

SECTION 1
QUICC/POWERQUICC DIFFERENCES

The following section describes how to move applications from the MC68360 QUICC envi-
ronment to the MPC860 PowerQUICC environment. It is assumed that the user is familiar
with the differences between the 68K type bus used by the QUICC and the PowerPC
architechture used by the MPC860. This section is intended to address moving software
from one application to the other.

1.1 CPU AND COMPILERS

The QUICC contains a CPU32+ processor. This executes MC68000 style code and sup-
ports instructions implemented in 68K family parts up through the 68020. The PowerQUICC
contains the Embedded PowerPC core, which is PowerPC compliant through Book 1.
Because moving from a CPU32+ core to an Embedded PowerPC core involves a leap from
one architecture to another, existing QUICC code accessing the core must be recompiled.
Many tool vendors now have a C cross compiler for 68K to PowerPC instruction set.

Also note that the MPC860 has cache and MMU functionality on chip, which most code will
want to take advantage of for performance and code protection reasons.

Major differences between a 68K style design and a PowerPC architechture style design
include the fact that the MSbit is bit 0 and the highest interrupt level is 0 not 7. Also note that
the nomenclature defines a word as a 32 bit structure and a half word as a 16 bit structure.
The bus signals are conceptually similar, but have different names and imply slightly differ-
ent operation.

1.2 SIU

The SIU on the PowerQUICC is an entirely new design from the SIM on the QUICC. The
features of the SIU on the PowerQUICC are a superset of the features supported on the
QUICC’s SIM, but because of the architechture change in the core, the SIU is a new design.

1.2.1 Memory Controller

The PowerQUICC memory controller is a flexible, easy to use programmable state machine
which allows the user complete control over memory cycle accesses. Using DRAM as an
example, in the case of the PowerQUICC memory controller, instead of having a set rela-
tionship between RAS and CAS, the user may control the RAS/CAS within a resolution of a
1/4 clock cycle. This is performed though a single 32 bit word programmed in internal RAM.
Each of the 32-bit words represents the behaviour of the memory control signals for a single

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

rxzb30
AN2050

rxzb30
ForwardLine

rxzb30
copywithline

quicc/powerquicc Differences

1-2

system clock period. Bursts on a 32-bit PowerPC bus are 4 beats or a maximum of 8 clock
periods. Any memory change on a board, even in the case of changing symmetric memory
out for asymmetric memory may be supported by simply reprogramming the Memory con-
troller of the MPC860. The CS0 line is available at boot so that a glueless interface to
EEPROM, SRAM and other memory is still supported. The logic portion entitled the User
Programmable Machine supports DRAM and DRAM-type memories and the logic block
called the General Purpose Chip Selects Machine supports SRAM, EEPROM and other
similar memory types. Along with the UPM and the GPCSM are registers specifying base
addreses of memory types and the options for accessing each memory attached to the Pow-
erQUICC in the system.

1.2.2 PCMCIA

The PCMCIA socket controller is completely new from the standpoint of the QUICC. Any
code written for the QUICC which will take advantage of thePCMCIA functionality of the
PowerQUICC should have a PCMCIA driver added to the existing code.

1.2.3 Development Port

The debug interface is completely redesigned between the QUICC and the PowerQUICC
due to the architechture change between the CPU32+ and the 505 PowerPC compliant CPU
cores. The MPC860 implements a prefetch queue combined with parallel, out of order, pipe-
lined execution, and most fetch cycles are performed internally (e.g. from the I-cache).
These features increase performance between the QUICC and PowerQUICC but require
new software to handle program trace operations. The Development Port can operate in two
working modes: the trap enable mode and debug mode.

1.2.3.0.1 Program Trace.

Reconstructing a program trace requires that the program code
and some additional information from the MPC860 be available. Reporting on program trace
during instruction retirement could significantly complicate debug support, therefore pro-
gram trace is reported during instruction fetch. Because not all fetched instructions eventu-
ally retire (i.e execute normally and are removed from the instruction queue), an indication
on canceled instructions is provided to allow the user to reconstruct the actual program flow.
When program trace is required, the external hardware should sample the status pins (

VF

&

VFLS

) each clock and also sample the address of all cycles marked with the <inst>Pro-
gram trace cycle attribute.

1.2.3.0.2 Watchpoints and Breakpoints.

The MPC860 CPU supports internal watchpoints
(watchpoints that are generated inside the core), internal breakpoints (breakpoints that are
generated inside the core), and external breakpoints (breakpoints that are generated out-
side the core). In general, breakpoints are recognized in the CPU only when the MSR

RI

 bit
is set, which guarantees machine restartability after a breakpoint. In the CPU, as in other
RISC processors, saving/restoring machine state on the stack during exception handling is
done mostly in software. When the software is in the process of saving/restoring machine
state, the MSR

RI

 bit is cleared and a breakpoint assertion could cause a non-restartable

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

machine state. In the case where it is necessary to enable breakpoints when the MSR

RI

 bit
is clear, both internal breakpoints and an external development system have a

non-
maskable

mode.

