
Freescale Semiconductor
Application Note

AN1952
Rev. 0, 9/2005

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Using Program Memory As
Data Memory
William Jiang

1. Introduction
Microcontrollers with Harvard architecture have separate program
and data memory spaces. Program memory is generally used for
storing program code, although it can be used for storing data;
while, as its name indicates, Data memory is used for storing data.
Because the CodeWarrior tool for the 56800 Family does not
directly support access to Program memory from C code, using
assembly code is the only way to access Program memory. To
speed a product’s time to market, this document includes a
Program Memory Functions Library, which can be used for
accessing data of various types stored in Program Memory. It is
simple, easy to understand, and easy to use. For quick reference,
source code is included in Section C in the Appendix.

2. 56800 Program Memory and Data
Memory

Program memory and Data memory in the 56800 Family are
known as P memory and X memory, respectively. Both memory
spaces are 16 bits wide; i.e., one word wide. Program memory is
normally used for storing program code, i.e. instructions. Data
memory is used for storing program data. There is only one kind
of instruction for Program memory access: MOVE(M)
P:(Rj)+,HHHH. In contrast, many kinds of instructions are used to
access Data memory, such as MOVE instructions,
bit-manipulation instructions and so on. A detailed comparison
between both memory usages is shown in Table 2-1.

According to this table, 56800 hybrid controllers provide far less
Data memory than Program memory. A user can benefit from
larger Program memory to store data when the data memory space
is insufficient. For example, a user can store various constant
coefficients in the Program Flash. The disadvantage of using
Program memory is obvious: the access time is longer.

Contents
1. Introduction1
2. 56800 Program Memory and Data

Memory1
3. Program Memory Functions

Library 2
3.1 Performance of the APIs3
3.2 Requirements of the APIs3
3.3 pmemreads3
3.4 pmemwrites4
3.5 pmemreadf4
3.6 pmemwritef4
3.7 pmemreadl.......................................4
3.8 pmemwritel5
3.9 pmemreadns5
3.10 pmemwritens5
3.11 pmemreadnf6
3.12 pmemwritenf6

4. How to Use the Program Memory
Functions Library6

4.1 Tips and Tricks................................7
4.2 Linker Command File for 56F827

External RAM..................................7
4.3 main.c ..9

APPENDIX...................................... 14

Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

2 Freescale Semiconductor

3. Program Memory Functions Library
This section provides the Program memory function APIs which can be called by C code to access Program
memory. Program memory is limited to the Program RAM in the case of memory write functions. For writing
into the Program Flash/ROM, the relevant Flash/ROM algorithm should be used. These functions support
various data types: bool; char; unsigned char; short; unsigned short; int; unsigned int; long; unsigned long;
float; double; and pointer. A description of each function’s performance follows.

3.1 Performance of the APIs
The performance numbers that follow are calculated under these conditions:

Table 2-1. Usage Comparison between Program Memory and Data Memory

Program Memory Data Memory

How Many Instruction Types? 1 Many

Parallel Move Allowed? No Yes

Machine Cycles for a MOVE instruction >8 >2 but < its counterpart for
Program memory

56F801 9K
(1K RAM/ 8K Flash)

3K
(1K RAM/2K Flash)

56F802 9K
(1K RAM/ 8K Flash)

3K
(1K RAM/2K Flash)

56F803 32.5K
(512 RAM/ 32K Flash)

6K
(2K RAM/4K Flash)

56F805 32.5K
(512 RAM/ 32K Flash)

6K
(2K RAM/4K Flash)

56F807 62K
(2K RAM/ 60K Flash)

10K
(2K RAM/8K Flash)

56F826 32.5K
(512 RAM/ 32K Flash)

6K
(4K RAM/2K Flash)

56F827 65K
(1K RAM/ 64K Flash)

8K
(4K RAM/4K Flash)

Table 3-2. Performance of the APIs

Program Memory Functions Oscillator Cycles Instructions Words

pmemreads 18 2

pmemwrites 18 2

pmemreadf 28 4

pmemwritef 28 4

pmemreadl 28 4

pmemwrites

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 3

• The functions run from the on-chip program memory
• “N” stands for the number of data in words to be read or written

When the functions are executed from external Program memory which requires wait states, the execution will
be slower.

