A Freescale Semiconductor Order Number: AN2005/C
Rev. 0, 7/2000

68K IdFIRE

R O F R DO OCEB B

Application Note
Embedded ColdFire®-Taking Linux On-Board

Nigel Dick
Netcomm Applications Group

1.1 Introduction

Linux is probably one of the most talked about operating systems recently and has rapidly taken up amajor
amount of column space in many of the computing journals and periodicals. In the embedded arena, Linux
isgrowing at an equally rapid rate. How isit the old saying goes? The only thing in lifethat isfree isthe air
that we breathe — not true! Linux is free; it works and has al the benefits of being an open-source software
suite.

In the past, existing operating systems have often caused developers great frustration having to “just live
with system bugs’. Linux gives devel opers the power to identify and easily solve bugs by writing their own
software “ patches’ which are then added to the software library for the benefit of al Linux users. Themain
growth of Linux in the embedded marketplace is undoubtedly due to this open nature. This alows
developersto quickly modify the Linux kernel codeto suit their own particular applications, which can then
be uploaded, into the common open-source software pool which can be used and accessed by others.

This application note looks at the historical development of Linux and the features that make it suitable for
embedding onto a ColdFire® Processor core. This document also details setting up a Linux debugging
environment on the ColdFire 5206e LITE development board using freeware software. Similar references
for other ColdFire development boards are also given. Finally, an illustrative example on the MCF5206
Arnewsh development board shows the uClinux kernel running.

‘o

Z “freescale"

Go to: www.freescale. ; luctor

© Freescale Semiconductor, Inc., 2004. All rights reserved.
© Motorola, Inc., 2000. All rights reserved.

RXZB30
forward100

RXZB30
bottomline

—A Brief Hist i
nux rief Histopy . c @scale Semiconductor, Inc.

1.2 Linux—A Brief History

The Linux operating system gets its name from its inventor, Linus Torvalds. Becoming dissatisfied with the
operating system that came with his new IBM 386 PC hardware, Linus wanted to run a UNIX operating
system instead. UNIX proved an expensive operating system and so he set out with ateam of programmers
to develop a new version of UNIX. From this work, a new core operating system, or kernel, named Linux
was created. In early spring of 1994, three years after development first started, the first public released
version of Linux was made available. Thiswas Linux V1.0.

At the very outset of the Linux project, it was decided to make the code distribution freely available. Linux
had a number of features which were normally only seen on operating systems costing hundreds of dollars
per user. Features such as multiple simultaneous users, a demand paged virtual memory system and the
ability of multi-tasking, quickly generated interest from prospective devel opers.

In 1997, three years after the release of Linux V1.0, an estimated 3,000,000 people were using Linux. The
exact figures are difficult to determine since there are no licenses issued for individual users. By the end of
the following year, 1998, this figured had doubled to well over 7,000,000. Today Linux is growing faster
than any other operating system and accounts for 25% of the worldwide server market and over 50% of all
web servers. See Section 1.7, “ Data Sources and References’ for more details.

1.3 Linux—A Versatile Operating System

The varied features of Linux allow it to be used in avariety of applications. In particular, Linux is ideally
suited to networking environments, for the following reasons:

Since Linux is a multi-tasking operating system, it can handle the needs of more than one user at any one
time and run many different programs at the same time. Linux can aso handle programs and files of
immense size. Features such as these make Linux perfectly adapted to the requirements of personal or
networked workstations.

The virtual memory properties of Linux coupled with its multitasking capability and powerful file
management system make it particularly suitable for file and print server applications. Since the operating
system and layered software that controls the communication between the file system and printers attached
to the Linux system is free, the solution is much cheaper. All versions of Linux support |P-masquerading.
This allows a single Linux machine, or router, to control the routing of all network traffic from an entire
network onto the Internet. Using this technique, an entire LAN can be securely hidden behind asingle P
address, the configuration used most commonly by today’s business!

Go to: www.freescale.com

Freescale Semiconductor, 1HE.The Embedded System
Linux is a popular choice with many Internet service providers because it is free and aso because the
source-code for the entire operating system isalso freely available. Sincethisisthe case, the Internet service
provider (ISP) can quickly rectify problems themselves rather than wait for acommercial vendor to correct
the problem. This gives the user the benefit of less network downtime. Indeed, Linux can be considered the
backbone of the Internet as well over half of al web serversin the world use Linux because of its' stability
and networking capabilities.

The kernel structure of Linux includes an integrated packet filter that allows the user to restrict incoming
and outgoing IP traffic. This feature gives the kernel a high degree of security and also a high degree of
immunity from harmful viruses. Thus, the kernel structure of Linux lends itself well to Internet firewall
security applications.

The Linux operating system is a “friendly” operating system which means Linux can be easily installed
alongside other operating systems on the same machine without causing any problems. It can be installed
on ahard drive partition and using the Linux Boot Manager, LILO, the user can then select the appropriate
operating system when booting up the system.

As systems grow in size and complexity, an operating system becomes essential to simplify the system
software. An embedded Linux operating system has a number of key advantages over other available
operating systems. Linux is a general-purpose operating system that provides a stable platform that is
portableto many processors. The fact that the kernel can be considered completely configurable, or scalable,
means that it can lend itself to awide range of capabilities.