1.2.4 Clock Generation

The MPC860 Clock Module consists of the main crystal oscillator (OSCM), the System PLL
(SPLL), the Low Power Divider, the Clock Generator and Driver blocks and Clock Module &
System Low Power Control Block. The Clock Module & System Low Power Control Block
receives control bits from the System Clock Control Register (SCCR) and the PLL, Low
Power and Reset Control Register (PLPRCR).

Like the QUICC, The MODCK1 and MODCK2 pins are used during Power On Reset (POR)
to configure the clock source for the SPLL and the Clocks Drivers. Also, the PLL on the
MPC860 can multiply the input frequency by any integer between 1 and 4096. The multipli-
cation factor may be changed by changing the value of MF[0:11] bits in PLPRCR.

The

General System Clocks (GCLK1C, GCLK2C, GCLK1 and GCLK2) are the basic clock
supplied to all modules and sub-modules on the MPC860. The general system clock can be
operated at three frequencies as determined by the DFNL value in SCCR.

The General System clock can switch automatically from “low” to “high” frequency whenever
one of the following conditions exists:

- There is a pending interrupt from the Interrupt Controller. This option is maskable by
the PRQEN bit in SCCR.

- Power Management (POW) bit in the MSR of the PowerPC Core is cleared (normal
operation). This option is maskable by the PRQEN bit in SCCR.

- The CPM RISC controller has a pending request or is currently executing a routine
(i.e. it is not idle). This option is maskable by the CRQEN bit in SCCR.

When neither of these conditions exists and the CSRC bit in PLPRCR is set, the general
system clock switches automatically back to the low frequency.

The following pins are dedicated to the PLL operation in addition to those on the QUICC:
VSSYN, VSSSYN1

1.3 CPM

The CPM on the PowerQUICC is nearly identical to that on the QUICC, with the addition of
a few features. The CPMs operate at approximately the same throughput when running at
identical frequencies, although a 40MHz PowerQUICC will support four SCCs running eth-
ernet where a QUICC will only run up to 33MHz and supports ethernet on three channels.
Each subsection of the CPM is discussed below with the relevent changes described in
detail.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

1-4

1.3.1 RISC

The PowerQUICC CPM is a superset of the QUICC CPM.

1.3.1.1 MICROCODE.

The RISC on the PowerQUICC and QUICC are nearly identical with
respect to microcode packages. The PowerQUICC microcode instruction set is a superset
of that for the QUICC so backwards compatiblityis maintained. Note that microcode written
for the QUICC must be recompiled before being downloaded to the PowerQUICC. There are
a few QUICC microcode packages which have been incorporated into the hardware of the
PowerQUICC and these microcode packages need not be downloaded to the Power-
QUICC. The following list represents these functions

• Asynchronous HDLC

• Signalling System #7

1.3.1.2 DSP.

The PowerQUICC provides a basic set of DSP functions in addition to the
functions supported on the QUICC. The ROM provides a library of DSP functions based on
the Multiply and Accumulator on the CPM which can be combined together to perform var-
ious filtering and modulation operations required to support many modem standards includ-
ing V.32bis and V.34..

1.3.2 Serial Management Controllers (SMC)

The SMCs have not changed between the QUICC and PowerQUICC

1.3.3 Time Slot Assigner

The Time Slot Assigner has not changed between the QUICC and PowerQUICC

1.3.4 Serial Direct Memory Access (SDMA)

Because the SMDA accesses the internal U-bus on the MPC860, the SDMA has added
burst capability as well as the ability to burst data in both big and little endian modes.These
features are programmed in the receive and transmit function code registers associated with
the SCCs, SMCs, SPI and I

2

C.

On the MPC860, the cache, SIU, and the SDMA may all become internal bus masters. To
determine the relative priority of these masters, each is given an arbitration ID. The 12
SDMA channels share the same ID, which is programmed by the user. Therefore, any
SDMA channel can arbitrate for the bus against the other internal masters and any external
masters that are present.

Once an SDMA channel obtains the system bus, it remains the bus master for one transac-
tion (which maybe a byte, half-word, word, or burst) before relinquishing the bus. In the case
of character-oriented protocols, the SDMA writes characters to memory (it does not wait for
multiple characters to be received before writing), but the SDMA always reads long words.

The read or write operation may take multiple bus cycles if the memory provides less than
a 32-bit port size. For instance, a 32-bit long-word read from a 16-bit memory will take two
SDMA bus cycles. The entire operand (4-word burst, 32 bits on reads and 8, 16, or 32 bits

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

on writes) will be transferred in back-to-back bus cycles before the SDMA relinquishes the
bus.