3.2 Requirements of the APIs
Since there are no boundary checks by the Program memory functions, the user must ensure all addresses
passed to the function APIs are within the scope of the device memory. The program memory functions do not
use any stack space to pass parameters and return values.The stack space required for execution of a program
memory function is only one word.

3.3 pmemreads
This function reads a short value from the Program memory at the specified address. It can also be used to read
other types of data: unsigned short; bool; char; unsigned char; int; and unsigned int, since they are represented
in 16 bits in memory by CodeWarrior.

Prototype:
short pmemreads(void *address);

Input:
address A pointer to the location in P memory to be read

Return:
A short value

3.4 pmemwrites
This function writes a short value to the Program RAM at the specified address. It can also be used to write
other types of data: unsigned short; bool; char; unsigned char; int; and unsigned int, since they are represented
in 16 bits in memory by CodeWarrior.

Prototype:
void pmemwrites(void *address,short data);

Input:
address A pointer to the location in P RAM to write

data A short value to be written

Return:
None

pmemwritel 28 4

pmemreadns 16+N*10 5

pmemwritens 16+N*10 5

pmemreadnf 16+N*20 7

pmemwritenf 16+N*20 7

Table 3-2. Performance of the APIs (Continued)

Program Memory Functions Oscillator Cycles Instructions Words

Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

4 Freescale Semiconductor

3.5 pmemreadf
This function reads a float value from the Program memory at the specified address.

Prototype:
float pmemreadf(void *address);

Input:
address A pointer to the location in P memory to be read

Return:
A float value

3.6 pmemwritef
This function reads a float value to the Program RAM at the specified address.

Prototype:
void pmemwritef(void *address,float data);

Input:
address A pointer to the location in P RAM where the value is to be written

data A float value to be written

Return:
None

3.7 pmemreadl
This function reads a long value from the Program memory at the specified address.

Prototype:
long pmemreadl(void *address);

Input:
address A pointer to the location in P memory where data are to be read

Return:
A long value

3.8 pmemwritel
This function writes a long value to the Program RAM at the specified address.

Prototype:
void pmemwritel(void *address,long data);

Input:
address A pointer to the location in P RAM where the value is to be written

data A long value to be written

Return:
None

pmemreadnf

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 5

3.9 pmemreadns
This function reads an array of short values with nelem elements from the Program memory at addressFrom
and stores these data into Data memory at addressTo. It can also be used to read other types of data: unsigned
short; bool; char; unsigned char; int; and unsigned int since they are represented in 16 bits in memory by
CodeWarrior.

Prototype:
short pmemreadns(void *addressFrom,void *addressTo,unsigned short

nelem);

Input: ,
addressFrom A pointer to the source location in P memory from which data are to be read

addressTo A pointer to the destination location in X memory where data are to be written

nelem Indicates the number of elements in the short array where data are to be stored

Return:
A short value last read

3.10 pmemwritens
This function writes an array of short values with nelem elements to the program RAM memory at addressTo
from the Data memory at addressFrom. It can also be used to write other types of data: unsigned short; bool;
char; unsigned char; int; and unsigned int, since they are represented in 16 bits in memory by CodeWarrior.

Prototype:
void pmemwritens(void * addressFrom,void * addressTo,unsigned short

nelem);

Input:
addressFrom A pointer to the source location in X memory from which data are to be read

addressTo A pointer to the destination location in P memory where data are to be written

nelem Indicates the number of elements in the short array to be written

Return:
None

3.11 pmemreadnf
This function reads an array of 32-bit values with nelem elements from the Program RAM memory at
addressFrom and stores these data into Data memory at addressTo. It can be used to read an array of long
values or float values.

