
Freescale Semiconductor
Application Note

AN2073
Rev. 1, 1/2005

CONTENTS

1 External Pins ...2
1.1 EE Signals Control Register2
1.2 Example: EE0 As an Output to Indicate

Detection by EDCA0 ..3
1.3 Example: EE2 As an Input to Enable

the Event Counter.. 4
2 Entering Debug Mode ...5
3 Dedicated Instructions ...5
4 Register Access ...6
5 Real-Time Data Transfer ..6
6 Executing Instructions in Debug Mode7
6.1 CORE_CMD Instruction Format8
6.2 Example: Generating the CORE_CMD Value8
6.3 Software Downloading ...9
7 Event Counter ...10
7.1 Event Counter Register Set11
7.2 Example: Counting Core Clocks

Using the ECNT ..12
8 Event Detection Unit ...13
8.1 Address Event Detection Channel13
8.2 Data Event Detection Channel18
9 Event Selector ...20
9.1 ESEL Register Set ...21
9.2 Example: Generating a Debug Exception

Using the ESEL ...22
10 Trace Unit ... 23
10.1 Trace Buffer Register Set23
10.2 Example: Tracing of Execution Sets24
11 Breakpoint Logic ...25
12 Example: Cycle Count Profiling26
12.1 ECNT Configuration... 26
12.2 EDCA Configuration ..27
12.3 ESEL Configuration ..27
12.4 Example Code ...27

Differences Between the EOnCE and
OnCE Ports
By Barbara Johnson
In the DSP56300 core, the on-chip emulation (OnCETM) port
enables programmers to examine registers, memory, and on-
device peripherals. It is a non-intrusive interface with the
DSP56300 core and its peripherals. However, OnCE does not
support real-time debugging functions. Freescale
Semiconductor’s StarCore™-based DSPs built on the SC140
core do not have this limitation. An advantage of the SC140
core Enhanced On-Chip Emulation (EOnCE) module is its
capacity for real-time software debugging. This feature is only
one of the EOnCE enhancements discussed in this application
note, which compares the EOnCE and the OnCE ports and
illustrates the differences with examples. This discussion
assumes that you are familiar with the DSP56300 core OnCE
and Joint Test Action Group (JTAG) ports. The following
reading material is suggested for further reference:

• Chapter 7, Debugging Support, DSP56300 Family Manual
(DSP56300FM)

• Chapter 4, Emulation and Debug (EOnCE), SC140 DSP
Core Reference Manual (MSC140CORE)

• Chapter 17, JTAG and IEEE 1149.1 Test Access Port,
MSC8101 Reference Manual (MSC8101RM)

• Chapter 12, EOnce/JTAG, MSC8101 User’s Guide
(MSC8101UG)
© Freescale Semiconductor, Inc., 2003, 2005. All rights reserved.

External Pins
1 External Pins
The only dedicated OnCE pin on the DSP56300 core is the Debug Event DE pin. As an input, this pin provides entry into
Debug mode. As an output, this pin provides acknowledgment that the DSP has entered Debug mode. The DE pin is not
available in the EOnCE. The SC140 core has seven dedicated EOnCE pins:

• EOnCE Event EE[0:5] pins
• EOnCE Event EED pin

The functions of the bidirectional EOnCE pins are programmable. As inputs, the EE[0–5] and EED pins can be configured to
enable the Event Detection Channels (refer to Section 8, Event Detection Unit, on page 13). As inputs, pins EE[0–4] cause
EOnCE events, such as entering Debug mode, issuing a debug exception, enabling trace, and disabling trace. As outputs, these
pins can be configured to indicate detection by the event detection channels.

Some of the dedicated EOnCE pins can be programmed to perform specific functions. For example, as an input, EE0 can allow
the SC140 core to enter Debug mode after reset when it is asserted. As an output, EE1 can acknowledge entry into Debug
mode. As an input, EE2 can enable the event counter. As an output, EE3 can indicate that the EOnCE Receive (ERCV) register
was read by the DSP (refer to Section 5, Real-Time Data Transfer, on page 6). As an output, EE4 can indicate that the EOnCE
Transmit (ETRSMT) register was written by the DSP (see Section 5, Real-Time Data Transfer, on page 6). The SC140 JTAG
pins have exactly the same functionality as the DSP56300 JTAG pins. Table 1 summarizes the OnCE and EOnCE pin
functionality.

Table 1. OnCE and EOnCE External Pins

O
n

C
E

P
in

DE Input: Debug request.

Output: DSP acknowledge.

E
O

n
C

E
 P

in
s

EE0 Input: Debug request, enable Address Event Detection Channel 0, or generate one of the EOnCE events.

Output: Detection by Address Event Detection Channel 0.

EE1 Input: Enable Address Event Detection Channel 1 or generate one of the EOnCE events.

Output: Debug acknowledge or detection by Address Event Detection Channel 1.

EE2 Input: Enable Address Event Detection Channel 2 or generate one of the EOnCE events or enable the
Event Counter.

Output: Detection by the Address Event Detection Channel 2.

EE3 Input: Enable Address Event Detection Channel 3 or generate one of the EOnCE events.

Output: ERCV register was read by the DSP.

EE4 Input: Enable Address Event Detection Channel 4 or generate one of the EOnCE events.

Output: ETRSMT register was written by the DSP.

EE5 Input: Enable Address Event Detection Channel 5.

Output: Detection by Address Event Detection Channel 5.

EED Input: Enable the Data Event Detection Channel.

Output: Detection by the Data Event Detection Channel.

1.1 EE Signals Control Register
The EE Control Register (EE_CTRL) controls the operation of the EE pins (see Table 2).
Differences Between the EOnCE and OnCE Ports, Rev. 1

2 Freescale Semiconductor

External Pins
Table 2. EE_CTRL Register

Bit
Number

Bit Name Description

15 EEDDEF 0 EED is an output to indicate detection by EDCD.
1 EED is an input to enable EDCD.

14–11 Reserved

10 EE5DEF 0 EE5 is an output to indicate detection by EDCA5.

1 EE5 is an input to enable EDCA5.

9–8 EE4DEF 00 EE4 is an output to indicate detection by EDCA4.

01 EE4 is an output to indicate ETRSMT is ready.
10 Reserved.

11 EE4 is an input to enable EDCA4 or to generate an EOnCE event.

7–6 EE3DEF 00 EE3 is an output to indicate detection by EDCA3.

01 EE3 is an output to indicate ERCV is full.
10 Reserved.

11 EE3 is an input to enable EDCA3 or to generate an EOnCE event.

5–4 EE2DEF 00 EE2 is an output to indicate detection by EDCA2.

01 Reserved.
10 Reserved.

11 EE2 is an input to enable EDCA2 or ECNT or to generate an EOnCE event.

3–2 EE1DEF 00 EE1 is an output to indicate detection by EDCA1.

01 EE1 is an output to indicate debug acknowledgment.
10 Reserved.

11 EE1 is an input to enable EDCA1 or to generate an EOnCE event.

1–0 EE0DEF 00 EE0 is an output to indicate detection by EDCA0.

01 Reserved.
10 Input.

11 EE0 is an input to enable debug mode, enable EDCA0 or to generate an EOnCE event.

1.2 Example: EE0 As an Output to Indicate Detection by EDCA0
Example 1 shows how the EE0 pin can be configured as an output to indicate detection by an address event
detection channel. The EOnCE registers are configured as follows:

• EDCA0_REFA = 0x80 to set the reference value.