The SDMA can steal cycles with no arbitration overhead when the MPC860 is the bus mas-
ter.

1.3.5 Independent Direct Memory Access (IDMA)

The MPC860 uses a virtual IDMA rather than a hardware IDMA as in the QUICC. Virtual
refers to the fact that the IDMA is implemented via a microcode in ROM on the Power-
QUICC. Differences between the QUICC IDMA and the PowerQUICC IDMA relate only to
the fact that the PowerQUICC supports both big and little endian modes. Because of this,
the IDMA buffer descriptors have an added field specifying the byte ordering of the source
and destination operations. The other change relating to the IDMA is the function code for
the source operation is within the IDMA buffer descriptor and is no longer in the register
memory map as in the QUICC.

Fly-by and double-buffer modes are supported by the virtual IDMA implementation, but note
that the RISC microcontroller task scheduling may demonstrate a slight variance in perfor-
mance. In other words, if the RISC is not performing another task the IDMA operation is
faster than that on the QUICC because of the burst capability. However, if the RISC is cur-
rently involved in another task and cannot service the IDMA then each IDMA transfer (byte,
half-word, word or burst) will not begin until the RISC is free to service it.

1.3.6 Timers

The RISC timers on the MPC860 PowerQUICC are enhanced beyond the functionality pro-
vided on the MC68360 QUICC. Each pair of timers may be used to generate a PWM wave-
form on one of PORT B pins. A maximum of eight channels can be supported. When using
this mode of functionality, the first (even numbered) timer is used to control the cycle time
of the waveform, the second timer is used to control the duty cycle and the respective Port
B pins are configured as a general purpose outputs.

1.3.7 Dual Port RAM

The MPC860 PowerQUICC has 5120 bytes of static RAM configured as dual-port memory
used by the CPM on the chip. The dual-port RAM can be accessed by the RISC controller
or one of two bus masters: the PowerPC CPU or the SDMA channels.

Within the dual-port RAM the CPM maintains a section of memory called the parameter
RAM. This RAM contains many parameters for the operation of the SCCs, SMCs, SPI, I

2

C
and the IDMA channels.

1.3.8 Parallel I/O Changes

Due to added functionality in the PowerQUICC, a parallel port was added to the CPM. Some
of the pins controlled by Port A and B are now controlled by Port D. The following registers
have had bit changes between the QUICC and PowerQUICC and software controlling the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

1-6

definitions of these pins should be re-written. PADAT, PADIR, PAODR, PAPAR, PBDAT,
PBDIR, PBODR, PBPAR. Pins affected by this change include RXD3, TXD3, RTS3, CTS3,
etc.

1.3.9 Interrupt Controller

There is an additional interrupt source from the QUICC to the PowerQUICC. The QUICC
had 28 interrupt sources, the PowerQUICC has 29 because of the addition of the I

2

C con-
troller. Like the QUICC, the PowerQUICC CPIC supports a fully nested interrupt environ-
ment that allows a higher priority interrupt from another CPM source to suspend a lower
priority interrupt’s service routine. This nesting is achieved by the CPM interrupt in-service
register (CPIC). When an interrupt event occurs, the interrupt mask bit in the CPU machine
status register (MSR) is cleared to disable further interrupt requests until the s/w is ready to
handle them.

It is possible to allow a higher priority interrupt within the same interrupt level to be presented
to the CPU core before the servicing of a lower priority interrupt is completed. When the CPU
acknowledges an interrupt by setting the IACK bit, the in-service bit for that interrupt source
is set in the CISR . This prevents any subsequent CPM interrupt requests at this priority level
or lower (within the CPIC interrupt table), until the servicing of the current interrupt has com-
pleted and the in-service bit is cleared by the user. Note that pending interrupts for these
sources are still set in an interrupt event register during this time, but are set in the CIVR
register rather than what was called the CPIC on the QUICC.

The following text provides an example of a handler for an interrupt source with multiple
events - in this example SCC1. Note that the bit in CIPR does not need to be cleared by the
handler, but the bit in the CISR does need to be cleared.

1. Set the IACK bit in the CIVR

2. Read vector to access interrupt handler.

3. Immediately read the SCC1 event register (SCCE1) into a temporary location.

4. Handle events in the SCC1 Rx or Tx BD tables.

5. Clear the SCC1 bit in the CISR.

6. Execute the RFI instruction. If any unmasked bits in SCCE1 remain at this time (either
not cleared by the software or set by the MPC860 during the execution of this handler),
this interrupt source will be made pending again immediately following the RFI instruc-
tion.

1.4 JTAG

The JTAG interface on the PowerQUICC is completely redesigned from the QUICC. The
BSDL file and any tester programs taking advantage of the JTAG interface on the QUICC
must be re-written entirely to represent the new scan-chain on the PowerQUICC.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

quicc/powerquicc Differences

1-8

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