Prototype:
short pmemreadnf(void *addressFrom,void *addressTo,unsigned short

nelem);

Input:
addressFrom A pointer to the location in P memory from which data are to be read

addressTo A pointer to the location in X memory where data are to be written

nelem Indicates the number of elements in the short array where data are to be received

Return:
A short value last read

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

6 Freescale Semiconductor

3.12 pmemwritenf
This function writes an array of 32-bit values with nelem elements to the Program RAM memory at addressTo
from the Data memory at addressTo. It can be used to read an array of long values or float values.

Prototype:
void pmemwritenf(void * addressFrom,void * addressTo,unsigned short

nelem);

Input:
addressFrom A pointer to the location in X memory from which data are to be read

addressTo A pointer to the location in P memory where data are to be written

nelem Indicates the number of elements in the short array to be written

Return:
None

4. How to Use the Program Memory Functions Library
There are some tips and tricks for using the Program Memory Functions Library. Here is an example of storing
constant variables in the program memory on the 56F827. The framework of the sample code is generated with
Freescale’s Embedded Stationery. The global constant variables defined in main.c will be stored in the external
Program RAM at load time. This can be achieved by setting the compiler to emit const defined data to the
.rodata section and by using the linker command file as shown. The .ApplicationCode section contains code
lines similar to these:

rodata: Constants to be placed in Program memory

_Prodata_start_addr_in_RAM = .;

F_Prodata_start_addr_in_RAM = .;

main.c (.rodata)

F_Prodata_size = . - _Prodata_start_addr_in_RAM;

These code lines direct the linker to put the global constant variables defined in main.c into the Program RAM.
After the code is loaded by the CodeWarrior debugger, the Program RAM contains these global constants.

However, take care when using strings in CodeWarrior.

4.1 Tips and Tricks
Without the keyword “const” just before the variable name ErrorMessages, the following definition results in
that data will be stored in .data section instead of in the .rodata section.

const char * ErrorMessages [] =

{

"IO ERROR",

"TRBLE MODE ERR",

"DATA ERROR",

"DATA CORRUPTED",

"DISPLAY ERROR",

"MEMORY ERROR",

"INVALID PARAMETER"

};

Linker Command File for 56F827 External RAM

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 7

In the code above, there are constant strings which will be stored in Data memory instead of in Program
memory, since CodeWarrior puts those strings in the .data section. To direct CodeWarrior to store constant
strings in the .rodata section and then in the Program memory, check "Make Strings ReadOnly" in the Code
Generation\M56800 Processor panel. In general, the user can refer to the linker map file for the Program and
Data memory usages.

4.2 Linker Command File for 56F827 External RAM
Linker.cmd file for DSP56827EVM External RAM
using both internal and external data memory (EX = 0)
and using external program memory (Mode = 3)
#***
MEMORY {
.pInterruptVector (RX) : ORIGIN = 0x0000, LENGTH = 0x0086

.pExtRAM (RWX) : ORIGIN = 0x0086, LENGTH = 0xFF7A

.xAvailable (RW) : ORIGIN = 0x0000, LENGTH = 0x0030

.xCWRegisters (RW) : ORIGIN = 0x0030, LENGTH = 0x0010

.xIntRAM_DynamicMem (RW) : ORIGIN = 0x0040, LENGTH = 0x0FC0

.xPeripherals (RW) : ORIGIN = 0x1000, LENGTH = 0x0400

.xReserved1 (R) : ORIGIN = 0x1400, LENGTH = 0x0C00

.xFlash (R) : ORIGIN = 0x2000, LENGTH = 0x1000

.xReserved2 (R) : ORIGIN = 0x3000, LENGTH = 0x1000

.xExtRAM (RW) : ORIGIN = 0x4000, LENGTH = 0xA000

.xExtRAM_DynamicMem (RW) : ORIGIN = 0xE000, LENGTH = 0x1200

.xStack (RW) : ORIGIN = 0xF200, LENGTH = 0x0D80

.xCoreRegisters (RW) : ORIGIN = 0xFF80, LENGTH = 0x0080
}
#***
FORCE_ACTIVE {FconfigInterruptVector}
SECTIONS {
#
Data (X) Memory Layout
#
_EX_BIT = 0;
Internal Memory Partitions (for mem.h partitions)
_NUM_IM_PARTITIONS = 1; # IM_ADDR_1 (no IM_ADDR_2)
External Memory Partition (for mem.h partitions)
_NUM_EM_PARTITIONS = 1; # EM_ADDR_1