• EE_CTRL[EE0DEF] = 00 to use EE0 as an output to indicate detection by EDCA0.

• EDCA0_CTRL[EDCAEN] = 1111 to enable EDCA0.

• EDCA0_CTRL[CS] = 00 to select Comparator A.

• EDCA0_CTRL[CACS] = 00 to compare the address equal to EDCA0_REFA.

• EDCA0_CTRL[ATS] = 01 to detect a write access.

• EDCA0_CTRL[BS] = 00 to compare to XABA.

Another way to configure the EOnCE registers is to use the EOnCE Configurator feature on the Metrowerks®
CodeWarrior® for the StarCore debugger, as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window.
2. Select the Control tab.

— EE Pin 0: Output: detection by EDCA0
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 3

External Pins
3. Select the EDCA0 tab.
— Bus Selection: XABA

— Access Type: Write

— Comparator A (Hex 32 bits): 0x80

— Enable After Event On: Enabled

4. Click OK.

The code in Example 1 implements a loop executed 0x100 times that writes data to a memory location to which
address register r0 points and then reads the data back. When the move.w d0,(r0) instruction executes and r0
= 0x80, EDCA0 detects the write access to location 0x80. EE0 is asserted to indicate detection by EDCA0.

Example 1. EE0 As an Output to Indicate Detection by EDCA0

org p:$20000
 dosetup3 START
 doen3 #$100

move.w #0,r0
 move.w #$dcba,d0

loopstart3
START move.w d0,(r0)

nop
move.w (r0)+,d1
loopend3
jmp *

1.3 Example: EE2 As an Input to Enable the Event Counter
Example 2 shows how pin EE2 is configured as an input to enable the Event Counter (ECNT). The EOnCE
registers are configured as follows:

• EE_CTRL[EE2DEF] = 11 to use EE2 as an input to enable the ECNT.

• ECNT_CTRL[ECNTWHAT] = 1100 to count core clocks.

• ECNT_CTRL[ECNTEN] = 1010 to enable the counter when EE2 is asserted.

• ECNT_VAL = 0x7FFFFFFF to initialize the counter value.

Using the EOnCE Configurator tool to configure the EOnCE registers as follows:

1. Select Debug→ EOnCE → EOnCE Configurator to open the configuration window.
2. Select the Control tab:

— EE Pin 2: Input: Enable EDCA2 event

3. Select the Counter tab:
— What to Count: Core clock

— Enable After Event On: EE2

— Event Counter Value: 0x7FFFFFFF

4. Click OK.
Differences Between the EOnCE and OnCE Ports, Rev. 1

4 Freescale Semiconductor

Entering Debug Mode
ECNT_CTRL is programmed to count core clocks when it is enabled by the assertion of EE2. For simplicity, the
code from Example 1 is used. When you assert EE2, the event counter starts counting SC140 core clocks. When
the break button is pressed to stop the DSP, the number of core SC140 clocks executed in the interval between
enabling the event counter and stopping the DSP is the original ECNT_VAL minus the new ECNT_VAL.

Example 2. EE2 As an Input to Enable the Event Counter

org p:$1000
 dosetup3 START
 doen3 #$100
 move.w #0,r0
 move.w #$dcba,d0

loopstart3
START move.w d0,(r0)

nop
move.w (r0)+,d1
loopend3
jmp *

2 Entering Debug Mode
The DSP56300 core enters Debug mode when:

• The DE pin is asserted.

• The DEBUG_REQUEST command executes via JTAG.

• The debug/debugcc instruction executes in software.

• A memory breakpoint is encountered.

• An instruction is encountered when the trace counter is zero.

The SC140 core enters Debug mode when:

• The DEBUG_REQUEST command executes via JTAG.

• The debug instruction executes in software.

• The EE0 pin is set to logic 1 at reset.

• The EE0 pin is asserted when configured as debug request.

• The trace buffer is full.

• The event selector is programmed to enter Debug mode and the proper event occurs.

3 Dedicated Instructions
In the DSP56300 core, when the debug instruction executes, the DSP enters Debug mode and awaits OnCE
commands from the external host. The debugcc instruction enters Debug mode conditionally. Similarly, when the
SC140 core decodes the debug instruction, the DSP enters Debug mode. The debugev instruction generates a
debug event. The mark instruction writes the program counter (PC) value into the trace buffer when the trace
buffer is enabled and TB_CTRL[TMARK] is set. Table 3 lists the dedicated OnCE and EOnCE instructions.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 5

Register Access
Table 3. OnCE and EOnCE Dedicated Instructions

OnCE Dedicated Instructions EOnCE Dedicated Instructions

debug Enter Debug mode. debug Enter Debug mode.

debugcc Enter Debug mode conditionally. debugev Generate a debug event.

mark Write the PC into the trace buffer.

4 Register Access
In the DSP56300 core, the OnCE registers are accessible only via JTAG. For example, to read from the OnCE
Trace Counter (OTC), the OnCE Command Register (OCR) is first configured to read the OTC. The contents of
the OCR are then shifted in via JTAG using the TDI signal. The contents of the OTC are read via JTAG using the
TDO signal. In the SC140 core, not only are all the EOnCE registers accessible via JTAG but also most are
accessible from software. For example, to read the EOnCE Status Register (ESR), the EOnCE Command Register
(ECR) is first configured to read the ESR. The contents of the ECR are then shifted in via JTAG using the TDI
signal. The contents of the ESR are read via JTAG using the TDO signal. Alternatively, the read from the ESR can
be performed in software. For example, while the DSP is running, the ESR can be read using a move instruction in
the software. Only four of the EOnCE registers are not accessible from software:

• PC_NEXT PC of the next execution set

• PC_LAST PC of the last execution set

• CORE_CMD Core command register

• NOREG No register selected

5 Real-Time Data Transfer
In the DSP56300 core, the DSP must be in Debug mode to read or write OnCE registers via JTAG. When the DSP
enters Debug mode, normal operation stops. For example, to access a OnCE register, the DSP must be in Debug
mode, and the JTAG instruction ENABLE_ONCE must execute. However, most of the SC140 EOnCE registers are
read or written via JTAG either when the SC140 core is in Debug mode or when it is operating in Normal mode.
Real-time data transfer occurs via a receive or transmit mechanism using the EOnCE Receive (ERCV) and the
EOnCE Transmit (ETRSMT) registers:

• The ERCV register transfers data to the SC140 core from the host. The host can write this 64-bit shift
register via the TDI input signal, and the SC140 core can read it from software. The SC140 core cannot
write it from software.

• The ETRSMT register transfers data from the SC140 core to the host. The host can read this 64-bit
shift register via the TDO output signal, and the SC140 core can write it from software. The SC140 core
cannot read it from software.

Figure 1 shows an example of a write to the ERCV register via JTAG. This example assumes that the JTAG
instructions ENABLE_EONCE and CHOOSE_EONCE have executed. The DSP does not need to be in Debug mode.
The host first writes into the EOnCE Control Register (ECR) to indicate a write operation to the ERCV register.
Next, the host sends the 64-bit data to be written into the ERCV on the TDI pin. The RCV bit in the EOnCE Status
Register (ESR) is set to indicate that the host has finished writing into the ERCV register and the ERCV is
available for the core to read. Alternatively, pin EE3 can be programmed as an output to indicate that the host has
finished writing into the ERCV when EE3 goes low.
Differences Between the EOnCE and OnCE Ports, Rev. 1

6 Freescale Semiconductor

Executing Instructions in Debug Mode
Figure 2 shows an example of a read from the ETRSMT register via JTAG. This example assumes that the JTAG
instructions ENABLE_EONCE and CHOOSE_EONCE have executed. The SC140 core does not need to be in Debug
mode. The host first writes into the ECR to indicate a read operation from the ETRSMT register. Next, the host
reads the 64-bit data from the ETRSMT on the TDO pin. The TRSMT bit in the ESR is set to indicate that the core
has finished writing the MSB of the ETRSMT register and the ETRSMT is available for the host to read.
Alternatively, pin EE4 can be programmed as an output to indicate that the core has finished writing the ETRSMT
when EE4 goes low.