Linux supports the POSIX API (Portable Operating System Interface for Unix — Application Program
Interface). This is a standard (IEEE 1003.1) that defines the language interface between application
programs and the Unix operating system. Since Linux adheresto this standard it ensures compatibility when
programs are moved from one Unix platform to another. The ability of uClinux to support the POSIX AP
means that many Unix /Linux applications can now be ported easily to embedded environments.

1.4 Linux—The Embedded System

Linux is considered a reliable operating system that is gaining considerable ground in the embedded field
because of its small kernel. A key point to remember hereis that the Linux operating system isjust a core
kernel, nothing more. In order to do something useful with the kernel and perform basic functions,
additional elements, or applications, need to be added to the embedded Linux system. These applications
can be anything from simple command line utilitiesto commercial applications. The Linux kernel, together
with these applicationsis collectively called a distribution.

Since memory is usualy limited in an embedded system, the size of the Linux kernel should be as small as
possible. The two main methods of achieving this are to compress the kernel image and to customise the
kernel. Customising the kernel alows the user to only configure the modules and device drivers that are
needed for their particular application.

A basic embedded Linux system requires the following elements:

* A boot utility - Performing hardware initialisation and software start-up.
e Linux micro-kernel - Composed of timing services, process and memory management.
e Application set - Interrupt processing and environment setup.
Enhancing the functionality of the Linux system requires additional resources:
» Hardware drivers —serial console port driver, LAN drivers, customised drivers etc.
» One or more application processes — to provide the required system functionality.

Go to: www.freescale.com

Freescale Semiconductor, 1HE.The Embedded System

Asthe number of applications are added, the following features might then be required:

* TCP/IP network stack — to handle network accesses.
* A filesystem — RAM or ROM (FLASH) based.
» Storage disk — for storing semi transient data and during data swap conditions.

Thetarget device is often limited in terms of available memory in which the kernel and applications can be
stored. Downsizing the Linux kernel to create a micro-kernel is often the most difficult part in porting the
Linux core onto a processor core. One such port for the ColdFire Microprocessor, uCLinux, is a subset of
the Linux core and not the entire operating system. (Removing unnecessary parts of the Linux core in an
effort to minimise kernel sizeis not for the faint hearted and care must be exercised not to induce fatal bugs
in the operating system).

Although target memory is of prime concern, Linux has a number of features that an embedded system can
exploit to save RAM. Consider atypica embedded Linux application that consists of the kernel and some
form of application program. In this simple example, both the kernel and application tasks should be in
memory when the system first boots up. Both tasks and kernel can be compiled and then downloaded as one
image to the target at boot time. This could be stored as a file system image in ROM or RAM.

Linux has the ability to save memory by being able to move programs to and from memory. Consider the
situation when initialisation code is downloaded to the target. More often than not, this initialisation code
is executed once to setup the target and is never run again until the target is reset. Hence, after the system
has successfully booted, the initialisation code can be discarded or overwritten. Similarly, utility programs
that run outside the kernel can be loaded when needed and then discarded (or unloaded) to save memory. In
this way, the same area of memory could theoretically be used to load in utility programs, as and when the
kernel requires them.

Memory can aso be temporarily made available using a term called memory “swapping”’. The term
swapping is generally defined as when all or part of a running application is temporarily saved to a mass
storage device such as a hard disk. The uClinux kernel does not support memory swapping.

The Linux kernel relies on the host processor having some form of memory management system to support
virtual memory. This feature allows devel opers to write code without too much concern for the size of the
program. Using Linux, the program can simply flow into the memory swap area of the disk or storage
medium. The main hurdle to overcome during the devel opment of an embedded kernel such asuCLinux, is
the lack of an on-board memory management system. Non-embedded kernel operation would assume that
virtual memory is available for the taking. The easiest way to workaround this problem for embedded
kernels is to ensure that it only works with physical memory addresses rather than virtual ones. (Since
virtual memory uses the swap area of a disk, setting the swap size of this area to zero enforces physical
memory addressing).

The choice of storage medium limitswhat code should be located where. Using Flash memory (for memory
swapping), which has alimited number of write cycles (anything from 1,000 to 400,000 cycles), should be
avoided asit can quickly cause the Flash to wear-out / fail. Similarly, if power interrupts are configured into
the code, memory could easily belost if an interrupt occurs during awrite cycle. Typically, Flash memory
is nearly always used as a file system to store the kernel programs as files, which are loaded into RAM as
required. The RAM itself is normally used as a medium for holding transient files.

Existing users of Linux will be familiar with the LILO boot manager that configures the kernel to take into
account the available external hardware and perform the necessary initialisation sequence. When running
the Linux micro kernel in an embedded ColdFire Microprocessor application, the initialisation routine has
to be generated specifically for the target environment.

The next section of this document will discuss how to setup an environment to allow Linux to be
downloaded onto an embedded Freescale ColdFire Microprocessor. For this example, we will use the
M5206e LITE evaluation board and code that has been devel oped through the uCLinux project. At present,

Go to: www.freescale.com

Freescale SeMitSRULRLESY, TR VCF5206e LITE Board

the uClinux kernel supports the Arnewsh M5206AN and M5307AN evaluation boards, the Freescale
M5206€eLITE, the M5206eC3 and the M5307C3 evaluation boards, as well as the Moreton Bay NETtel
router board which is populated with a MCF5307 Microprocessor.