#***
.ApplicationInterruptVector :
{
vector.c (.text)

} > .pInterruptVector
#***
.ApplicationCode :
{

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

8 Freescale Semiconductor

 # Place all code into External Program RAM
* (.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)

data to be placed into Program RAM

F_Pdata_start_addr_in_ROM = 0;
F_Pdata_start_addr_in_RAM = .;

 pramdata.c (.data)

 # rodata: Constants to be placed in Program memory

_Prodata_start_addr_in_RAM = .;
F_Prodata_start_addr_in_RAM = .;
main.c (.rodata)
F_Prodata_size = . - _Prodata_start_addr_in_RAM;

F_Pdata_ROMtoRAM_length = 0;
 F_Pbss_start_addr = .;
_P_BSS_ADDR = .;
pramdata.c (.bss)
F_Pbss_length = . - _P_BSS_ADDR;

 F_Pram_end_addr = .;
} > .pExtRAM

#***
.ApplicationData :
{
Define variables for C initialization code

F_Xdata_start_addr_in_ROM = ADDR(.xFlash) + SIZEOF(.xFlash) / 2;
F_StackAddr = ADDR(.xStack);
F_StackEndAddr = ADDR(.xStack) + SIZEOF(.xStack) / 2 - 1;
F_Xdata_start_addr_in_RAM = .;

Define variables for mem library
FmemEXbit = .;

WRITEH(_EX_BIT);
FmemNumIMpartitions = .;

WRITEH(_NUM_IM_PARTITIONS);
FmemNumEMpartitions = .;

WRITEH(_NUM_EM_PARTITIONS);
FmemIMpartitionList = .;

WRITEH(ADDR(.xIntRAM_DynamicMem));
WRITEH(SIZEOF(.xIntRAM_DynamicMem) / 2);

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 9

FmemEMpartitionList = .;
WRITEH(ADDR(.xExtRAM_DynamicMem));
WRITEH(SIZEOF(.xExtRAM_DynamicMem) /2);

Place rest of the data into External RAM

* (.data)
* (fp_state.data)
* (rtlib.data)

F_Xdata_ROMtoRAM_length = 0;

F_Xbss_start_addr = .;
_X_BSS_ADDR = .;

 * (rtlib.bss.lo)
* (.bss)

F_Xbss_length = . - _X_BSS_ADDR; # Copy DATA

} > .xExtRAM
#***
FArchIO = ADDR(.xPeripherals);
FArchCore = ADDR(.xCoreRegisters);
}

4.3 main.c
/* File: main.c */
#include "pmemop.h"

/***
* Skeleton C main program for use with Embedded Software
***/
#define assert(a)\
if(!a)\
{ \
asm(debug)\

}

extern void * _Prodata_start_addr_in_RAM;
extern void * _Prodata_size;
extern void * _Pram_end_addr;

#pragma use_rodata on

const short ShortArray [3][3] =
{ {0x4000, 0x5000, 0x6000},

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

10 Freescale Semiconductor

{0x7000, 0x8000, 0x9000},
{0xa000, 0xb000, 0xc000}

};

const float FloatArray [3][3] =
{ {0.5, 1.0, 2.5},
{3.0, 3.25, 4.0},
{0.25, 4.25, 5.5}

};

const long LongArray[3][3] =
{
{0x55aaff00,0xff0055aa,0x0055ffaa},
{0x12345678,0x23456789,0x3456789a},
{0x456789ab,0x56789abc,0x6789abcd}
};

/*
 * Without 'const' just before the variable name,the following defintion results
in that
 * data will be stored in .data section instead of .rodata section
 * This is testified by the linker map file.
 * Please check "Make Strings ReadOnly" in the Code Generation\M56800 Processor
panel.
 */
const char * const ErrorMessages [] =
{ "IO ERROR",
"TRBLE MODE ERR",
"DATA ERROR",
"DATA CORRUPTED",
"DISPLAY ERROR",
"MEMORY ERROR",
"INVALID PARAMETER"