Write into ECR:
Write, no Go, ERCV

Shift in 64-bit ERCV

ERCV register is
selected.

The ESR[RCV] bit is
set to indicate that the host
has finished writing to
the ERCV register.

The SC140 core can now read the
RCV. The LSB is read first.
The RCV bit is cleared after
the MSB is read.

Host SC140 Core

data on TDI.

Figure 1. Writing EOnCE Registers via JTAG

Write into ECR:
Read, no Go, ETRSMT

Shift out 64-bit ETRSMT

ETRSMT register is
selected.

Host SC140 Core

The ESR[TRSMT] bit is
cleared to indicate that the core
has finished writing the MSB of
the ETRSMT register.

data on TDO.

The host can now read the
ETRSMT. TRSMT bit is
cleared after ETRSMT is read.

Figure 2. Reading EOnCE Registers via JTAG

6 Executing Instructions in Debug Mode
The EOnCE port can execute instructions while the DSP is in Debug mode. When the Core Command
(CORE_CMD) register is written with an instruction and the GO bit in the EOnCE Command Register (ECR) is
set, the fetch and dispatch stages are eliminated from the pipeline, and only the decoding and execution stages of
the instruction are performed. The CORE_CMD register handles the following types of instructions:

• move instructions with all the possible addressing modes

— ex: move.w #0x0123,d0

— ex: move.2l d0:d1,(r0)+
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 7

Executing Instructions in Debug Mode
• jump and branch instructions except delayed jumps and branches

— ex: jmp 0x100

— ex: bsr 0x80

• AGU arithmetic instructions

— ex: asla r0

— ex: adda #4,r3

The 48-bit CORE_CMD register is accessible only via JTAG. Software cannot access it.

6.1 CORE_CMD Instruction Format
The instruction to be executed must be in the CORE_CMD format, as shown in Figure 3.

Prefix1[15–0] Prefix2[15–0] Opcode[15–0] ImmB[15–0]

Bit Description

3–2 Prefix1[5]:Prefix1[7]

19–4 Opcode[0–15]

47–34 ImmB[0–13]

33–20 ImmA[0–13]

1–0 Length Control

Original Instruction Format

CORE_CMD Instruction Format

ImmA[15–0]

00 Not supported
01 1-word
10 2-words
11 3-words

Figure 3. CORE_CMD Instruction Format

6.2 Example: Generating the CORE_CMD Value
If the instruction move.l #$c0ffee,d8 needs to be executed using the CORE_CMD register, the instruction
format must be rearranged to be compatible with the CORE_CMD instruction format. When this instruction is
assembled in big-endian mode, the original instruction format is:

Prefix1 Prefix2 Opcode ImmB ImmA

0x3820 0xA000 0x30E0 0x3FEE 0x80C0
Differences Between the EOnCE and OnCE Ports, Rev. 1

8 Freescale Semiconductor

Executing Instructions in Debug Mode
Not counting the prefix words, this instruction contains three words. Bits 15–0 contain the ImmA value
(0x80C0), bits 16–31 contain the ImmB value (0x3FEE), and bits 32–47 contain the Opcode value (0x30E0).
The Prefix2 and Prefix1 values are 0xA000 and 0x3820, respectively.

To reformat the instruction for the CORE_CMD register, the bit order is reversed for the ImmA, ImmB, and
Opcode values. Only bits 13–0 of the ImmA and ImmB values are used. The Prefix2 value is not used. Only bits 5
and 7 of the Prefix1 value are used. Since the instruction length is three words, the length control bits contain a
value of 11. Table 4 shows how the CORE_CMD value is derived. The 48-bit CORE_CMD register is the
concatenation of the bits in boldface. The CORE_CMD instruction format for the instruction move.l
#$c0ffee,d8 is: CORE_CMD Instruction Format:0x0301 DFF0 70CB.

Table 4. CORE_CMD Example

ImmA ImmB Opcode Prefix1 Length

0x80C0 0x3FEE 0x30E0 0x3820 3
words

O
rig

in
al

F
or

m
at

ImmA[15–0]
1000 0000 1100

0000

ImmB[15–0]
0011 1111 1110

1110

Opcode[15–0]
0011 0000 1110

0000

Prefix1[5]
1

Prefix1[7]
0

C
O

R
E

_C
M

D
F

or
m

at

ImmA[0–13]
0000 0011 0000

00

ImmB[0–13]
0111 0111 1111

11

Opcode[0–15]
0000 0111 0000

1100

Prefix1[5]:
Prefix1[7]

10
11

6.3 Software Downloading
The ERCV and CORE_CMD registers can be used for software downloading via JTAG. The ERCV is written with
the data to be loaded into the DSP internal memory, and the CORE_CMD is written with the instruction to move
the data in the ERCV to the DSP internal memory:

1. Write into the ERCV register the data to be transferred.
2. Write into the CORE_CMD register the instruction to move from the ERCV register to a data register.
3. Write into the CORE_CMD register the instruction to move from the data register to the desired mem-

ory location.

Figure 4 shows an example of software downloading via JTAG. The DSP is in Debug mode and the JTAG
instructions ENABLE_EONCE and CHOOSE_EONCE have executed. Address register r1 points to the address of
the ERCV register (0xEFFE08), and address register r0 points to the start of the memory location where data is to
be stored. Since the ERCV register is 64-bits, two move instructions execute to move the data into data registers
d0 and d1. In this example, the instructions move.l (r1)+,d1 and move.l (r1)+,d0 are written into the
CORE_CMD register to transfer the contents of the ERCV register into d0 and d1. The first move instruction
transfers the lower 32-bit content of the ERCV to d1 and the second move instruction transfers the upper 32-bit
content of the ERCV to d0. After the second move instruction, r1 is reinitialized to point to ERCV. Otherwise, r1
points to an address different from the ERCV after the second move instruction executes. Finally, the instruction
move.2l d0:d1,(r0)+ is written into the CORE_CMD register to transfer the contents of d0 and d1 into the
internal memory. This process repeats until all data is downloaded. You must ensure that the previous contents of
the registers d0, d1, r0, and r1 are saved prior to downloading software.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 9

Event Counter
7 Event Counter
Another enhancement of the EOnce is the addition of the Event Counter (ECNT) which provides the capability of
counting various events. The ECNT can be programmed to count the following events:

• Core clocks

• Execution of instructions

• Event detection by an event detection channel (Event0–Event5 and EventD)

• Trace events

• Execution of the debugev instruction

Write into ECR:
Write, no Go, ERCV

Write 64-bit data into
ERCV

Write into ECR:
Write, Go, CORE_CMD

Write 48-bit data into
CORE_CMD
move.l (r1)+,d1

Write into ECR:
Write, Go, CORE_CMD

Write 48-bit data into
CORE_CMD
move.l (r1)+,d0

Write into ECR:
Write, Go, CORE_CMD

Write 48-bit data into
CORE_CMD
move.2l d0:d1,(r0)+

ERCV register is
selected.