1.5 Linux Kernel Download onto
the MCF5206e LITE Board

In order to set-up, run and debug aLinux kernel (uClinux) on the MCF5206e LITE board, someinitial work
must first be carried out.

1.5.1 Downloading the Linux Kernel Source, uClinux

As discussed earlier, the versatility of Linux is derived from the fact that the user can configure the kernel.
The kernel is configured by enabling / disabling certain options which build up a makefile from which the
kernel is compiled. The task of producing a source package that will run on the target M5206e LI TE board
has aready been completed by the Australian Company, Moreton Bay. The term given to this source
development is“Porting”. uClinux isaport of the Linux kernel onto the Freescal e ColdFire Microprocessor
family.

The uClinux source packages can beretrieved, free-of-charge, (Remember that Linux is open source!), from
the Moreton Bay web site at http://www.moretonbay.com/col dfire/linux-col dfire.htm. Development tools
for use with uClinux are also included in this directory. Pre compiled binary images of the uClinux kernel
can also be downloaded from their site a the following URL:
http://www.moretonbay.com/col dfire/linux-col dfire.ntm.

1.5.1.1 Un-Archiving, Compiling, Con guring
and Making the uClinux Kernel

A typical uClinux kernel can be built following the steps below:

1. Retrieve the sources from Moreton Bay's web site onto your Linux machine / partition.

AsROQOT user, extract the source code from the gzip’ ed tar imageinto a“ uClinux-coldfire’ directory using
the command line below. (The pipe command,” |, allows the tar extraction command to be used and
executed on the same command line as the zcat command).

zcat uClinux-coldfire- X XXX XXX X .tar.gz | tar xvf —

2. Now, extract the tool binaries into a new uClinux-coldfire/tools directory using the commands:
“zcat uClinux-coldfire-toolss X X XXX XXX .tar.gz | tar xvf —
3. Thenew kernel is now ready to be built. Firstly go down into the uClinux-coldfire directory by
typing:
“cd uClinux-coldfire”
4. To configure anew Linux kernel you need to make a configuration script that will build the kernel
at compile time. To do this, type:

“make config”
The developer can then configure the Linux kernel to be as large or small as required depending on the
number of drivers and support functions that are needed on the final application. (Remember that the

MCF5206e LITE board is factory populated with 1Mbyte of FSRAM on board. 1IMbyte of FSRAM is
considered to be the minimum system requirement for running uClinux.)

Go to: www.freescale.com

nux Kernel DownIﬁggéhégfawgﬁéﬂlfé&aﬁjductor, Inc.

At this stage, the true versatility of creating aLinux kernel becomes obvious as you can actively select CPU
type, IP firewalls, |P masquerading, drivers, amongst many other options.

When making the kernel configuration file prior to compilation, consideration should be given to the target
development board when selecting the kernel options. For example, building Ethernet support onto the
kernel when setting up the target for a MCF5206eL I TE board would cause a compilation error since the
LITE board has no Ethernet on it. [Note that the console switch, on uClinux, has not been supported for the
ColdFire boards by the Moreton Bay devel opers.]

5. Thenext stagein the build is to check and build the dependencies. This checks each C filein the
source and figures out which “*.h" header library file it depends on. When a“*.h" file is modified
inany way, the compiler then knowswhich Cfilesit needsto re-compile. To build the dependencies,
type:

" make dq)”

6. The user-defined kernel is now ready to compile. The chosen options that were made during the
“Make config” stage will determine the applications and features that the kernel will support. The
application set generated during the configuration compile stage is dependent on the " common.mk™
file. The “common.mk”, file, can be configured to give an application set based on the chosen

CPU/platform by manually editing the entries. To select an option, removetheleading “#’ fromthe
first character on the line. The “common.mk” file currently includes five standard options:

BUILD_BIG --includesevery app possiblein ROM file-system
BUILD_€eLITE -- builds an app set tailored for the MCF5206€eL I TE board
BUILD_CADRS3 -- builds an app set tailored for the MCF5206 Cadrel |l board
BUILD_NETtel -- builds an app set tailored for the Moreton Bay NETtel box
BUILD_eLIA -- buildsan app set tailored for the Moreton Bay eL 1A box

If none of these are defined then asmall, minimal ROM file-system is generated. Thisis suitable for boards
with IMB of RAM. On a small build, the application set is minimal and is limited to “init” and “sh”
processes.

7. To make the binary image of the Linux kernel, simply type:
“make”’
Asthekernel isbeing made, the display should show al of the necessary (or dependant) files being compiled

and linked together into one large binary file which is saved to the /tftpboot directory of the uClinux tree by
the make file. Thisfile can then be downloaded onto the target board.

Thedefault build generatesaraw binary image (image.bin) containing both the uClinux kernel and the ROM
file system. Some debugging suites, however may require ELF format binaries or standard S-Record format
images. Provision has been made to generate these images. After building the binary, an ELF image that
contains the kernel and ROM file system can be created using the “make” command. It is worth noting that
the combined kernel and file system ELF images are not suitable for loading onto the target via DBUG. To
generate an elf image for use with gdb and the BDM interface, the following command line should be typed:

“make image.elf”
Similarly, S-Record images can be created in the exact same way. After building the binary image type:

“make image.srec”

Go to: www.freescale.com

Freescale SeMitSRULRLESY, TR VCF5206e LITE Board

(This command uses objcopy to generate an SSRECORD image file that contains both the uClinux kernel
and the ROM file system). Errors during the make process will cause failure and are often contributed to
selecting invalid options for the chosen board during the “make config” stage. If this occurs, simply re-run
the kernel configuration by typing “make config” and repeat the process, selecting the correct options for
your board.