};
#pragma use_rodata off

void main (void)
{
int i,j;
shorts[3][3]; // stores the array of short values
floatf[3][3]; // stores the array of float values
longl[3][3]; // stores the array of long values
char*msg_pointer[7];// stores the pointers to the strings
charmsg[50]; // stores the actual string
longldata = 0x66885588L;

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 11

/*
 * CASE 1: test pmemreads to read a single short value and pmemreadf to read a
single float value and
 * pmemreadl to read a long value.
 */
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

s[i][j] = pmemreads((void*)&ShortArray[i][j]);// read short values from p
memory at &ShortArray [i][j]

f[i][j] = pmemreadf((void*)&FloatArray[i][j]);// read float values from p
memory at &FloatArray [i][j]

l[i][j] = pmemreadl((void*)&LongArray[i][j]);// read long values from p
memory at &LongArray [i] [j]
}

}
/*
 * CASE 2: test pmemreadns to read an array of short values.
 */
pmemreadns((void*)ErrorMessages,msg_pointer,7);// read pointers to the desired
strings
for (i = 0; i < 7;i++)
{
pmemreadns(msg_pointer[i],msg,20);// check msg to see whether it contains the

desired string
}

/*
 * CASE 3: test pmemwritens to write an array of short values.
 */
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

s[i][j] = (i+1)*j; // initialize the short array
}

}

pmemwritens((void*)s,(void*)ShortArray,9);// write 9 shorts in the program memory
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

s[i][j] = 0; // reset the short array
}

}
pmemreadns((void*)ShortArray,(void*)s,9);

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

12 Freescale Semiconductor

for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

assert(s[i][j] == (i+1)*j); // check the returned value
}

}
/*
 * CASE 4: test pmemwritenf to write an array of float values.
 */
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

f[i][j] = (i+10.0)*j; // initialize the short array
}

}

pmemwritenf(f,(void*)FloatArray,9);// write 9 shorts in the program memory
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

f[i][j] = 0.0; // reset the short array
}

}
pmemreadnf((void*)FloatArray,(void*)f,9);

for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

assert(f[i][j] == (i+10.0)*j);// check the returned value
}

}
/*
 * CASE 5: test pmemwritenf to write an array of long values.
 */
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

l[i][j] = (i+0x20000000L)*j+0x10000000L; // initialize the long array
}

}

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 13

pmemwritenf((void*)l,(void*)LongArray,9);// write 9 long values to the program
memory
for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

l[i][j] = 0; // reset the short array
}

}
pmemreadnf((void*)LongArray,(void*)l,9);

for (i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

assert(l[i][j] == (i+0x20000000L)*j+0x10000000L); // check the returned value
}

}
/*
 * CASE 6: test pmemwritel to write a long value
 */
ldata = 0x66885588L;
pmemwritel((void*)&_Pram_end_addr,ldata);
ldata = pmemreadl((void*)&_Pram_end_addr);
assert(ldata == 0x66885588L);

/*
 * CASE 7: test pmemwrites to write a short value
 */
pmemwrites((void*)&_Pram_end_addr,0x1234);
s[0][0]= pmemreads((void*)&_Pram_end_addr);
assert(s[0][0]==0x1234);
/*
 * CASE 8: test pmemwritefto write a float value
 */
pmemwritef((void*)&_Pram_end_addr,123.456);
f[0][0]= pmemreadf((void*)&_Pram_end_addr);
assert(f[0][0]==123.456);
}

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

14 Freescale Semiconductor

 APPENDIX
Before reading the source code of the Program Memory Functions Library, a user must understand
CodeWarrior Data Representation and the C Calling Conventions, which are shown here for reference.