RCV bit in ESR is
set to indicate host
has finished writing to
the ERCV register.

Core can now read the
ERCV. LSB is read first.
RCV bit is cleared after
MSB is read.

CORE_CMD register is
selected.

The lower portion of
ERCV is moved to
register d1.

CORE_CMD register is
selected.

The upper portion of
ERCV is moved to
register d0.

CORE_CMD register is
selected.

ERCV is moved to
memory.

Host SC140 Core

Reinitialize r1 to point
to ERCV

Figure 4. Software Downloading via JTAG
Differences Between the EOnCE and OnCE Ports, Rev. 1

10 Freescale Semiconductor

Event Counter
The ECNT can operate in two modes. In the normal mode of operation when the extension counter is disabled, a
counter event is generated when the Event Counter Value (ECNT_VAL) reaches zero. In the extended mode of
operation when the extension counter is enabled, a counter event is not generated when the ECNT_VAL reaches
zero. Instead, the ECNT_VAL wraps around to 0xFFFFFFFF. The number of wrap-arounds is counted by the
Extension Counter (ECNT_EXT). Figure 5 shows a block diagram of the Event Counter.

Count
Selector

Core clocks

Instruction execution

Event0–Event5

EventD

Trace

DEBUGEV

Event
Counter

Counter Value

Counter Event
ECNT_VAL

Extension
Counter
ECNT_EXT

Figure 5. Event Counter Block Diagram

7.1 Event Counter Register Set
Table 5 shows the ECNT register set.

Table 5. ECNT Register Set

Register Description

ECNT_CTRL ECNT Control Register. Controls the operation of the ECNT.

Bits 15–9 Reserved

Bit 8 EXT 0 ECNT operates in normal mode.
1 ECNT operates in extended mode.

Bits 7–4 ECNTEN 0000 = ECNT is disabled.
0001 = ECNT is disabled but enabled when EDCA0 detects an event.
0010 = ECNT is disabled but enabled when EDCA1 detects an event.
0011 = ECNT is disabled but enabled when EDCA2 detects an event.
0100 = ECNT is disabled but enabled when EDCA3 detects an event.
0101 = ECNT is disabled but enabled when EDCA4 detects an event.
0110 = ECNT is disabled but enabled when EDCA5 detects an event.
1000 = ECNT is disabled but enabled when EDCD detects an event.
1010 = ECNT is disabled but enabled when an EE2 is asserted and EE2 is
an input.
1111 = ECNT is enabled.
All other settings are reserved.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 11

Event Counter
7.2 Example: Counting Core Clocks Using the ECNT
Example 3 shows how the ECNT is configured to count core clock cycles. The EOnCE registers are configured as
follows:

• ECNT_CTRL[EXT] = 00 to select normal mode.

• ECNT_CTRL[ECNTEN] = 1111 to enable the ECNT.

• ECNT_CTRL[ECNTWHAT] = 1100 to count core clocks.

• ECNT_VAL = 0x7FFFFFFF to initialize the counter value.

Using the EOnCE Configurator tool, the EOnCE registers are configured as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window.
2. Select the Counter tab:

— What to Count: Core clock

— Enable After Event On: Enabled

— Event Counter Value: 0x7FFFFFFF

3. Click OK.

The code begins at address p:START and ends at address p:END. When the code executes, the value in
ECNT_VAL decrements for each executed cycle. The debug instruction is executed at the end of the code, and the
SC140 core enters Debug mode. The number of cycles between START and END is the original ECNT_VAL value
minus the new ECNT_VAL value.

Example 3. Cycle Counting Using the ECNT

org p:START
; ...
; code
; ...
END debug

ECNT_CTRL
(Cont.)

Bits 3–0 ECNTWHAT 0000 = Count Event0 occurrence.
0001 = Count Event1 occurrence.
0010 = Count Event2 occurrence.
0011 = Count Event3 occurrence.
0100 = Count Event4 occurrence.
0101 = Count Event5 occurrence.
1000 = Count EventD occurrence.
1001 = Count execution of DEBUGEV instruction.
1010 = Count trace events.
1011 = Count executed execution sets.
1100 = Count core clocks.
All other settings are reserved.

ECNT_VAL Event Counter Value Register. Determines how many events the ECNT should count before it generates
a count event signal. It counts down.

ECNT_EXT Event Extension Counter Value Register. Counts the number of ECNT_VAL overflows.

Table 5. ECNT Register Set (Continued)

Register Description
Differences Between the EOnCE and OnCE Ports, Rev. 1

12 Freescale Semiconductor

Event Detection Unit
8 Event Detection Unit
The EOnCE event detection unit (EDU) performs the following tasks:

• Event detection on program and data memory address bus range or value.

• Event detection on data memory, data bus range or value.

• Detection of data written or read to/from a certain data memory address.

• Upon event detection, cause any of the EOnCE events.

The EDU consists of six address event detection channels (EDCA5–EDCA0), a data event detection channel
(EDCD), and an event selector. Figure 6 shows a block diagram of the EDU.

Data Address Address Address Address

Address Buses

Data Buses

EED

EE0–EE5

EventD

Event0

Event1

Event2

Event5

...

...

...

:
:

:
:

:
:

:
:

:
:

Counter Event

Event
:
:

PAB, XABA, XABB

XDBA, XDBB

Event
Detection
Channel

Event
Detection
Channel
0

Event
Detection
Channel
1

Event
Detection
Channel
2

Event
Detection
Channel
5

Selector

Figure 6. Event Detection Unit

8.1 Address Event Detection Channel
Each EDCAx has two 32-bit comparators that compare the core address buses and the reference values
programmed into the 32-bit EDCAx Reference Value Register A (EDCAi_REFA) and EDCAi Reference Value
Register B (EDCAi_REFB). The selected address buses that are sampled for comparison are:

• XABA address bus

• XABB address bus

• XABA and XABB address busses

• PAB address bus (program counter)
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 13

Event Detection Unit
The EDCA can be programmed to detect read/write accesses to/from the addresses. The selected addresses can be
specific addresses or a range of addresses. For example, the EDCA can be programmed to detect the following:

• Read access to x:0x100

• Execution set at p:0x200

• Execution set accesses from p:0x200 to p:0x300

• Write access to memory locations outside the range of x:0x500 to x:0x800

8.1.1 EDCA Register Set
Table 6 shows the EDCA register set.

Table 6. EDCA Register Set

Register Description

EDCAi_REFA EDCAi Reference Value Register A.
Contains reference value used by Comparator A to compare to sampled core address.

EDCAi_REFB EDCAi Reference Value Register B.
Contains reference value used by Comparator B to compare to sampled core address.

EDCAi_CTRL EDCAi Control Register. Controls the operation of the EDCA.

Bits 15–14 Reserved

Bits 13–10 EDCAEN 0000 EDCAi is disabled.

0001 EDCAi is disabled but enabled when EDCA0 detects an event.

0010 EDCAi is disabled but enabled when EDCA1 detects an event.
0011 EDCAi is disabled but enabled when EDCA2 detects an event.

0100 EDCAi is disabled but enabled when EDCA3 detects an event.

0101 EDCAi is disabled but enabled when EDCA4 detects an event.
0110 EDCAi is disabled but enabled when EDCA5 detects an event.