The next two sections will discuss how to set up the debugging environment for downloading the code
through the serial port of the target board and aso how to set-up the popular GDB software for
communicating to the target boards BDM (Background Debug Mode) connector.

1.5.2 Communicating With The MCF5206e LITE Board—
Serial Port

To download the uClinux kernel to the M5206e LI TE board through the serial COM port and the serial port
of the Linux PC, a number of different options are available, again al free-ware. Basic Linux commands
such as “cu” and “tip” can communicate with the seria port / DBUG as well as more advanced software
packages such as “Minicom”. When using the serial port to download data to the development board only
images in s-record format should be used as - DBUG corrupts downloads of non s-record formatted data
containing kernel + ROM file system images.

1.5.2.1 Linux “cu” Command

With the seria port of the LITE board connected to the COM port of the Linux PC, the most convenient
way, under Linux, of talking to the serial portsis using the“cu” command. In Linux, the serial COM1 port
deviceidis“cual’. Hence to setup a serial port connection to the M5206e LITE board with a baud rate of
19200 BPS, the command entry would be:

“cu -l cua0 -s 19200”

After typing this command, the serial communications link should be established and the normal DBUG
prompt will appear. DBUG should be setup to receive the kernel data over the serial communications link
via the “DL” command — (see section 5.2.3 for further details). Code can then be downloaded to the
development board by entering the following command entry:

then, “$cat <filename.srec>”

Thiswill download the uClinux kernel (in s-record format) to the host development board. The tilde (“~")
command instructs the host cu software to escape. The “$cat <filename.srec>" simply uses the standard
Unix “CAT” command to send the s-record to the board viathe established serial link. (A full on-line Linux
manual exists for the“cu” command that gives full details of all available options—type “cu - -help”).

1.5.2.2 Freeware Source Software—“Minicom”

Minicom is afreely available, Linux text-based modem control and emulation program that can be used to
communicate through the serial port to the target development board. It has excellent vt102 screen and
keyboard emulation that includes full use of the entire cursor keypad and script capability. The script feature
is particularly useful when automated login is required.

In order to use Minicom, it must be first configured. Thisis easily achieved using the different menus that
should be configured for the target system / environment. Most problems with Minicom are caused by the
software being mis-configured or due to read/write permission errors whilst trying to download to a target
directory. Minicom can be downloaded from one of the many GNU freeware sites such as
http://www.pp.clinet.fi/~walker/minicom.html.

Go to: www.freescale.com

nux Kernel DownIﬁggéhégfawgﬁéﬂlfg&aﬁjductor, Inc.

With the correct configurations set-up for the target system / environment, the binary image of the uClinux
kernel can be downloaded to the board using the “ Download file” menu. Again, ensure that the correct baud
rate has been selected for the target board using the setup menus prior to downloading theimage. Theimage
can then be downloaded, usually in ASCII format, onto the target using ColdFire DBUG (other modem
download formats are also available).

1.5.2.3 Physical Kernel Download onto the Target ColdFire
Development Board.

The easiest way to download the code onto the ColdFire M5206e LITE board is to use the DBUG monitor
stored in the Flash firmware. Communi cation should first be established between the Linux PC andthe LITE
development board using some form of serial communication programs. (Refer to sections 5.2.1 and 5.2.2
for examples). Pressing return whilst a physical link is set-up by one of these programs should display the
DBUG prompt.

To download the S-record file of the uClinux kernel to the LITE evaluation board you have to use the serial
communications port since the board does not have Ethernet capability. Serially downloading the image
onto the LITE board can be achieved using the command:

“dl 30020000”

After entering this command, the s-record can then be downloaded to the board by a simple ASCII
download. Again, the “cu” command, Minicom, HyperTerminal or some other terminal program can
achieve this. Once the image has been successfully downloaded into the user RAM area (location
0x30020000) of the M5206e LITE board, it can be executed using the “go” command. To start up theimage
on the M5206e LITE board type:

“go 0x30020000”

Each different processor built during the “make config” stage will require a different start address for the
images based on the memory map of the board. For example, the M5206AN board would use a start address
of 0x10000, the M5307AN board would use an address of 0x20000 and the M5206EC3 board would use an
address of 0x20000. Ensure the kernel data is downloaded to the correct user RAM location in memory
according to the board that is used.

If everything is correctly configured and the image has been downloaded without errors, the Linux kernel
startup messages should be displayed onto the console when the DBUG monitor is given the “go”
instruction.

[The M5206AN devel opment board uses the auxiliary terminal port to output kernel 1/0 at a baud rate of
9600. In the case of the other ColdFire development boards, the uClinux kernel internal baud rate can be
changed from the default 9600-baud rate by editing the “common.mk” file located in the top-level uClinux
directory. Only alimited set of baud rates are currently supported - 9600, 19200, 38400, 57600 and 115200.
This file can also be edited to include the different standard builds mentioned earlier e.g. BUILD_BIG,
BUILD el ITE etc.]

