0,d1 asr d8,d8

]
[asrr #2,d3 iadd d9,d4

sub d13,d14,d14 sub d8,d15,d15
]
[iadd d2,d3

asrr #2,d4
]
[move.w d3,(r2)+n2 iadd d0,d4

tfr d10,d3 move.w d15,(r1)+n2
]
[move.w d4,(r2)+n2 move.w d14,(r1)+n2

iadd d15,d3 iadd d14,d15
]
[iadd d9,d3 iadd d9,d15

tfr d1,d2
]
[asrr #2,d3 asrr #2,d15
]
[iadd d12,d3

iadd d6,d15
]
[move.w d3,(r2)+n2

tfr d14,d3
]

move.w d15,(r2)+n2

loopend2

; now deal with last value for high pass and low pass using odd symmetric
; extension - the value of x(n+2) now equals x(n) assuming even number of
; samples in a row.

test2:
[

move.w (r0)-,d0 move.w (r6)-,d11
]
[iadd d0,d1 iadd d0,d11

move.w (r6)+n1,d10 move.w (r0)+n3,d4
]
[asr d1,d1 asr d11,d11

move.w (r0)+n0,d8 suba #2,r6
]
[sub d1,d4,d4 sub d11,d10,d10

tfr d8,d11 move.w (r0)-,d6
move.w (r6)+n1,d14

]
[iadd d4,d3 move.w d4,(r1)+n2

iadd d6,d8 move.w (r0)+n3,d15
sub d6,d14,d14 tfr d10,d13

]
[iadd d9,d3 iadd d10,d4

move.w d10,(r1)+n2 asr d8,d8
]
[asrr #2,d3 iadd d9,d4

sub d8,d15,d15
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

42 Freescale Semiconductor

Appendix C
]
[iadd d2,d3 iadd d15,d13

asrr #2,d4 move.w d15,(r1)+n2
iadd d14,d15

]
[move.w d3,(r2)+n2 iadd d0,d4

iadd d9,d13 iadd d9,d15
move.w d14,(r1)

]
[move.w d4,(r2)+n2 asrr #2,d13

tfra r3,r1 asrr #2,d15
]
[iadd d11,d13 iadd d6,d15

]
move.w d13,(r2)+n2
[move.w d15,(r2)

tfra r4,r2
]

loopend1
test3:

; clear the test bit in the status register: allows a conditional jump to be made
; when d7 is decremented to zero - this allows the outer loop to be performed three
; times - first on the input image and then separately on the resulting low and high
; pass output coefficients.
; In this case, the low pass filtering always precedes the high pass filtering,
; therefore, the reduction in loop counts is carried out in low pass set up line.

bmclr #0001,sr.l
move.l #im1,r1
nop
deceq d7
nop
ift [move.w #H_OUT,r0 adda #HALF_PIXEL,r1,r1
]

; set up for low pass band filtering
; r0 -> the previous low pass output (i.e. new input for filtering)
; r1 -> the start of the original image memory area (i.e. new output)
; r1 will fill the LH subband
; r2 -> 1/4 way through the original image memory area
; r2 will fill the LL subband

iff [move.w #L_OUT,r0 asra r5
]
iff asra n2
adda #QUART_PIXEL,r1,r2
loopend0

test: stop
out
JPEG2000 Wavelet Transform on StarCore™-Based DSPs, Rev. 2

Freescale Semiconductor 43

AN2089

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. Metrowerks and CodeWarrior are registered trademarks of
Metrowerks Corp. in the U.S. and/or other countries.All other product or service names are the
property of their respective owners.

© Freescale Semiconductor, Inc. 2000–2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 2
11/2004

	1 Wavelet Transform
	1.1 Theory

	2 Implementation on StarCore-Based DSPs
	2.1 Lifting
	2.2 Integer Lifting
	2.3 StarCore Implementation in C Code
	2.4 StarCore Implementation in Assembly Code
	2.5 StarCore Implementation in Optimized Assembler

	3 Summary
	4 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