1001 EDCAi is disabled but enabled when EDCD detects an event.

1011 EDCAi is disabled but enabled when an EEi is asserted and EEi is
an input.

1111 EDCAi is enabled.
All other settings are reserved.

Bits 9–8 CS 00 Comparator A only.
01 Comparator B only.
10 Comparator A and Comparator B.
11 Comparator A or Comparator B.

Bits 7–6 CBCS 00 Equal to EDCAi_REFB.
01 Not equal to EDCAi_REFB.
10 Greater than EDCAi_REFB.
11 Less than EDCAi_REFB.

Bits 5–4 CACS 00 Equal to EDCAi_REFA.
01 Not equal to EDCAi_REFA.
10 Greater than EDCAi_REFA.
11 Less than EDCAi_REFA.

Bits 3–2 ATS 00 Read access.
01 Write access.
10 Read or write access.
11 Reserved.

Bits 1–0 BS 00 XABA bus is compared.
01 XABB bus is compared.
10 XABA or XABB is compared.
11 PC is compared.
Differences Between the EOnCE and OnCE Ports, Rev. 1

14 Freescale Semiconductor

Event Detection Unit
Differences Between the EOnCE and OnCE Ports, Rev. 1

8.1.2 Example: PC Detection Using EDCA
Example 4 shows how the EDCA0 is configured for PC detection. The EOnCE registers are configured as follows:

• EDCA0_REFA = 0x1004 to set the reference value.

• EDCA0_CTRL[EDCAEN] = 1111 to enable EDCA0.

• EDCA0_CTRL[CS] = 00 to select Comparator A.

• EDCA0_CTRL[CACS] = 00 to compare the address equal to EDCA0_REFA.

• EDCA0_CTRL[BS] = 11 to compare to PC.

• ESEL_CTRL[SELDM] = 0 to force core to enter debug mode by any one of the sources selected in the
ESEL_DM register.

• ESEL_DM[EDCA0] = 1 to select the EDCA0 event as the cause for entering debug mode

Use the CodeWarrior EOnCE Configurator tool to configure the EOnCE registers as follows:

1. Select Debug→ EOnCE → EOnCE Configurator to open the configuration window.
2. Select the EDCA0 tab:

— Bus Selection: PC

— Comparator A (Hex 32 bits): 0x1004

— Comparators Selection: A only

— Enable After Event On: Enabled

3. Select the Selector tab:
— Event(s) to Enter DEBUG Mode: OR

— DEBUG Mode Mask: EDCA0

4. Click OK.

ESEL_CTRL is programmed to place the SC140 core into Debug mode when the PC matches the reference value.
ESEL_DM sets EDCA0 as the source to cause the SC140 core to enter Debug mode.

EDCA0
PC

EDCA0_REFA
Debug Mode

Comparator A

Figure 7. PC Detection Using EDCA0

Example 4 uses the same code as Example 1 on page 4. The code begins at address 0x1000. A loop executes to
write data into a memory location and then read the data back from memory. The DSP stops running after the
instruction at address 0x1004 executes. Then the system enters Debug mode since EDCA0 has detected the event.

EDCAi_MASK EDCAi Mask Register. Allows masking of bits of the sampled address.

Table 6. EDCA Register Set (Continued)

Register Description
Freescale Semiconductor 15

Event Detection Unit
Example 4. PC Detection Using EDCA0

org p:$1000
dosetup3 START ; p:$1000
doen3 #$100 ; p:$1004 debug mode is

 ; entered after this
 ; instruction executes

move.w #0,r0 ; p:$1008
move.w #$dcba,d0 ; p:$100a
loopstart3

START move.w d0,(r0) ; p:$100e
nop ; p:$1012
move.w (r0)+,d1 ; p:$1014
loopend3

8.1.3 Example: XABA Write Detection Using EDCA
Example 5 shows how the EDCA0 is configured to detect a write access to the XABA address bus. The EOnCE
registers are configured as follows:

• EDCA0_REFA = 0x80 to set the reference value.

• EDCA0_CTRL[EDCAEN] = 1111 to enable EDCA0.

• EDCA0_CTRL[CS] = 00 to select Comparator A.

• EDCA0_CTRL[CACS] = 00 to compare the address equal to EDCA0_REFA.

• EDCA0_CTRL[ATS] = 01 to detect a write access.

• EDCA0_CTRL[BS] = 00 to compare to XABA address.

• ESEL_CTRL[SELDM] = 0 to force core to enter debug mode by any one of the sources selected in the
ESEL_DM register.

• ESEL_DM[EDCA0] = 1 to select the EDCA0 event as the cause for entering debug mode

Using the CodeWarrior EOnCE Configurator tool, the EOnCE registers are configured as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window.
2. Select the EDCA0 tab:

— Bus Selection: XABA

— Access Type: Write

— Comparator A (Hex 32 bits): 0x80

— Comparators Selection: A only

— Enable After Event On: Enabled

3. Select the Selector tab:
— Event(s) to Enter DEBUG Mode: OR

— DEBUG Mode Mask: EDCA0

4. Click OK.

ESEL_CTRL is programmed to place the SC140 core in Debug mode when a write access to location 0x80 is
detected. ESEL_DM sets EDCA0 as the source to cause the SC140 core to enter Debug mode.
Differences Between the EOnCE and OnCE Ports, Rev. 1

16 Freescale Semiconductor

Event Detection Unit
EDCA0Write to XABA

EDCA0_REFA
Debug mode

Comparator A

Figure 8. XABA Write Detection Using EDCA0

Example 5 uses the same code as Example 1 on page 4. A loop executes 0x100 times to write data into a memory
location and then read the data back from memory. The DSP stops running after data is written to memory location
0x80. Then the system enters Debug mode since EDCA0 has detected the event.

Example 5. XABA Write Detection Using EDCA0

org p:$1000
dosetup3 START ; p:$1000
doen3 #$100 ; p:$1004
move.w #0,r0 ; p:$1008
move.w #$dcba,d0; p:$100a
loopstart3

START move.w d0,(r0); p:$100e debug mode is
; entered after this
; instruction is executed
; when r0=$80

move.w (r0)+,d1; p:$1012
loopend3

8.1.4 Example: XABA Read Detection Using EDCA
Example 6 shows how the EDCA0 is configured to detect a read access from the XABA address bus. The EOnCE
registers are configured as follows:

• EDCA0_REFA = 0x10 to set the reference value.

• EDCA0_CTRL[EDCAEN] = 1111 to enable EDCA0.

• EDCA0_CTRL[CS] = 00 to select Comparator A.

• EDCA0_CTRL[CACS] = 00 to compare the address equal to EDCA0_REFA.

• EDCA0_CTRL[ATS] = 00 to detect a read access.

• EDCA0_CTRL[BS] = 00 to compare to XABA address.

• ESEL_CTRL[SELDM] = 0 to force core to enter debug mode by any one of the sources selected in the
ESEL_DM register.

• ESEL_DM[EDCA0] = 1 to select the EDCA0 event as the cause for entering Debug mode.

Use the CodeWarrior EOnCE Configurator tool to configure the EOnCE registers as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window.
2. Select the EDCA0 tab:

— Bus Selection: XABA

— Access Type: Read

— Comparator A (Hex 32 bits): 0x10

— Comparators Selection: A only

— Enable After Event On: Enabled
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 17

Event Detection Unit
3. Select the Selector tab:
— Event(s) to Enter DEBUG Mode: OR

— DEBUG Mode Mask: EDCA0

4. Click OK.

ESEL_CTRL is programmed to place the SC140 core in Debug mode when the a read access from location 0x10
is detected. ESEL_DM sets EDCA0 as the source to cause the core to enter Debug mode.