The developer should consult the uClinux NOTES page on Moreton Bay's website for a detailed overview
of the features and limitations of uClinux: http://www.moretonbay.com/col dfire/linux-col dfire.ntm.

1.5.3 Communicating With The MCF5206e LITE
Board—BDM Port

The GNU DeBugger, or GDB for short, allows the user to step through a C or C++ program, (or several
other languages for that matter) to find the point at which they fail. Like most software for Linux, GDB is
freeware, stable, highly portable and, as such, iswidely considered as one of the main debuggers within the

Go to: www.freescale.com

Freescale SeMitSRULRLESY, TR VCF5206e LITE Board

Linux community. It has a powerful range of features such as code stepping, memory examination /
modification, code disassembly, code tracing, scripting capability and software implemented breakpoint
setting.

Thelist of commands for GDB is quite extensive and beyond the scope of this document. The source code
of GDB (the most recent version is 4.18 at the time of writing) can be downloaded (freely) at
http://sourceware.cygnus.com/gdb/. If GDB is supported on your Linux system kernel, on line manual help
is available for this version of GDB directly through the command line of Linux, and also at
http://sourceware.cygnus.com/gdb/onlinedoc.

A number of software patches have been developed for GDB to allow a seamlessinterface with the uClinux
kernel and ColdFire family of microprocessors. Connection from the host Linux PC to the target board can
be made using either the P& E or Macraigor BDM Interface cables shipped with most ColdFire devel opment
kits. These cables connect the 26-way BDM port on the target development board to the parallel port on the
host Linux PC via in-line programmable logic. The ColdFire BDM device driver for use with the GDB
debugger islocated at http://sourceware.cygnus.com/gdb/onlinedoc.

Using the BDM port is more desirable to the developer than simply using the serial terminal as it alows
access to monitor the PST and DDATA pins that can be used for real-time trace applications, improving
debugging capability when compared to normal serial debugging methods. Also Ethernet downloads are
possible on most ColdFire development boards via the BDM connector. Downloading over the Ethernet
connection is much faster than serially downloading the dataand is easily be done viathe DBUG firmware.
Using the SET and SHOW DBUG commands, binary images can be downloaded to the target board using
the following commands:

“dn —s—0 0x10000 image.srec” or “dn — image.bin”
Full details of downloading data over the Ethernet and al other DBUG commands are given in the
documentation supplied with all Freescale ColdFire devel opment kits.
1.5.3.1 Installing the GDB Debugging Suite

Most commercia kernels available today such as Red Hat, Suse or Debian, already have the GDB debugger
built into the kernel. For those systems that don’t have this command utility on their kernel, the installation
procedure is very similar to that of installing the uClinux kernel and support tools that was detailed in
section 5.1.

Firstly the source code should be downloaded from the Cygnus GDB web site (URL given in section 5.3).
This source code file must first be decompressed and un-tarred. To do this, enter

“tar xzvf gdb-4.18.tar.gz"

After typing this command, a new gdb-4.18 source directory should have been created which includes full
documentation and help files. These should be consulted prior to further installation as they contain
important information on system defaults and installation. GDB then needs to be configured for your host
machine which can be automatically by executing the configure script via“bash” (Bourne Again SHell):

“ [configure’

Typing the above line executes the configure script which checks the local environment and automatically
configures and builds all of the tools contained in the GDB package. To make the configuration file, smply

type:
13 make”

Go to: www.freescale.com

nux Kernel DownIﬁggéhégfawgﬁéﬂlfé&aﬁjductor, Inc.

Once the configuration file has been created, the GDB software can be installed using the command below.
It should be noted that at this stage, that adefault compiler can be specified —full information of thisisgiven
inthe GDB README file.

“make install”

Once GDB isup and running, commands are entered at the command line to perform debug functions. This
method of controlling the debugger may be slightly daunting for many “windows” users. Fortunately, a
number of graphical front-end packages exist to add “meat to the bones’ of GDB. The mgjority of these
packages run GDB as a sub-process and are thus slightly slower than using the command line or packages
that are compiled into GDB.

Cygnus Solution’s debugger, Insight, (available from http://www.cygnus.com) is adebugger compiled into
GDB that has a dight performance advantage over other front-end packages such as Code Medic and DDD
(Data Display Debugger) as it runs as a main process of GDB. DDD is an X-windows based debugger
front-end that has easy to navigate menu options and is available from the following URL::
www.cs.tu-bs.de/softech/ddd/. Code Medic is again X-windows based and incorporates a more
sophisticated drag and drop display. Code Medic is available from
http://www.newplanetsoftware.com/medic/.

1.5.3.2 GDB Software Patch—BDM Device Driver

Once GDB is set-up and running, the device driver for the BDM port must be configured for the ColdFire
microprocessor. This is a similar exercise to building the uClinux kernel and the GDB debugger already
covered.

The GDB patch at URL http://www.calm.hw.ac.uk/davidf/coldfire/gdb-4.17-bdm-990115.tar.gz. contains
everything that is needed for running GDB on Linux to control a ColdFire Microprocessor through a
standard Linux PC paralel port. The README text in this newly created directory should be considered
mandatory reading. As mentioned before, the GDB debugger can support event tracing through the PST and
DDATA pins on the BDM port. To enable access to the PST hits, the makefile in the driver/linux directory
should be edited so that “USE_PST” is uncommented and enabled.