A. CodeWarrior Data Representation

A.1 Bool; Char; Short; Int; and Pointer Types
These types are represented in one word; i.e., 16 bits, as shown below:

A.2 Long; Float and Double Types
These types are represented in two words in Little Endian Mode: the high address word stores high data word,
and the low address word stores low data word.

B. CodeWarrior Calling Conventions
CodeWarrior for Freescale 56800 may store data and calls functions differently from other target platforms.

• Registers A, R2, R3, Y0 and Y1 pass parameters to functions
• When a function is called, the parameter list is scanned from left to right.

The parameters are passed in this way:

1. The first long fixed-point value is placed in A

2. The first two 16-bit fixed-point values are placed in Y0 and Y1

3. The first two 16-bit addresses are placed in R2 and R3

4. If there are no long fixed-point parameters, the first non-fixed-point 32-bit value or 19-bit address is
placed in A.

5. If there are no 16-bit fixed-point parameters, the first two 16-bit non-fixed-point, non-address values are
placed in Y0 and Y1 (and Y0 receives the single value when only one is passed)

. . .

B 15 0121314

. . .

B 15 0121314

High Word

Address + 1

. . .

B 15 0121314

Low Word

Address

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 15

6. All remaining parameters are pushed onto the stack, beginning with the right-most parameter.
Multiple-word parameters (19- and 32-bit values) have their least significant word pushed onto the stack
first.

When calling a routine that returns a structure, the caller passes an address in R0, which specifies where to
copy the structure.

The registers A, R0, R2, and Y0 are used to return function results as follows:

• Long fixed-point values are returned in A
• All 19-bit addresses and 32-bit values are returned in A
• 16-bit addresses are returned in R2
• All 16-bit non-address values are returned in Y0

C. Source Code of Program Memory Functions Library

C.1 pmemop.h
#ifndef__pmemop_h
#define __pmemop_h
short pmemreads(void *address);
long pmemreadl(void *address);
float pmemreadf(void *address);
short pmemreadns(void *addressFrom,void *addressTo,unsigned short nelem);
short pmemreadnf(void *addressFrom,void *addressTo,unsigned short nelem);
void pmemwrites(void *address,short data);
void pmemwritel(void *address,long data);
void pmemwritef(void *address,float data);
void pmemwritens(void * addressFrom,void * addressTo,unsigned short nelem);
void pmemwritenf(void * addressFrom,void * addressTo,unsigned short nelem);
#endif

C.2 pmemop.c
#include "pmemop.h"

/*
 * Function: pmemreads
 * Description: reads a short value from the program memory at address
 * Input:
 * address pointer to the location in p memory to be read from
 * Return:
 *short value
 */

asm short pmemreads(void *address)
{
movem P:(R2)+,y0
rts
}

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

16 Freescale Semiconductor

/*
 * Function: pmemreadns
 * Description: reads an array of short values with nelem elements from the
program memory at addressFrom and
 * stores these data into data memory at addressTo.
 * Input:
 * addressFrom pointer to the location in p memory to be read
 *addressTo pointer to the location in x memory where data are to be written
 *nelem indicates the number of elements in the short array to be read
 * Return:
 *short value last read
 */

asm short pmemreadns(void * addressFrom,void * addressTo,unsigned short nelem)
{
do Y0,endr
movem P:(R2)+,y0//addressFrom
move y0,x:(R3)+//addressTo

endr:
rts
}

/*
 * Function: pmemreadf
 * Description: reads a float value from the program memory at address
 * Input:
 * address pointer to the location in p memory to be read
* Return:

 *float value
 */
asm float pmemreadf(void *address)
{
movem P:(R2)+,x0
movem P:(R2)+,a
move x0,a0
rts
}

/*
 * Function: pmemreadnf
 * Description: reads an array of float values with nelem elements from the
program memory at addressFrom and
 * stores these data into data memory at addressTo.
 * Input:
 * addressFrom pointer to the location in p memory to be read from
 *addressTo pointer to the location in x memory where data are to be written
 *nelem indicates the number of elements in the short array to be read
 * Return:
 *short value last read
 */