EDCA0
EDCA0_REFA

Debug mode
Comparator A

Read from XABA

Figure 9. XABA Read Detection Using EDCA0

Example 6 uses the same code as Example 5. A loop executes 0x100 times to write data to a memory location and
then read the data back from memory. The DSP stops running after data is read from memory location 0x10. The
system enters Debug mode since EDCA0 has detected the event.

Example 6. XABA Read Detection Using EDCA0

org p:$1000
dosetup3 START ; p:$1000
doen3 #$100 ; p:$1004
move.w #0,r0 ; p:$1008
move.w #$dcba,d0 ; p:$100a
loopstart3

START move.w d0,(r0) ; p:$100e
 move.w (r0)+,d1 ; p:$1012 debug mode

 ; entered after this
 ; instruction executes

; when r0=$10
loopend3

8.2 Data Event Detection Channel
The EDCD has a 32-bit comparator that compares the data values. It can be programmed to detect read or write
accesses of data. It supports access widths of byte, word, and long word. For example, the EDCD can be
programmed to detect the following:

• Read byte 0x07

• Write word 0x1234

• Write long word 0x12345678

8.2.1 EDCD Register Set
Table 7 shows the EDCD register set.

Table 7. EDCD Register Set

Register Description

EDCD_REF EDCD Reference Value Register. Contains reference value used by the comparator to compare
to sampled data.
Differences Between the EOnCE and OnCE Ports, Rev. 1

18 Freescale Semiconductor

Event Detection Unit
8.2.2 Example: Data Write Detection Using EDCD
Example 7 shows how the EDCD is configured for data detection. The EOnCE registers are configured as follows:

• EDCD_REFA = 0x24 to set the reference value.

• EDCD_CTRL[AWS] = 01 to select word-length data access.

• EDCD_CTRL[EDCDEN] = 1111 to enable the EDCD.

• EDCD_CTRL[CCS] = 00 to compare the data equal to EDCD_REF.

• EDCD_CTRL[ATS] = 1 to detect a write access.

• ESEL_CTRL[SELDM] = 0 to force core to enter debug mode by any one of the sources selected in the
ESEL_DM register.

• ESEL_DM[EDCD] = 1 to select the EDCD event as the cause for entering debug mode

Use the EOnCE Configurator tool to configure the EOnCE registers as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window
2. Select the EDCD tab:

— Access Type: Write

EDCD_CTRL EDCD Control Register. Controls the operation of the EDCD.

Bits
15–10

Reserved

Bits 9–8 AWS 00 Byte access.

01 Word access.

10 Long word access.

11 Reserved.

Bit 7 Reserved

EDCD_CTRL cont. Bits 6–3 EDCDEN 0000 EDCD is disabled.
0001 EDCD is disabled but enabled when EDCA0 detects an event.

0010 EDCD is disabled but enabled when EDCA1 detects an event.

0011 EDCD is disabled but enabled when EDCA2 detects an event.
0100 EDCD is disabled but enabled when EDCA3 detects an event.

0101 EDCD is disabled but enabled when EDCA4 detects an event.

0110 EDCD is disabled but enabled when EDCA5 detects an event.
1001 EDCD is disabled but enabled when a count event is detected.

1010 EDCD is disabled but enabled when an EEi is asserted and EEi
is an input.

1111 EDCD is enabled.
All other settings are reserved.

Bits 2–1 CCS 00 Equal to EDCD_REF.

01 Not equal to EDCD_REF.

10 Greater than EDCD_REF.
11 Less than EDCD_REF.

Bit 0 ATS 0 Read access.

1 Write access.

EDCD_MASK EDCD Mask Register. Allows masking of bits of the sampled data.

Table 7. EDCD Register Set (Continued)

Register Description
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 19

Event Selector
— Reference Value (Hex 32 bits): 0x24

— Enable After Event On: Enabled

3. Select the Selector tab:
— Event(s) to Enter DEBUG Mode: OR

— DEBUG Mode Mask: EDCD

4. Click OK.

ESEL_CTRL is programmed place the SC140 core in Debug mode when the data accessed matches the reference
value. ESEL_DM sets EDCD as the source to cause the SC140 core to enter Debug mode.

EDCD
EDCD_REF

Debug Mode
Comparator

Write Data

Figure 10. Data Write Detection Using EDCD

The code in Example 7 implements a loop that writes data to a memory location. The data is incremented by one
and written to the next memory location. The DSP stops running after 0x24 is written to memory. Then the system
enters Debug mode since EDCD has detected the event.

Example 7. Data Write Detection Using EDCD

org p:$1000
move.w #0,r0
move.w #1,d1
move.w #0,d0

START move.w d0,(r0)+; debug mode is
 ; entered after this

; instruction is executed
add2 d1,d0
jmp START

9 Event Selector
The event selector (ESEL) selects the source for the generated event. The possible sources are:

• Outputs of the address event detection channels (Event0–Event5)

• Output of the data event detection channel (EventD)

• Output of the event counter

• EE[4–0] pins

• debugev instruction

Upon event detection, the ESEL can generate one of the possible events:

• Enter the SC140 core into Debug mode

• Cause a debug exception

• Enable the trace buffer

• Disable the trace buffer

Figure 11 shows a block diagram of the ESEL.
Differences Between the EOnCE and OnCE Ports, Rev. 1

20 Freescale Semiconductor

Event Selector
Event Selector

Debug Mode

Debug Exception

Enable Trace

Disable Trace

Event0–Event5

EventD

Counter Event

DEBUGEV

EE[4–0]

Sources Events

Figure 11. Event Selector Block Diagram

9.1 ESEL Register Set
The ESEL has a Control register (ESEL_CTRL) and four Mask registers (ESEL_DM, ESEL_DI, ESEL_ETB and
ESEL_DTB). Table 8 shows the ESEL register set.

Table 8. ESEL Register Set

Register Description

ESEL_CTRL ESEL Control Register. Controls the operation of the ES.

Bits 7–5 Reserved

Bit 4 SELDTB 0 Trace is disabled upon detection of the event by any one of the
sources selected in ESEL_DTB.

1 Trace is disabled upon detection of the event by all sources selected
in ESEL_DTB.

Bit 3 SELETB 0 Trace is enabled upon detection of the event by any one of the
sources selected in ESEL_ETB.

1 Trace is enabled upon detection of the event by all sources selected
in ESEL_ETB.

Bit 2 Reserved

ESEL_CTRL
Cont.

Bit 1 SELDI 0 A debug exception is generated upon detection of the event by any
one of the sources selected in ESEL_DI.

1 A debug exception is generated upon detection of the event by all
sources selected in ESEL_DI.

Bit 0 SELDM 0 Debug mode is entered upon detection of the event by any one of the
sources selected in ESEL_DM.

1 Debug mode is entered upon detection of the event by all sources
selected in ESEL_DM.

ESEL_DM
ESEL_DI
ESEL_ETB
ESEL_DTB

ESEL Mask Debug Mode Register. Configures the source to cause entry into Debug mode.
ESEL Mask Debug Exception Register. Configures the source to cause a debug exception.
ESEL Mask Trace Enable Register. Configures the source to enable trace.
ESEL Mask Trace Disable Register. Configures the source to disable trace.

Bit 15 DEBUGEV 1 DEBUGEV instruction is the source of the event.