The BDM device driver must first be compiled and installed onto the system using the “make install”
command linei.e

“cd driver/linux”
“make install”

Thiswill create the BDM device driver. The next stage is to create the physical BDM port device using the
“mknod” command:

“mknod /dev/bdmcfO c 34 4"

The minor device number (the second number in the above mknod command) specifies the parallel port to
whichthe BDM interfaceis connected and the type of target CPU. Theleast significant two bits of the minor
device number specify the parallel port and the remaining bits specify the target CPU type. The example
above illustrates the command line that would be entered for setting up a ColdFire BDM debug device
running from parallel port LPT1. Thisdriver can be automatically loaded into the kernel on reboot by adding
the following line into the /etc/rc.d/rc.local startup script:

“/shin/insmod bdm”

Finally, beforethe BDM driver isfully functional, you must compile and install the BDM library. To do this,
type in the command lines below:

Go to: www.freescale.com

Freescale SemiconddEt8# CHHECn of the uClinux Kernel
“cdlib”
“make install”

In order to determineif the debugging suite and BDM driver are correctly set-up, the software patch contains
atest program called “chk”. Assuming that the ColdFire development board is powered up and connected
from the BDM to the Linux host machine's printer port via a suitable cable, the driver can be easily tested
using the following commands:

“cd test”
“make’
“ Ichk /dev/bdmcf0”

If everything is correctly configured, the output display window should show a screen dump of al the
registers of the target device after the memory test routine has been run. The software patch should then be
applied to the GDB distribution. To do this type:

“cd.../..../gdb-4.18"
“patch -p1 </.../....gdb-4.18-bdm/gdbPatches/gdb-4.18-patch”

Thefinal stage of setting up the BDM software patch isto compile and install the cross-GDB support. An
example script is given in the “gdb-4.18-bdm/local_scripts’ for reference. Full details of the installation
procedureis given in the README section of the GDB, BDM software patch.

A final test should be carried out to ensure that the software with the path can connect to the target. To do
this start GDB with :

“m68k-bdm-coff-gdb”
then at the GDB prompt, connect to the target by typing:

“target bdm /dev/bdmcf0”

If al iswell, the GDB software should return text indicating that the remote BDM has been connected to
your patched device. All of the GDB commands can now be used on the target processor to manipul ate code
and data.

1.6 Testing the Operation of the uClinux Kernel

The kernel was tested on a 366MHz machine with Linux / PC partitions and the following (Linux) system
parameters:

Distribution: Redhat Linux V6.1
Kernel: 2.2.12.20

Gcc: €gcs-2.91.66
Make: GNU make 3.77
Libc: glibc-2.1.1

Gdb: 4.18

The serial port (com1) was configured to operate at 19200 baud rate with no parity or stop bits and 8 data
bitsusing the Linux “cu” command. The serial port of the host Linux PC was connected to the terminal port
of the ColdFire M5206€eL I TE development board via a standard 9 way connector. (HyperTerminal, or some

Go to: www.freescale.com "

isting the OperatiOWéhég%gfé@g&'miconductor, Inc.

other terminal emulation software can be used to establish a connection between a PC and the terminal port.
The selected baud rate matches the default kernel baud rate of 19200 defined during the “ make config” stage
of the build).

After downloading the kernel onto the target ColdFire M5206€eL I TE development board via the COM1
serial port the kernel was booted up by typing “go” at start location 0x30020000. Executing the code
showed the kernel boot up sequence coming out from the ColdFire microprocessors auxiliary debug port.

The exact details of the boot-up sequence will vary depending on the target processor (and user memory
constraints associated with each ColdFire development board) and, of course, the applications that were
selected during the kernel configuration stage. The kernel boot-up console displayed on the “cu” terminal
port is displayed below. Outputs for other ColdFire development boards will take a similar form to the
following: (Shown below for the ColdFire M5206€eL | TE board)

Hard Reset
FSRAM Size: 1M

Copyright 1997-1999 Motorola, Inc. All Rights Reserved.
ColdFire MCF5206e EV S Debugger v1.4.7 (Mar 2 1999 13:04:24)
Enter 'help’ for help.

dBUG> dI 30020000
Offset: 0x30020000
Escape to local host and send S-records now...

S-record download successful!
dBUG> g 30020000

uClinux/COL DFIRE(m5206€)

COLDFIRE port done by Greg Ungerer, gerg@moreton.com.au
Modified for M5206eL I TE by Rob Scott, rscott@mtrob.fdns.net

Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne

KERNEL -> TEX T=0x30020000-0x3004f12c DATA=0x3004f 12c-0x30059408 B SS=0x30059408-0
x30068ff0

KERNEL -> ROMFS=0x30068ff0-0x3007b668 M EM=0x3007b668-0x300ff000 STACK=0x300ff000
-0x30100000

Cdlibrating delay loop.. ok - 35.73 BogoMIPS

Memory available: 500k/703k RAM, 0k/Ok ROM (392k kernel data, 188k code)

Swansea University Computer Society NET3.035 for Linux 2.0

NET3: Unix domain sockets 0.13 for Linux NET3.035.

uClinux version 2.0.38.0 (root@ndick) (gcc version egcs-2.91.66 19990314 (egcs-1

1.2 release)) #9 Wed Jan 26 11:54:54 GMT 2000

ColdFire internal UART serial driver version 1.00

Go to: www.freescale.com

Freescale SemiconddEt8# CHHECn of the uClinux Kernel

ttySO at 0x10000140 (irq = 224) isa builtin ColdFire UART

ttyS1 at 0x10000180 (irg = 225) isabuiltin ColdFire UART

Blkmem copyright 1998,1999 D. Jeff Dionne

Blkmem copyright 1998 Kenneth Albanowski

Blkmem 1 disk images:

0: 30068FF0-3007B7EF (RO)

VFS: Mounted root (romfs filesystem) readonly.