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 17

asm short pmemreadnf(void * addressFrom,void * addressTo,unsigned short nelem)
{
do Y0,endr
movem P:(R2)+,y0//addressFrom : low word
move y0,x:(R3)+//addressTo
movem P:(R2)+,y0//addressFrom : high word
move y0,x:(R3)+//addressTo

endr:
rts
}

/*
 * Function: pmemreadl
 * Description: reads a long value from the program memory at address
 * Input:
 * address pointer to the location in p memory to be read
 * Return:
 *long value
 */
asm long pmemreadl(void *address)
{
movem P:(R2)+,x0
movem P:(R2)+,a
move x0,a0
rts
}

/*
 * Function: pmemwrites
 * Description: writes a short value to the program memory at address
 * Input:
 * address pointer to the location in p memory to be written to
* data a short value to be written;

 * Return:
 *none
 */

asm void pmemwrites(void *address,short data)
{
move y0,P:(R2)+
rts
}

/*
 * Function: pmemwritens
 * Description: writes an array of short values with nelem elements to the program
memory at addressTo
 * from the data memory at addressFrom
 * Input:
 * addressFrom pointer to the location in x memory to be read
 *addressTo pointer to the location in p memory where data are to be written

How to Use the Program Memory Functions Library

Using Program Memory As Data Memory, Rev. 0

18 Freescale Semiconductor

 *nelem indicates the number of elements in the short array to be read
 * Return:
 *none
 */

asm void pmemwritens(void * addressFrom,void * addressTo,unsigned short nelem)
{
do Y0,endr
move X:(R2)+,y0//addressFrom
move y0,P:(R3)+//addressTo

endr:
rts
}

/*
 * Function: pmemwritel
 * Description: writes a long value to the program memory at address
 * Input:
 * address pointer to the location in p memory to be written to
* data a long value to be written;

 * Return:
 *none
 */

asm void pmemwritel(void *address,long data)
{
move a0,x0
move x0,P:(R2)+
move a1,P:(R2)+
rts
}
/*
* Function: pmemwritef
* Description: writes a float value to the program memory at address
* Input:
* address pointer to the location in p memory to be writen to;
* data a float value to be writen;
* Return:
* none
*/
asm void pmemwritef(void *address,float data)
{
move a0,x0
move x0,P:(R2)+
move a1,P:(R2)+
rts
}

/*
* Function: pmemwritenf
* Description: writes an array of float values with nelem elements to the program
memory at addressTo from
* the data memory at addressTo.

main.c

Using Program Memory As Data Memory, Rev. 0

Freescale Semiconductor 19

* Input:
* addressFrom pointer to the location in x memory to be read
* addressTo pointer to the location in p memory where data are to be writen
* nelem indicates the number of elements in the short array to be read
* Return:
* none
*/
asm void pmemwritenf(void * addressFrom,void * addressTo,unsigned short nelem)
{
do Y0,endr
move X:(R2)+,y0 //addressFrom : low word
move y0,P:(R3)+ //addressTo
move X:(R2)+,y0 //addressFrom : high word
move y0,P:(R3)+ //addressTo
endr:
rts
}

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.
This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

AN1952

Rev. 0
9/2005

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

	1. Introduction
	2. 56800 Program Memory and Data Memory
	3. Program Memory Functions Library
	3.1 Performance of the APIs
	3.2 Requirements of the APIs
	3.3 pmemreads
	3.4 pmemwrites
	3.5 pmemreadf
	3.6 pmemwritef
	3.7 pmemreadl
	3.8 pmemwritel
	3.9 pmemreadns
	3.10 pmemwritens
	3.11 pmemreadnf
	3.12 pmemwritenf

	4. How to Use the Program Memory Functions Library
	4.1 Tips and Tricks
	4.2 Linker Command File for 56F827 External RAM
	4.3 main.c

	A. CodeWarrior Data Representation
	A.1 Bool; Char; Short; Int; and Pointer Types
	A.2 Long; Float and Double Types

	B. CodeWarrior Calling Conventions
	C. Source Code of Program Memory Functions Library
	C.1 pmemop.h
	C.2 pmemop.c