Bits
14–10

EE[4–0] 1 EEi is the source of the event.

Bit 9 COUNT 1 Count event is the source of the event.

Bit 8 EDCD 1 EDCD is the source of the event.

Bits 7–6 Reserved

Bits 5–0 EDCA[5–] 1 EDCAi is the source of the event.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 21

Event Selector
9.2 Example: Generating a Debug Exception Using the ESEL
In the EDCA example, the ESEL is programmed to cause the SC140 core to enter Debug mode when an event is
detected. This example shows how the ESEL is programmed to generate a debug exception upon EDCA0
detection. The EOnCE registers are configured as shown:

• ESEL_CTRL[SELDI] = 1 to cause a debug exception upon detection of the event by all sources
selected in the ESEL_DI register.

• ESEL_DI[EDCA0] = 1 to select EDCA0 as the source to cause the debug exception.

• EDCA0_REFA = 0x14 to set the reference value.

• EDCA0_CTRL[EDCAEN] = 1111 to enable EDCA0.

• EDCA0_CTRL[CS] = 00 to select Comparator A.

• EDCA0_CTRL[CACS] = 00 to compare the address equal to EDCA0_REFA.

• EDCA0_CTRL[ATS] = 00 to detect a read access.

• EDCA0_CTRL[BS] = 00 to compare to XABA address.

Use the EOnCE Configurator tool to configure the EOnCE registers as follows:

1. Select Debug → EOnCE → EOnCE Configurator to open the configuration window.
2. Select the EDCA0 tab:

— Bus Selection: XABA

— Access Type: Read

— Comparator A (Hex 32 bits): 0x14

— Comparators Selection: A only

— Enable After Event On: Enabled

3. Select the Selector tab:
— Event(s) to Enter DEBUG Exception Mode: OR

— DEBUG Exception Mode Mask: EDCA0

4. Click OK.

The EDCA registers are configured the same way as in Example 6 on page 18. EDCA0 is programmed to detect a
read access from memory location 0x14. The code shown on the right implements a loop that is executed 0x100
times to read data from a memory location. A debug exception (p:I_DEBUG at location VBA+0xC0) is generated
after data is read from memory location 0x14 since EDCA0 has detected the event. In this example, the debug
exception interrupt service routine located at p:dbgexcp moves the value to which address register r0 points into
data register d1. After the debug exception service routine executes, the value in d1 is 0x18, which is the value of
r0 after the move.w (r0)+,d0 instruction is executed when r0=0x14.

Example 8. Generating a Debug Exception Using the ESEL

org p:0
 jmp $1000

 org p:I_DEBUG ;debug exception
 jsr dbgexcp
 rte
Differences Between the EOnCE and OnCE Ports, Rev. 1

22 Freescale Semiconductor

Trace Unit
org p:$1000
dosetup3 START

doen3 #$100
move.w #0,r0
loopstart3

START
move.w (r0)+,d0
loopend3
jmp *

dbgexcp ;debug exception isr
move.w (r0),d1
rts

10 Trace Unit
The DSP56300 core trace logic tracks program flow and consists of the following components:

• OnCE PAB Register for Fetch (OPABFR). A 16-bit read-only register that stores the address of the
last instruction fetched before the system enters Debug mode.

• OnCE PAB Register for Decode (OPABDR). A 16-bit read-only register that stores the address of the
last instruction decoded before the system enters Debug mode.

• OnCE PAB Register for Execute (OPABEX). A 16-bit read-only register that stores the address of the
last instruction executed before the system enters Debug mode.

• A trace buffer that stores the addresses of the last 12 change of flow instructions that executed and the
address of the last executed instruction

The SC140 core trace unit includes a 32-bit circular trace buffer. The buffer size is derivative-specific. For
example, the size of the MSC8101 trace buffer is 2k words. When the end of memory is reached, the trace buffer
wraps around to address zero and continues unless EMCR[TBFDM] is set. When the trace buffer is full, you can
read the contents of the TB_BUFF. The ESR[TBFULL] flag is set when the trace buffer is full. Disabling the trace
buffer by clearing TB_CTRL[TEN] also allows you to read the TB_BUFF. Due to the pre-fetch mechanism, a
three-cycle delay must occur from the time the trace buffer is disabled until the first read-access to the trace buffer
is issued. The EOnCE trace unit traces the following addresses:

• Normal execution

• Change-of-flow instructions

• Interrupts

• Hardware loops

• mark instruction

It operates during real-time processing. The debugging hardware can read the trace buffer during normal execution
or in Debug mode when the trace buffer is disabled. It is enabled by the host, core software, or an EOnCE event.

10.1 Trace Buffer Register Set
The trace unit has a control register (TB_CTRL), two pointer registers (TB_WR and TB_RD), and a virtual register
(TB_BUFF). Table 9 shows the trace unit register set.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 23

Trace Unit
Table 9. Trace Unit Register Set

Register Description

TB_CTRL Trace Buffer Control Register. Controls the operation of the Trace Unit.

Bit 7 TCNTEX 0 The value of the Extension Counter register is not placed into the trace buffer.

1 The value of the Extension Counter register is placed into the trace buffer.

Bit 6 TCOUNT 0 Destination address put into the trace buffer is not followed by the value of the
Event Counter register.

1 Destination address put into the trace buffer is followed by the value of the
Event Counter register.

Bit 5 TLOOP 0 Disable tracing of addresses of hardware loops.

1 Enable tracing of addresses of hardware loops.

Bit 4 TEN 0 Trace buffer is disabled.

1 Trace buffer is always operational.

TB_CTRL
Cont.

Bit 3 TMARK 0 Disable tracing of mark instruction.
1 Enable tracing of mark instruction.

Bit 2 TEXEC 0 Disable tracing of addresses of every issued execution set.

1 Enable tracing of addresses of every issued execution set.

Bit 1 TINT 0 Disable tracing of addresses of interrupt vectors.

1 Enable tracing of addresses of interrupt vectors.

Bit 0 TCHOF 0 Disable tracing of addresses of execution sets with change-of-flow
instructions.

1 Enable tracing of addresses of execution sets with change-of-flow
instructions

TB_WR Trace Buffer Write Pointer Register. Contains address of the next location available for writing into the
trace buffer.

TB_RD Trace Buffer Read Pointer Register. Contains address of the next location available for reading from the
trace buffer.

TB_BUFF Trace Buffer Register. Reads the contents of the trace buffer.

10.2 Example: Tracing of Execution Sets
Example 9 shows how the trace buffer traces execution sets. The EOnCE registers are configured as follows:

• TB_CTRL[TEN] = 1 to enable the trace buffer.

• TB_CTRL[TEXEC] = 1 to trace the addresses of every execution set.

• ECNT_CTRL[ECNTEN] = 1 to enable the Event Counter.

• ECNT_CTRL[ECNTWHAT] = 1011 to count executed execution sets.

• ECNT_VAL = 0x7FFFFFFF to initialize the counter value.

Since TB_RD and TB_WR are reset to zero when the trace buffer is enabled, it is not necessary to initialize these
pointers. The ECNT_VAL is decremented for every executed execution set. In Example 9, there are six execution
sets, so the final ECNT_VAL is 0x7FFFFFFF –6 = 0x7FFFFFF9. The addresses of the execution sets are
written to the trace buffer as shown in Table 10.
Differences Between the EOnCE and OnCE Ports, Rev. 1

24 Freescale Semiconductor

Breakpoint Logic
Table 10. Trace Buffer Contents

TB_RD TB_BUFF

0x0002 0x2000

0x0003 0x2002

0x0004 0x200A

0x0005 0x200C

0x0006 0x200E

0x0007 0x2008

Due to a pre-fetch mechanism, when the TB_BUFF location to which TB_RD points is read, the TB_RD pointer is
already three stages ahead, so the first valid TB_BUFF value is located at TB_RD = 0x0002.