Shell invoked to run file: /etc/rc

Command: hostname uClinux-coldfire

Command: mount -t proc proc /proc

Execution Finished, Exiting

Sash command shell (version 1.1.1)

I>1s

bin

dev

etc

home

lib

mnt

proc

tmp

usr

var

/>

A similar setup is required for the ColdFire M5206AN development board. The seria port (coml) was
configured to operate at 19200 baud rate with no parity or stop bits and 8 data bits using the Linux “cu”
command. The serial port of the host PC was connected to the terminal port of the ColdFire M5206AN
development board via a standard 9 way connector. The auxiliary terminal port on the development board
was connected to the serial port on a secondary PC to display the output from the kernel. HyperTerminal
was used to establish the connection between this secondary PC and the auxiliary termina port at 9600

baud. (This baud rate matches the default kernel baudrate of 9600 defined during the “make config” stage
of the build).

After downloading the kernel onto the target ColdFire 5206 Microprocessor viathe COM1 seria port the
kernel was booted up by typing “go” at start location 0x10000. Executing the code showed the kernel boot
up sequence coming out from the ColdFire microprocessors auxiliary debug port.

uClinux/COL DFIRE(mM5206)
COLDFIRE port done by Greg Ungerer, gerg@moreton.com.au
Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne

Go to: www.freescale.com 13

isting the OperatiOWéhég%gfé@g&'miconductor, Inc.

KERNEL -> TEXT=0x010000-0x03f220 DATA=0x03f220-0x0495a3 B SS=0x0495a8-0x0591a0
KERNEL -> ROMFS=0x0591a0-0x06b7f8 M EM=0x06b7f8-0x0ff000 STACK =0x0ff000-0x100000
Cdlibrating delay loop.. ok - 16.43 BogoMIPS

Memory available: 564k/767k RAM, Ok/Ok ROM (456k kernel data, 188k code)
Swansea University Computer Society NET3.035 for Linux 2.0

NET3: Unix domain sockets 0.13 for Linux NET3.035.

uClinux version 2.0.38.0 (root@ndick) (gcc version eges-2.91.66 19990314 (egcs-1
.1.2 release)) #10 Wed Jan 26 12:00:40 GMT 2000

ColdFire internal UART serial driver version 1.00

ttySO at 0x10000140 (irq = 224) isabuiltin ColdFire UART

ttyS1 at 0x10000180 (irg = 225) isabuiltin ColdFire UART

Blkmem copyright 1998,1999 D. Jeff Dionne

Blkmem copyright 1998 Kenneth Albanowski

Blkmem 2 disk images:

0: 591A0-6B99F (RO)

1: FFE20000-FFE3FFFF (RW)

VFS: Mounted root (romfs filesystem) readonly.

Shell invoked to run file: /etc/rc

Command: hostname uClinux-coldfire

Command: mount -t proc proc /proc

Execution Finished, Exiting

Sash command shell (version 1.1.1)

I>1s

bin

dev

etc

home

lib

mnt

proc

tmp

usr

var

/>

Go to: www.freescale.com

Freescale SemiconddEt8# CHHECn of the uClinux Kernel

The size of available on board memory does of course limit the size of kernel and features that can be
supported on the Linux kernel. A basic system should contain screen and RAM disk device drivers so that
physical applications can be loaded and their outputs displayed.

1.6.0.1 Porting Applications to ColdFire Development Boards Using
uClinux

All applications that run on the uClinux kernel are compiled from C source code located in the USER
directory of uClinux. Each application has it's own unique directory within the USER directory. When the
kernel isbeing built, the top level makefile hasa DIRS definition which listsall of the application directories
that should be included at compile time.

Within each application directory, a makefile is present to set compile options and detail the naming
conventionsfor the final application objects that will be created. The example below shows the makefile for
the applications grouped under the “fileutils’ directory. (This application group creates the basic Linux
commands on the kernel)

EXECS = cat chgrp chnod chown cnp cp dd grep | In |s nkdir nkfifo nknod \
more mv rmridir sync touch
OBJS = cat.o chgrp.o chnod.o chown.o cnp.o cp.o dd.o grep.o l.oIn.ols.o\
nkdir.o nkfifo.o nknod.o more.o nmv.o rmo rndir.o sync.o touch.o
all: $(EXECS)
$(EXECS): $(0BJIS)
$(LD) $(LDFLAGS) -0 $@elf $@o $(LDLIBS)
$(CONVERT)
cl ean:
rm-f $(EXECS) *.elf *.0

The “fileutils” nmakefile clearly shows the nanmi ng conventions to be used for the
execut abl e conmands and their associated object files. The nakefile al so gives
the conpiler inportant information for “nake” and “nake clean” instructions.
Asdiscussed previoudly, this“fileutils” directory must be passed into the main USER directory makefile at
the DIRS definition so that it will be compiled during the kernel build. The USER (application) makefile
can be customised and may take a similar form as the following:

#

Makefile -- Build instructions for user |evel apps
#

. EXPORT_ALL_VARI ABLES:

#

Include architecture specific build rules.

#

i ncl ude arch/col dfire/build.nk
DIRS = agetty boa bpal ogi n chat clock dhcpcd dhcpd diald discard \
ethattach fileutils flashw flatfsd gettyd httpd \
ifattach inetd init init.org ipfwadmlcd | evee |oattach |ogin \

Go to: www.freescale.com 15

isting the OperatiOWéhég%gfé@g&'miconductor, Inc.

mount netflash ping pppd pptpd play rootl oader route \
sash sh shutils snmbnount stty sysutils telnet telnetd tftpd \
thttpd tip traceroute version
all:
for i in $(DRS) ; do make -C $$i || exit $? ; done
cl ean:
for i in $DRS) ; do make -C $$i clean; done

From the above USER makefile, it is easy to see how particular applications can be added or removed from
the final kernel build. Including a newly ported application into the kernel would involve the following
stages:. (For examples sake, we will use the fictitious application “myHDdriver”)

1. Create anew directory for the application suitein .../uClinux-coldfire/USER/myHDdriver.

2. Copy al of therelevant source and library files associated with “myHDdriver” into this newly
created USER directory.

3. Create amakefile to inform the compiler of object and executable naming conventions.
4. Include“myHDdriver” directory name into the main USER makefiles DIRS definition.
5. Compilethe kernel.

Porting applications is fairly straightforward athough a number of issues are present that must be
highlighted to the potential kernel developer.

Thefirst issue to be aware of is the compilation of the ported application. The uClinux kernel has alimited
libc, C library, hence it may be necessary to add or remove library include files to or from the library for
successful compilations. Unlike normal Linux kernels, the uClinux kernel does not support virtual memory
since memory islimited in an embedded kernel.

Since there is no virtual memory to grow user memory stacks on the uClinux kernel, they must be fixed in
size. The default setting of the kernel fixes them in sizeto 4K athough this can be increased using the “-s’
option of “elf2flt”. (The“elf2flt” utility converts elf recordsto flat format binariesfor subsequent download
to the devel opment board)

Due to Linux’s alocation algorithm and the limited memory available on a typical embedded system, the
maximum allocation sizeislimited to 256K on the uClinux kernel. The exec() loader will not be ableto load
any binary imagethat isbigger than 256K . Again, thelack of virtual memory makes process D system calls,
or forksimpossible, and uses avirtual fork instead (vfork).

The above paragraphs detail the limits of the uClinux port. Porting applications from another
microprocessor onto a ColdFire microprocessor running auClinux kernel may require modificationsto take
into account the different register setups, interrupt / trap sequences, timers, addressing etc.

As with all development work on Linux, ported applications or code should be verified and stored in the
central archive for the use and enjoyment of other developers. Thisis the essence of all Linux work.

[Freescale does not in any way endorse Moreton Bay Enterprises or any other software supplier or devel oper
mentioned in this document. Freescale also does not accept any responsibility for the reliability or support
of the code mentioned in this text. The uClinux port discussed in this document is to illustrate purely how
Linux can be embedded onto the ColdFire M CF5206e LI TE board. The code discussed is GNU open source
and as such all software restrictions and rules apply.]

Go to: www.freescale.com

1.7

Freescale Semiconductor, fA2:

Data Sources and References

Linux for Dummies by John "maddog” Hall, IDG Books

Linux Server Sales Surge As NT Treads Water by John Lettice, http://www.theregister.co.uk /
http://www.theregister.co.uk

Thefollowing isalist of useful Linux links:

http://linux-embedded.com/
http://www.linux-m68k.org/
http://www.linux.org/
http://www.uclinux.org/
http://www.moretonbay.com/
http://www.cygnus.com/

Go to: www.freescale.com

Sources and References

17

Freescale Semiconductor, Inc.

Home Page:

www.freescale.com

email:

support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224

(800) 521-6274

480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan

0120 191014

+81 2666 8080
support.japan@freescale.com
Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center

2 Dai King Street

Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

(800) 441-2447

303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

-,

> freescale*

samconduchor

Go to: www.freescale.com

RXZB30
disclaimer

RXZB30
hibbertleft

RXZB30
logo

	1.1 Introduction
	1.2 Linux—A Brief History
	1.3 Linux—A Versatile Operating System
	1.4 Linux—The Embedded System
	1.5 Linux Kernel Download onto the MCF5206e LITE Board
	1.5.1 Downloading the Linux Kernel Source, uClinux
	1.5.1.1 Un-Archiving, Compiling, Configuring and Making the uClinux Kernel

	1.5.2 Communicating With The MCF5206e LITE Board— Serial Port
	1.5.2.1 Linux “cu” Command
	1.5.2.2 Freeware Source Software—“Minicom”
	1.5.2.3 Physical Kernel Download onto the Target ColdFire Development Board.

	1.5.3 Communicating With The MCF5206e LITE Board—BDM Port
	1.5.3.1 Installing the GDB Debugging Suite
	1.5.3.2 GDB Software Patch—BDM Device Driver

	1.6 Testing the Operation of the uClinux Kernel
	1.6.0.1 Porting Applications to ColdFire Development Boards Using uClinux

	1.7 Data Sources and References