Example 9. Tracing of Execution Sets

 org p:$2000
 move.w #0,d0 ;p:$2000
 jsr add ;p:$2002
 debug ;p:$2008

add move.w #1,d1 ;p:$200a
add2 d1,d0 ;p:$200c
rts ;p:$200e

11 Breakpoint Logic
In the DSP56300 core, breakpoints can be enabled to occur when a memory access is performed on P, X, or Y
address space. These breakpoints occur when a memory address access is performed for read, write, or both
operations. Breakpoints occur under one of the following conditions:

• Current memory address is not equal to the memory address in the OnCE Memory Limit Register
(OMAL0 or OMAL1).

• Current memory address is equal to the memory address in the OMAL0 or OMAL1.

• Current memory address is less than the memory address in the OMAL0 or OMAL1.

• Current memory address is greater than the memory address in the OMAL0 or OMAL1.

In the SC140 core, breakpoints are enabled via the event selector (ESEL). For example, the ESEL is used with the
EDU to detect reading/writing data from/to memory. The EDCD detects the data and the EDCA detects the
address. Both events must occur for the EOnCE event to occur (see Figure 12).

Event Selector

Event0 = EDCA0 (address)

EventD = EDCD (data)
EOnCE Event

Figure 12. Breakpoint Example 1

The ESEL is also used to with the EDU to detect reading/writing data from/to memory that is executed at a certain
PC. For example, the EDCA0 can be programmed to detect the desired PC and upon detection of this PC, EDCA0
enables EDCA1 to detect the address and enables EDCD to detect the data that is read or written. When these
events happen, the ESEL can be programmed to generate an EOnCE event. Figure 13 shows a diagram of this
breakpoint example.
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 25

Example: Cycle Count Profiling
Event Selector

Event0 = EDCA0 (PC)

Event1 = EDCA1 (address) EOnCE Event

EventD = EDCD (data)

Figure 13. Breakpoint Example 2

The EOnCE has four registers for storing the PC address:

• PC_EXCP. Stores the PC of the instruction that caused an internal exception.

• PC_DETECT. Stores the PC of the last execution set that caused a watchpoint.

• PC_NEXT. Stores the PC of the execution set that would be executed next.

• PC_LAST. Stores the PC of the last executed instruction set.

12 Example: Cycle Count Profiling
The example discussed in this section implements the concepts learned from the previous examples. It shows how
ECNT, EDCA, and ESEL perform cycle-count profiling to give a real-time cycle count between a start and a final
address. The EOnCE modules can be programmed to perform the following:

• ECNT counts the number of cycles between a start and a final address.

• EDCA detects the start and final addresses.

• ESEL generates a debug exception when an address event detection channel detects the final address.

Cycle count profiling proceeds in the following stages:

• Detection of the start address, which enables the counter to start counting core cycles.

• Detection of the final address that generates a debug exception.

• Generation of a debug exception that disables the counter, reads the counter contents, and subtracts the
interrupt service routine overhead.

12.1 ECNT Configuration
The ECNT_CTRL register is configured to do the following:

• Operate in normal mode.

• Enable the event counter when EDCA0 detects an event.

• Count core clocks.

The ECNT_VAL register is initialized with 0x7FFFFFFF. When the counter is enabled, ECNT_VAL is
decremented for each executed cycle.

Event Counter Number of CyclesCore Clocks

Figure 14. ECNT Configuration
Differences Between the EOnCE and OnCE Ports, Rev. 1

26 Freescale Semiconductor

Example: Cycle Count Profiling
12.2 EDCA Configuration
The EDCA0_CTRL register is configured to do the following:

• Enable EDCA0 to detect the start address.

• Compare the PC to the program start address in EDCA0_REFA.

The EDCA1_CTRL is configured to do the following:

• Enable EDCA1 to detect the final address.

• Compare the PC to the program final address in EDCA1_REFA.

The EDCA0_REFA and EDCA1_REFA registers are programmed with the start and final addresses.

EDCA 0

Program Counter

Start Address

Enable Counter=
Comparator A

EDCA 1

Program Counter

Final Address

Generate=
Comparator A Debug Exception

Figure 15. EDCA Configuration

12.3 ESEL Configuration
The ESEL_CTRL is configured to issue a debug exception upon detection of the final address. The ESEL_DI is
configured to select EDCA1 as the source to cause a debug exception.

Event Selector
PC = Final Address Generate Debug Exception

Figure 16. ESEL Configuration

12.4 Example Code
When EDCA0 detects the starting address 0x1000, the counter is enabled. ECNT_VAL is decremented for each
executed clock cycle. The end of the code is reached when the PC jumps to itself. When EDCA1 detects the final
address (0x1018), a debug exception is generated. The debug exception service routine disables the timer and
moves the final ECNT_VAL to data register d1. The number of cycles executed from the start to the final address
is indicated by the new ECNT_VAL minus the new ECNT_VAL of 0x7FFFFFEB and the number of cycles to turn
off the event counter, which gives a value of 0x7FFFFFFF – 0x7FFFFFEB-2=12 cycles.

Example 10. Cycle Count Profiling Example

 include ‘eonce_regs.asm’
 include ‘intequ.asm’
 input ds 8
 coeff ds 8
 org p:0
 jmp $1000
Differences Between the EOnCE and OnCE Ports, Rev. 1

Freescale Semiconductor 27

Document Order No.: AN2073

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2003, 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

 org p:I_DEBUG
jsr dbgexcp
rte
org p:$1000
clr d0 move.l #input,r0
move.f #coeff,r1
move.f (r0)+,d2
move.f (r1)+,d1
mac d2,d1,d0 move.f (r0)+,d2move.f

(r1)+,d1
jmp *

dbgexcp
move.w #0,d0
move.w d0,ECNT_CTRL
move.l ECNT_VAL,d1
debug
rts
Rev. 1
1/2005

	1 External Pins
	1.1 EE Signals Control Register
	1.2 Example: EE0 As an Output to Indicate Detection by EDCA0
	1.3 Example: EE2 As an Input to Enable the Event Counter

	2 Entering Debug Mode
	3 Dedicated Instructions
	4 Register Access
	5 Real-Time Data Transfer
	6 Executing Instructions in Debug Mode
	6.1 CORE_CMD Instruction Format
	6.2 Example: Generating the CORE_CMD Value
	6.3 Software Downloading

	7 Event Counter
	7.1 Event Counter Register Set
	7.2 Example: Counting Core Clocks Using the ECNT

	8 Event Detection Unit
	8.1 Address Event Detection Channel
	8.2 Data Event Detection Channel

	9 Event Selector
	9.1 ESEL Register Set
	9.2 Example: Generating a Debug Exception Using the ESEL

	10 Trace Unit
	10.1 Trace Buffer Register Set
	10.2 Example: Tracing of Execution Sets

	11 Breakpoint Logic
	12 Example: Cycle Count Profiling
	12.1 ECNT Configuration
	12.2 EDCA Configuration
	12.3 ESEL Configuration
	12.4 Example Code

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

